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Abstract

We combine old ideas about exact renormalization-group-flow (RGF) equations with the Vilkovisky—De Witt (VDW)
approach to reparametrization invariant effective actions and arrive at a new, exact, gauge-invariant RGF equation. The price
to be paid for such a result is that both the action and the RGF equation depend explicitly upon the base point (in field space)
needed for the VDW construction. We briefly discuss the complications originating from this fact and possible ways to overcome
them.

0 2003 Published by Elsevier B.®pen access under CC BY license,

The idea of renormalization, originally introduced introduction of a suitable (but largely arbitrary) cutoff
to remove infinities from perturbative calculations, has function that effectively kills the contribution to the
evolved into a powerful tool that helps understanding functional integral from momenta below the running
the global behavior of quantum and statistical systems scalek. The implementation of such a procedure for
under changes of the observation scale [1,2]. gauge theories poses however a major problem: the

The search for new, non-perturbative methods to presence of the cutoff function prevents the possibility
handle problems out of the reach of perturbation of defining a gauge invariant; (see [9] for earlier
theory has prompted in recent years a renewed andattempts to circumvent this problem).
growing interest [3—7] in the “old” subject [1,8] of In this Letter we follow the spirit of Refs. [1,8],
“exact” renormalization group (RG) equations. One that of direct integration over successive shells of
typically defines a scale-dependent effective action, degrees of freedom, and combine this idea with the
Iy, which interpolates between the classical (bare) geometrical approach pioneered by Vilkovisky and
action § atk = A (the UV cutoff) and the effective  De Witt [10,11] (see also [12]) in order to define a
actionI” at k = 0. The free term is modified by the gauge-invariant (more generally a reparametrization-

invariant) effective action. The final outcome will be
an exact, gauge-invariant, RGF equation that, to the
T E-mail addresses: vincenzo branchina@ires.in2p3.fr best of our knowledge, has never appeared before in

(V. Branchina), krzysztof.meissner@fuw.edu.pl (K.A. Meissner), the ”terature_- It (font_ains an explicit dependence upon
gabriele.veneziano@cern.ch (G. Veneziano). the base-point (in field space) that enters the VDW
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construction, a price that we believe to be inevitable
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The scale-dependent generalization of (1) that we

for achieving the goal. We shall comment at the end propose to use, and later generalize, is simply obtained
on the possible complications due to such dependencefrom (1) after inserting under the integral a product of

when one applies it to specific problems. As for the
derivation of the equation itself, it will be outlined, for

pedagogical reasons, in three steps. We first present a—/+¢] — /[D¢>]e‘S["_’<*"’>]+("’a“’_’a)rk["_’]’“.

new (and in our opinion more transparent) derivation
of basically known results for scalar theories. The
main new results follow as we turn to the case
of reparametrization-invariant effective actions a la
VDW and their exact RGF equation. The final step,

s-functions,[T58(¢, — ¢,), i.€.,

)

This very natural definition of a scale-dependent effec-
tive action clearly interpolates between the classical
and the quantum actio;4[¢] = S[¢] and I'y[¢] =

I'[¢], and can be obtained by a partial Legendre trans-

going over to the case of gauge theories, is then form [13] of a functionalWi[¢§, J1 in which the

straightforward, as often emphasized by Vilkovisky.
We thus begin by defining} for a simple scalar
field theory. If A is the UV cutoff, we introduce
the notation¢>6‘ for the field, to indicate that it
contains “modes” in the rang¢0, A], and write
the classical (bare) action ﬁ%‘]. For any given
scalek, we divide¢>6‘ into the “low-frequency” and
“high-frequency” components¢’5 and ¢,§‘ respec-
tively, where ¢’5 contains the modeg, with 0 <
p <k, andg! those in the ranggk, A]. Even though

low-frequency fieldsﬁ(’g are kept as parameters, while
the high frequency degrees of freedom are Legendre-
transformed.

We now derive some identities that will be useful
in the following. By differentiating’y in Eq. (2) w.r.t.
#%, we find (for a non-singular 2nd-derivative matrix
of I})

{0?) =9, 3)
where the average is computed with the weight in

for the scalar theory it is always possible to define the Ed- (2). Thus, as we expedt is the mean value of

RG flow in Fourier space, it is well known that the
notion of RG flow is much more general. Neithier

nor A must necessarily have the meaning of momenta

(this observation is important for the following where

we have to implement a gauge invariant flow for gauge

theories).

Let us now introduce the notion of “shell”, de-
scribed bysk, denote the fieldgg %, ¢f , andg
by ¢_, ¢, and¢_, respectively, and use De Witt’s [11]
condensed notation whereby an index such ae-

notes all indices (Fourier, Lorentz, spinor, space—time

coordinater, ...). Repeated indices will denote sum-

mation over internal indices as well as integration over

space—time (or momenta). The components oand
¢_ will be indicated byp* and¢“ (same forg), and
differentiation w.r.t. any’ (¢') by a comma followed
by the indexi. Later on we will also usé, B, ... to
denote fields with components in the slightly larger in-
terval[k — 8k, A].

The effective actionI'[¢], a functional of the
“classical” (or “mean”) fieldsp, can be defined as the
solution of the functional-integral equation

o~ T3l _ /[D¢]efS[¢J+<¢ff¢3i>r[¢3]‘,-. (1)

¢“. Differentiating Eq. (3) w.r.t¢* we get

(S@_. b5, 0.)5(¢" — %))

= Teo{ (07 — 9°) (6 — 6%))

= Tesb(Tepa) ™2, 4)
where(I; »,) " is the propagator for modes above the
shell. A second useful relation comes from differenti-
ating Iy w.r.t. ¢*:
(S(<l_5<74_55, ¢>),5)= Fk,s- (5)
Finally, differentiating I, once more w.r.t¢®, and
making use of Eq. (4), we obtain the relation:
(Sss) = (S,s8,5) + (Ss)(S,s)

= Ty — Tesa(Tkeap) ™ T psr- (6)

Let us consider now the effective actidn, at a
slightly lower scalék — §k. From Eg. (2) we have

e—kask[d_%‘] — f[D(ﬁs]e((bj—‘l;s)rk*a“ey, 7
where
oY :/‘[D¢>]e*5[é<,¢5»¢>]+(¢“*éa)rk—5k,a. ®)
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We are interested in computing the difference between
I, andT_s to O (8k) and thus start expanding to first
orderl—_sk., aroundly , in EQ. (7). At the same time
we expandS[¢_, ¢, ¢_1 aroundg, = ¢,. Denoting
the fluctuationg¢® — ¢*) and(¢? — ¢%) by n°* andn®
respectively, we get

1 4 0y q
el = eka(e—[S,m%gSﬂ/nsns +ee 8k =57 n“])7

9)
where the (omitted) arguments ¢f; and S,y are
(.. b5, 0.1

Following the classic arguments of [8], we know
that, in order to collect all terms up @(5k), we only
need to keep terms up @((°)?), and thus we neglect
the ellipses. The r.h.s. of Eq. (9) can be now computed
using the identity
(/)= e~ NHFAA=NDH+0(3) (10)
Thanks to (3), the last term in (9) can only contribute
0((8k)?), so we also neglect this term. Then, with
the help of the relations (5) and (6), we immediately
compute the r.h.s. of Eq. (9) and find that (7) becomes
e*[‘](_(jk — e*[‘]( /[Dns]eAFst 57%](”,7]57]5/7 (11)
whereATy s = Ii—sk.s —
the r.h.s. of Eq. (6), i.e.,

I s and K is nothing but

Kss' = Tk.ss' — Thosa(Te.ab) " T ps- (12)

As ATy s is O(8k), itwould contribute arO ((8k)?)
term after performing the Gaussian integral. Neglect-
ing again this higher order term, we finally find that
the difference betweeh;_s; and I} (evaluated at the
same values of their arguments) consista16k), of
just a determinant, i.e.,

1
Fk_(;k:Fk+§TrInKm/. (13)

Using standard properties of determinants, Eq. (13)
can be rewritten in a form that will be more useful for
our subsequent generalizations, i.e.,

1 (detFk,AB)

Fi—sk — Tk ==1In 14
k—sk — Tk 3ot oy (14)

2
where we recall that the capital indicé4, B) span
the region[k — &k, A], while (a, b) are for the region
[k, A].

Eq. (13) was already derived in [14] for the case of
a spin HamiltonianH (op) (Whereop is the Fourier

321

component of the spin field) following a different,
though equivalent, line of reasoning. The derivation
presented above is new and, furthermore, is more
suitable for extension to the more general cases we
shall consider below. This is why we have presented
the different steps in great detail.

Let us now discuss how one can extend our results
to the general case, including gauge theories. It was
first noted by Vilkovisky [10] that the usual definition
of the effective action, Eq. (1), is in general not
invariant under a reparametrization of the classical
fields. Obviously this holds true also for our definition
(2) of I, at any scalé. He also pointed out that, in
the case of gauge theories, the gauge dependence of
the off-shell effective action is just a manifestation of
such a reparametrization dependence.

The origin of the problem can be seen easily from
the definition of the effective action (1). Let us think
of the (field) configuration space as a manifgid en-
dowed with a metricg;; and assume thaf, like S,
is a scalar field onM. While the functional integra-
tion measure can be made reparametrization invari-
ant through the introduction of gg, the second term
in the exponential has bad transformation properties
since the gradient is a covariant vector while the “co-
ordinate difference”¢ — ¢) is a contravariant vector
only if the ¢’s are euclidean coordinates in a trivial
(flat) manifold. In the case of gauge theories there is
an additional complication coming from the fact that
the physical space is the quotient spaded (G is the
gauge group) rather thak. We’ll came back on this
point later.

Vilkovisky and De Witt have shown that a mean-
ingful definition of the effective action can be given
also in the general (curved) case in terms of geodesic
normal fields,o/[¢y, ¢], based at a poinp, in M
[10,11]. Theo'[gs, ¢] are the components of a vec-
tor tangent atp, to the geodesic fronp, to ¢. Its
length is the distance between the two points along
the geodesic itself. Under coordinate transformations
o'+, ¢] transforms as a vector af, and as a scalar
at¢. A useful property of the fields is that any scalar
function A[¢] can be expanded in a covariant Taylor

1 Note also that a rederivation of Eq. (14), equation that already
appeared in a previous version of the present Letter, was given
in [15].
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series [10,11] (the semicolon denotes covariant deriv-

atives w.r.t.¢)

oo
1
Alp] = Algs, 0] = Z Ay [@alo ™0
"= (15)
As emphasized before, the definitions of the upper

space, of the shell, and of the lower space are com-

pletely general and can be obtained with the help of
any mode decomposition of the fields. From now on
we denote by. these generic modes. As before we in-
troduce the notation’ = (0_,04,0_). The subman-
ifold spanned by we denote byM_ and the one
spanned byo, 0. ) by M_ . The metric ino coordi-
nates is related to the original metric by

a¢' d¢’
do!l dom 8ij (¢)
The induced metric oM _ (M.) is just the restric-
tion of g, to the appropriate set of indices, (£,,)-
Given the arbitrary coordinates (fields), the base
point ¢,, and the Gaussian normal coordinates
in M, we can now define, following [11], the scale
(i.e.,A)-dependent effective actiof}, as

:f[DU WE e SHE =69 Rlensla  (17)

whereg = detg,,. S is the classical action expanded
as in (15), where, as in the analogous Eqg. (2),¢he
are replaced by the mean values S = S[p.;6_, o

o_]. Sinceg, is kept fixed, the steps that Iead from

8 (5, 0) = (16)

o~ Tilesa]

Eq. (2) to the RG equation (14) can be now repeated is @ second-rank tensor @t The quantityo?,

with almost no changes. The only modification is due
to the presence in Eq. (17) of the non-trivial metric
factorf (compare with Eqg. (2) where the metric is
trivial). The impact of this term can be easily seen
from the r.h.s. of Eq. (9), where it contributes the
additional O (6k) term

1
- —(In detg,, —Indetg,,)
(In detg”® — Indetg?). (18)
The final result is then
N .~ _ 1 [detl} 4B
FA_5)L[(/)*7G]=FA[¢*7G]+ Eln<%)v (19)
detFA,ab
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where the indices are raised with the help of the
corresponding induced metrics on each submanifold
that appear in Eq. (18).

We now wish to rewrite Eq. (19) in general coordi-
nates. Define

(s, 81 = [ [ps, 0 (@1, )] = T [0, 51 (20)

It is rather straightforward, though tedious, to connect
the partial derivatives of” with respect to th&'s to
the partialcovariant derivatives ofI" with respect to
the ¢’s (both taken, of course, at fixeg,). Consider
first these relations at the level of the full effective
actionsl” andI".

For the first derivatives the result is simply

ri=DfTy, (21)
where, following [11], we have introduced
a—k
k=2 (22)
99!

The bi-vectorD{‘ has the property that, once con-

tracted with a covariant vector af., converts it into

a covariant vector ag, as exemplified indeed in (21).
The relation connecting second derivatives can be

put in the form

Cu= (D_l)i(D_l)'ziFij’ (23)

where

Lj=rij—ol; (D7) T (24)
has a

covariant expansion [11] in the distance between
ande.

The above formulae can be easily generalized to the
case in which the derivatives are restricted to lie on the
M_ (or M.) manifold. Indeed the derivatives o,

Wlth respect tar? will be related to the derivatives of

I, with respect to generic coordinateé$ on M_ by

exactly the same formulae (21), (23) where now
o

Df = e (25)

2 Tobe precise in Eg. (19) the determinants of the metrics appear
under an expectation value sign rather than being computed at
the expectation value of the field. We expect the difference to be
insignificant.
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Using Eq. (16) we obtain our final result Although theo™ were so far arbitrary, we used an
1 et 4 B important result of [10] to take them as Gaussian
0. 1= T [ps 4] + 5 In(%), (26)  normal coordinates both in the induced metsjg, and
2 detl} .’ in the full space (provided geodesics are defined, in the

where indices and covariant derivatives are all now latter, with respect to Vilkovisky’s connection [10]).
defined in terms of the induced metriggp and g, Instead of using® to parametrize points on orbits
on the corresponding submanifolds. one can start with the “gauge fixing” coordinate$
Let us stress, already at this point, an important and write the definition of the effective action a la
feature of (26): it was important, for our derivation, Faddeev—Popov
to carry out our differentiations at fixegl. In other . 942
words, we have been forced to work wiffy[¢s., ¢]. e Tlewdl = /[D¢i]¢§3(xa)det<iﬁ)
We believe, instead, that no closed RGF-equation de
holds for the original Vilkovisky—De Witt effective X e~ S@)+@" =" (DT (31)
action I, [¢] = I'[$, #]. This is probably related
to the fact that, unlikel'[¢y, ¢1, I\py[#] does not
generate 1Pl vertex functions [11,16]. Since these _f,. .51 m o o
vertex functions are related to operators that depende v ]_/[DG 1[De ]ﬁﬁé(x )
explicitly on ¢, it is not surprising that the same is q [<3X“
x de

Changing integration variables 3", ¢ we get

true for the RGF equation. This is indeed apparent
through the second term appearing in the definition 5 R
(24) of T;;. Note that the presence of this term, one = /[Do”’]\/ﬁe*S("’*’””(”m*&m”’m, (32)
of the main novelties of our Letter, i®t required by

reparametrization invariance: both terms in (24) are where

fine from this point of view. It is required instead by - 1

¢.-dependence and thus, we believe, it is a necessaryS =5~ 5 Indet(y). (33)
price to pay for the whole procedure to work.

Let us see now how the previous steps can be
repeated in the case of a gauge theory. As it was shown
by Vilkovisky and De Witt [10,11], we first need to
reduce the gauge theory to a “non-gauge” one. Let us
indicate as before byM the field space, by’ the
gauge fields, withg;; the associated metric, by™
a complete set of gauge-invariant coordinates, and by
R! the generators of the gauge transformations

)e—S((b*,o')—‘,-(o'm—E"")f,m

With the gauge effective action written in this form we
can directly apply the procedure followed from (17) to
(19) and obtain, as before,

. & _ 1 [detl 4B
Fx—ax[(p*’a]ZFA[QD*’G]'FEI”(%)' (34)
detl,,?

We can now repeat the steps (20)—(26) and, following
[10—-12], write (34) in arbitrary coordinatgsas

P pi , _ 1 [detP.IOTIIP
39" =R, de®, @7) L les @1 =T [os, @1+ _|n|:t(2——>)j|’
. . 2 |detpP. OrIIP.)
where ¢* are coordinates on the gauge orbits. The > >
: : ; (35)
metric decomposes into the block diagonal form [16] _ ] ) )
whereI" is defined as in (24) in terms of the Vilko-
ds? = hyp do™ do" + yup de® deP, visky connection /1 stands for the projector on the
Vop = Rég,-,- Ré, (28) physical space (30), an®l (P.) is a projector oo\

(M.). Eq. (35) is our desired gauge-invariant RG-

where flow equation forl[¢., ¢]. As we already stressed
gt dg’ in the non-gauge case, no closed RGF-equation is ex-
mn = m ggn e (29) pected to hold for the original VDW effective action.
and we defined the projector on physical orbit space As a check of (35) we can compute the one-loop

, _ _ effective action and compare it with [12]. Within this
) =8 — g REy R}. (30) approximation we can sdf = S on the r.h.s. of the
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definition (24) ofI". Noting thats is only a function
of ¢, we have the freedom to set. = ¢, yielding
1:,-., = §.ij In (35). We finally integrate the evolution
from i = A to A =0. Using 'y = S, together with
(33), we get

1. dets1ts!, m))
“n——— % °°
2 dety

in agreement with the one-loop result of [12].

Beyond one-loop, our evolution equations should
be useful in a variety of problems pertaining to non-
Abelian gauge theories and to quantum gravity. In
practice, one will necessarily have to resort to some
form of truncation ofl, so that our exact equations
become approximate RG-flow equations for a finite set
of gauge-invariant low-energy parameters. A potential
complication, at this stage, is represented by the
explicit appearance, in the definition &Y, of the base
point ¢, and of the geodesic coordinates built around
it. It is not excluded, however, that this can be turned
to one’s advantage by a judicious choicegQf Work
is now in progress in addressing this kind of questions
within specific examples such as non-lineamodels,
gauge theories, and quantum gravity.

Io=S+ (36)
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