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Abstract

We combine old ideas about exact renormalization-group-flow (RGF) equations with the Vilkovisky–De Witt (V
approach to reparametrization invariant effective actions and arrive at a new, exact, gauge-invariant RGF equation.
to be paid for such a result is that both the action and the RGF equation depend explicitly upon the base point (in fie
needed for the VDW construction. We briefly discuss the complications originating from this fact and possible ways to ov
them.
 2003 Published by Elsevier B.V.Open access under CC BY license.
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The idea of renormalization, originally introduce
to remove infinities from perturbative calculations, h
evolved into a powerful tool that helps understand
the global behavior of quantum and statistical syste
under changes of the observation scale [1,2].

The search for new, non-perturbative methods
handle problems out of the reach of perturbat
theory has prompted in recent years a renewed
growing interest [3–7] in the “old” subject [1,8] o
“exact” renormalization group (RG) equations. O
typically defines a scale-dependent effective act
Γk , which interpolates between the classical (ba
actionS at k = Λ (the UV cutoff) and the effective
actionΓ at k = 0. The free term is modified by th
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introduction of a suitable (but largely arbitrary) cuto
function that effectively kills the contribution to th
functional integral from momenta below the runni
scalek. The implementation of such a procedure
gauge theories poses however a major problem:
presence of the cutoff function prevents the possib
of defining a gauge invariantΓk (see [9] for earlier
attempts to circumvent this problem).

In this Letter we follow the spirit of Refs. [1,8
that of direct integration over successive shells
degrees of freedom, and combine this idea with
geometrical approach pioneered by Vilkovisky a
De Witt [10,11] (see also [12]) in order to define
gauge-invariant (more generally a reparametrizat
invariant) effective action. The final outcome will b
an exact, gauge-invariant, RGF equation that, to
best of our knowledge, has never appeared befor
the literature. It contains an explicit dependence u
the base-point (in field space) that enters the VD
 license.
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construction, a price that we believe to be inevita
for achieving the goal. We shall comment at the e
on the possible complications due to such depende
when one applies it to specific problems. As for t
derivation of the equation itself, it will be outlined, fo
pedagogical reasons, in three steps. We first pres
new (and in our opinion more transparent) derivat
of basically known results for scalar theories. T
main new results follow as we turn to the ca
of reparametrization-invariant effective actions a
VDW and their exact RGF equation. The final ste
going over to the case of gauge theories, is t
straightforward, as often emphasized by Vilkovisky

We thus begin by definingΓk for a simple scala
field theory. If Λ is the UV cutoff, we introduce
the notationφΛ0 for the field, to indicate that i
contains “modes” in the range[0,Λ], and write
the classical (bare) action asS[φΛ0 ]. For any given
scalek, we divideφΛ0 into the “low-frequency” and
“high-frequency” components,φk0 and φΛk respec-
tively, where φk0 contains the modesφp with 0 <
p < k, andφΛk those in the range[k,Λ]. Even though
for the scalar theory it is always possible to define
RG flow in Fourier space, it is well known that th
notion of RG flow is much more general. Neitherk
norΛ must necessarily have the meaning of mome
(this observation is important for the following whe
we have to implement a gauge invariant flow for gau
theories).

Let us now introduce the notion of “shell”, de
scribed byδk, denote the fieldsφk−δk0 , φkk−δk andφΛk
by φ< , φ

S
andφ> , respectively, and use De Witt’s [11

condensed notation whereby an index such asi de-
notes all indices (Fourier, Lorentz, spinor, space–t
coordinatex, . . . ). Repeated indices will denote sum
mation over internal indices as well as integration o
space–time (or momenta). The components ofφ

S
and

φ> will be indicated byφs andφa (same forφ̄), and
differentiation w.r.t. anyφi (φ̄i ) by a comma followed
by the indexi. Later on we will also useA,B, . . . to
denote fields with components in the slightly larger
terval[k − δk,Λ].

The effective actionΓ [φ̄], a functional of the
“classical” (or “mean”) fieldsφ̄, can be defined as th
solution of the functional-integral equation

(1)e−Γ [φ̄] =
∫

[Dφ]e−S[φ]+(φi−φ̄i )Γ [φ̄],i .
The scale-dependent generalization of (1) that
propose to use, and later generalize, is simply obta
from (1) after inserting under the integral a product
δ-functions,Πk0δ(φp − φ̄p), i.e.,

(2)e−Γk[φ̄] =
∫

[Dφ> ]e−S[φ̄<,φ> ]+(φa−φ̄a )Γk[φ̄],a .

This very natural definition of a scale-dependent eff
tive action clearly interpolates between the class
and the quantum action,ΓΛ[φ̄] = S[φ̄] andΓ0[φ̄] =
Γ [φ̄], and can be obtained by a partial Legendre tra
form [13] of a functionalWk[φ̄k0, JΛk ] in which the
low-frequency fieldsφ̄k0 are kept as parameters, wh
the high frequency degrees of freedom are Legen
transformed.

We now derive some identities that will be use
in the following. By differentiatingΓk in Eq. (2) w.r.t.
φ̄a , we find (for a non-singular 2nd-derivative matr
of Γk)

(3)
〈
φa

〉 = φ̄a,
where the average is computed with the weight
Eq. (2). Thus, as we expect,φ̄a is the mean value o
φa . Differentiating Eq. (3) w.r.t.̄φs we get〈
S(φ̄<, φ̄S , φ>),s

(
φa − φ̄a)〉

= Γk,sb
〈(
φb − φ̄b)(φa − φ̄a)〉

(4)= Γk,sb(Γk,ba)−1,

where(Γk,ba)−1 is the propagator for modes above t
shell. A second useful relation comes from differen
atingΓk w.r.t. φ̄s :

(5)
〈
S(φ̄<, φ̄S , φ>),s

〉 = Γk,s.
Finally, differentiatingΓk once more w.r.t.φ̄s , and
making use of Eq. (4), we obtain the relation:

〈S,ss ′ 〉 − 〈S,sS,s ′ 〉 + 〈S,s〉〈S,s ′ 〉
(6)= Γk,ss ′ − Γk,sa(Γk,ab)−1Γk,bs ′.

Let us consider now the effective actionΓk at a
slightly lower scalek − δk. From Eq. (2) we have

(7)e−Γk−δk [φ̄Λ0 ] =
∫

[Dφ
S
]e(φs−φ̄s )Γk−δk,s eY ,

where

(8)eY =
∫

[Dφ>]e−S[φ̄< ,φS ,φ> ]+(φa−φ̄a )Γk−δk,a .
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We are interested in computing the difference betw
Γk andΓk−δk toO(δk) and thus start expanding to fir
orderΓk−δk,a aroundΓk,a in Eq. (7). At the same time
we expandS[φ̄<,φS ,φ>] aroundφ

S
= φ̄

S
. Denoting

the fluctuations(φs − φ̄s ) and(φa − φ̄a) by ηs andηa

respectively, we get

(9)eY = e−Γk 〈e−[S,sηs+ 1
2S,ss′ηsηs

′+···+δk ∂Γk,a
∂k

ηa ]〉,
where the (omitted) arguments ofS,s and S,ss ′ are
[φ̄<, φ̄S , φ>].

Following the classic arguments of [8], we kno
that, in order to collect all terms up toO(δk), we only
need to keep terms up toO((ηs)2), and thus we neglec
the ellipses. The r.h.s. of Eq. (9) can be now compu
using the identity

(10)
〈
e−f

〉 = e−〈f 〉+ 1
2 (〈f 2〉−〈f 〉2)+O(f 3).

Thanks to (3), the last term in (9) can only contribu
O((δk)2), so we also neglect this term. Then, w
the help of the relations (5) and (6), we immediat
compute the r.h.s. of Eq. (9) and find that (7) becom

(11)e−Γk−δk = e−Γk
∫

[Dη
S
]e�Γk,sηs− 1

2Kss′ηsηs
′
,

where�Γk,s = Γk−δk,s − Γk,s andKss ′ is nothing but
the r.h.s. of Eq. (6), i.e.,

(12)Kss ′ = Γk,ss ′ − Γk,sa(Γk,ab)−1Γk,bs ′.

As�Γk, s isO(δk), it would contribute anO((δk)2)
term after performing the Gaussian integral. Negle
ing again this higher order term, we finally find th
the difference betweenΓk−δk andΓk (evaluated at the
same values of their arguments) consists, toO(δk), of
just a determinant, i.e.,

(13)Γk−δk = Γk + 1

2
Tr lnKss ′.

Using standard properties of determinants, Eq. (
can be rewritten in a form that will be more useful f
our subsequent generalizations, i.e.,

(14)Γk−δk − Γk = 1

2
ln

(
detΓk,AB
detΓk,ab

)
,

where we recall that the capital indices(A,B) span
the region[k − δk,Λ], while (a, b) are for the region
[k,Λ].

Eq. (13) was already derived in [14] for the case
a spin HamiltonianH(σp) (whereσp is the Fourier
component of the spin field) following a differen
though equivalent, line of reasoning. The derivat
presented above is new and, furthermore, is m
suitable for extension to the more general cases
shall consider below. This is why we have presen
the different steps in great detail.1

Let us now discuss how one can extend our res
to the general case, including gauge theories. It
first noted by Vilkovisky [10] that the usual definitio
of the effective action, Eq. (1), is in general n
invariant under a reparametrization of the class
fields. Obviously this holds true also for our definitio
(2) of Γk at any scalek. He also pointed out that, i
the case of gauge theories, the gauge dependen
the off-shell effective action is just a manifestation
such a reparametrization dependence.

The origin of the problem can be seen easily fr
the definition of the effective action (1). Let us thin
of the (field) configuration space as a manifoldM en-
dowed with a metricgij and assume thatΓ , like S,
is a scalar field onM. While the functional integra
tion measure can be made reparametrization inv
ant through the introduction of a

√
g, the second term

in the exponential has bad transformation proper
since the gradient is a covariant vector while the “
ordinate difference” (φ − φ̄) is a contravariant vecto
only if the φ’s are euclidean coordinates in a trivi
(flat) manifold. In the case of gauge theories ther
an additional complication coming from the fact th
the physical space is the quotient spaceM/G (G is the
gauge group) rather thanM. We’ll came back on this
point later.

Vilkovisky and De Witt have shown that a mea
ingful definition of the effective action can be give
also in the general (curved) case in terms of geod
normal fields,σ i[ϕ∗, φ], based at a pointϕ∗ in M
[10,11]. Theσ i[ϕ∗, φ] are the components of a ve
tor tangent atϕ∗ to the geodesic fromϕ∗ to φ. Its
length is the distance between the two points al
the geodesic itself. Under coordinate transformati
σ i[ϕ∗, φ] transforms as a vector atϕ∗ and as a scala
atφ. A useful property of theσ fields is that any scala
functionA[φ] can be expanded in a covariant Tay

1 Note also that a rederivation of Eq. (14), equation that alre
appeared in a previous version of the present Letter, was g
in [15].
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series [10,11] (the semicolon denotes covariant de
atives w.r.t.φ)

(15)

A[φ] ≡A[ϕ∗, σ ] =
∞∑
n=0

1

n!A;a1...an[ϕ∗]σa1 · · ·σan.

As emphasized before, the definitions of the up
space, of the shell, and of the lower space are c
pletely general and can be obtained with the help
any mode decomposition of the fields. From now
we denote byλ these generic modes. As before we
troduce the notationσ i = (σ<,σS , σ>). The subman
ifold spanned byσ> we denote byM> and the one
spanned by(σS , σ>) by M� . The metric inσ coordi-
nates is related to the original metric by

(16)ĝlm (ϕ∗, σ )= ∂φi

∂σ l

∂φj

∂σm
gij (φ).

The induced metric onM> (M� ) is just the restric-
tion of ĝ

lm
to the appropriate set of indices,ĝ

ab
(ĝ
AB

).
Given the arbitrary coordinates (fields)φi , the base

point ϕ∗, and the Gaussian normal coordinatesσ i

in M, we can now define, following [11], the sca
(i.e.,λ)-dependent effective action,̂Γλ, as

(17)e−Γ̂λ[ϕ∗,σ̄ ] =
∫

[Dσ>]
√
ĝ e−S+(σ a−σ̄ a )Γ̂λ[ϕ∗,σ̄ ],a ,

whereĝ = detĝab . S is the classical action expande
as in (15), where, as in the analogous Eq. (2), theσ<
are replaced by the mean valuesσ̄< : S = S[ϕ∗; σ̄<, σS ,
σ> ]. Sinceϕ∗ is kept fixed, the steps that lead fro
Eq. (2) to the RG equation (14) can be now repea
with almost no changes. The only modification is d
to the presence in Eq. (17) of the non-trivial met
factor

√
ĝ (compare with Eq. (2) where the metric

trivial). The impact of this term can be easily se
from the r.h.s. of Eq. (9), where it contributes t
additionalO(δk) term

−1

2
(lndetĝAB − lndetĝab )

(18)= 1

2

(
ln detĝAB − lndetĝab

)
.

The final result is then

(19)Γ̂
λ−δλ [ϕ∗, σ̄ ] = Γ̂

λ
[ϕ∗, σ̄ ] + 1

2
ln

(
detΓ̂λ,AB

detΓ̂λ,ab

)
,

where the indices are raised with the help of
corresponding induced metrics on each submani
that appear in Eq. (18).2

We now wish to rewrite Eq. (19) in general coord
nates. Define

(20)Γλ[ϕ∗, φ̄] = Γ̂λ
[
ϕ∗, σ (ϕ∗, φ̄)

] = Γ̂λ[ϕ∗, σ̄ ].
It is rather straightforward, though tedious, to conn
the partial derivatives of̂Γ with respect to thēσ ’s to
the partialcovariant derivatives ofΓ with respect to
the φ̄’s (both taken, of course, at fixedϕ∗). Consider
first these relations at the level of the full effecti
actionsΓ̂ andΓ .

For the first derivatives the result is simply

(21)Γ,i =Dki Γ̂,k,
where, following [11], we have introduced

(22)Dki = ∂σ̄ k

∂φ̄i
.

The bi-vectorDki has the property that, once co
tracted with a covariant vector atϕ∗, converts it into
a covariant vector at̄φ, as exemplified indeed in (21)

The relation connecting second derivatives can
put in the form

(23)Γ̂ ,kl =
(
D−1)i

k

(
D−1)j

l
�Γij ,

where

(24)�Γij ≡ Γ;ij − σ l;ij
(
D−1)k

l
Γ,k

is a second-rank tensor atφ̄. The quantityσ l;ij has a
covariant expansion [11] in the distance betweenϕ∗
andφ̄.

The above formulae can be easily generalized to
case in which the derivatives are restricted to lie on
M> (or M� ) manifold. Indeed the derivatives of̂Γλ
with respect toσ̄ a will be related to the derivatives o
Γλ with respect to generic coordinatesξa on M> by
exactly the same formulae (21), (23) where now

(25)Dab = ∂σ̄ a

∂ξb
.

2 To be precise in Eq. (19) the determinants of the metrics ap
under an expectation value sign rather than being compute
the expectation value of the field. We expect the difference to
insignificant.
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Using Eq. (16) we obtain our final result

(26)Γλ−δλ [ϕ∗, φ̄] = Γλ[ϕ∗, φ̄] + 1

2
ln

(
det�ΓλAB
det�Γλab

)
,

where indices and covariant derivatives are all n
defined in terms of the induced metricsgAB andgab
on the corresponding submanifolds.

Let us stress, already at this point, an import
feature of (26): it was important, for our derivatio
to carry out our differentiations at fixedϕ∗. In other
words, we have been forced to work withΓλ[ϕ∗, φ̄].
We believe, instead, that no closed RGF-equa
holds for the original Vilkovisky–De Witt effective
action ΓVDW [φ̄] ≡ Γ [φ̄, φ̄]. This is probably related
to the fact that, unlikeΓ [ϕ∗, φ̄], ΓVDW [φ̄] does not
generate 1PI vertex functions [11,16]. Since th
vertex functions are related to operators that dep
explicitly on ϕ∗, it is not surprising that the same
true for the RGF equation. This is indeed appar
through the second term appearing in the definit
(24) of �Γij . Note that the presence of this term, o
of the main novelties of our Letter, isnot required by
reparametrization invariance: both terms in (24)
fine from this point of view. It is required instead b
ϕ∗-dependence and thus, we believe, it is a neces
price to pay for the whole procedure to work.

Let us see now how the previous steps can
repeated in the case of a gauge theory. As it was sh
by Vilkovisky and De Witt [10,11], we first need t
reduce the gauge theory to a “non-gauge” one. Le
indicate as before byM the field space, byφi the
gauge fields, withgij the associated metric, byσm

a complete set of gauge-invariant coordinates, and
Riα the generators of the gauge transformations

(27)δφi =Riα dεα,
where εα are coordinates on the gauge orbits. T
metric decomposes into the block diagonal form [1

ds2 = hmn dσm dσn + γαβ dεα dεβ,
(28)γαβ =Riαgij Rjβ ,

where

(29)hmn = ∂φi

∂σm

∂φj

∂σn
Πij ,

and we defined the projector on physical orbit spac

(30)Π
j
i = δji − gikRkαγ αβRjβ.
Although theσm were so far arbitrary, we used a
important result of [10] to take them as Gauss
normal coordinates both in the induced metrichmn and
in the full space (provided geodesics are defined, in
latter, with respect to Vilkovisky’s connection [10]).

Instead of usingεα to parametrize points on orbi
one can start with the “gauge fixing” coordinatesχα

and write the definition of the effective action à
Faddeev–Popov

e−Γ [ϕ∗,φ̄] =
∫

[Dφi ]√g δ(χα)det

(
∂χα

∂εβ

)
(31)× e−S(φ)+(σm−σ̄m)(D−1)nmΓ,n .

Changing integration variables toσm, εα we get

e−Γ̂ [ϕ∗,σ̄ ] =
∫

[Dσm][Dεα]√h√
γ δ

(
χα

)
× det

(
∂χα

∂εβ

)
e−S(φ∗,σ )+(σm−σ̄m)Γ̂ ,m

(32)=
∫

[Dσm]√he−S̃(φ∗,σ )+(σm−σ̄m)Γ̂ ,m,

where

(33)S̃ = S − 1

2
lndet(γ ).

With the gauge effective action written in this form w
can directly apply the procedure followed from (17)
(19) and obtain, as before,

(34)Γ̂λ−δλ [ϕ∗, σ̄ ] = Γ̂λ[ϕ∗, σ̄ ] + 1

2
ln

(
detΓ̂λ,A B

detΓ̂λ,a b

)
.

We can now repeat the steps (20)–(26) and, follow
[10–12], write (34) in arbitrary coordinates̄φ as

(35)

Γλ−δλ [ϕ∗, φ̄] = Γλ[ϕ∗, φ̄] + 1

2
ln

[
det(P�Π �ΓΠP� )

det(P>Π �ΓΠP>)
]
,

where �Γ is defined as in (24) in terms of the Vilko
visky connection,Π stands for the projector on th
physical space (30), andP> (P� ) is a projector onM>

(M� ). Eq. (35) is our desired gauge-invariant R
flow equation forΓλ[ϕ∗, φ̄]. As we already stresse
in the non-gauge case, no closed RGF-equation is
pected to hold for the original VDW effective action

As a check of (35) we can compute the one-lo
effective action and compare it with [12]. Within th
approximation we can setΓ = S on the r.h.s. of the
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definition (24) of �Γ . Noting thatS is only a function
of φ̄, we have the freedom to setϕ∗ = φ̄, yielding
�Γij = S;ij in (35). We finally integrate the evolutio
from λ = Λ to λ = 0. UsingΓΛ = S̃, together with
(33), we get

(36)Γ0 = S + 1

2
ln

det(Πki S
l
;kΠ

j

l )

detγ
,

in agreement with the one-loop result of [12].
Beyond one-loop, our evolution equations sho

be useful in a variety of problems pertaining to no
Abelian gauge theories and to quantum gravity.
practice, one will necessarily have to resort to so
form of truncation ofΓk, so that our exact equation
become approximate RG-flow equations for a finite
of gauge-invariant low-energy parameters. A poten
complication, at this stage, is represented by
explicit appearance, in the definition of�Γ , of the base
point ϕ∗ and of the geodesic coordinates built arou
it. It is not excluded, however, that this can be turn
to one’s advantage by a judicious choice ofϕ∗. Work
is now in progress in addressing this kind of questi
within specific examples such as non-linearσ -models,
gauge theories, and quantum gravity.
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