Eigenvalue spectrum of the spheroidal harmonics: A uniform asymptotic analysis

Shahar Hod ${ }^{\mathrm{a}, \mathrm{b}, *}$
${ }^{\text {a }}$ The Ruppin Academic Center, Emeq Hefer 40250, Israel
${ }^{\text {b }}$ The Hadassah Institute, Jerusalem 91010, Israel

ARTICLE INFO

Article history:

Received 26 March 2015
Received in revised form 13 May 2015
Accepted 15 May 2015
Available online 19 May 2015
Editor: M. Cvetič

Abstract

The spheroidal harmonics $S_{\operatorname{lm}}(\theta ; c)$ have attracted the attention of both physicists and mathematicians over the years. These special functions play a central role in the mathematical description of diverse physical phenomena, including black-hole perturbation theory and wave scattering by nonspherical objects. The asymptotic eigenvalues $\left\{A_{\operatorname{lm}}(c)\right\}$ of these functions have been determined by many authors. However, it should be emphasized that all the previous asymptotic analyzes were restricted either to the regime $m \rightarrow \infty$ with a fixed value of c, or to the complementary regime $|c| \rightarrow \infty$ with a fixed value of m. A fuller understanding of the asymptotic behavior of the eigenvalue spectrum requires an analysis which is asymptotically uniform in both m and c. In this paper we analyze the asymptotic eigenvalue spectrum of these important functions in the double limit $m \rightarrow \infty$ and $|c| \rightarrow \infty$ with a fixed m / c ratio.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP ${ }^{3}$.

1. Introduction

The spheroidal harmonic functions $S(\theta ; c)$ appear in many branches of physics. These special functions are solutions of the angular differential equation [1-3]
$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial S}{\partial \theta}\right)+\left[c^{2} \cos ^{2} \theta-\frac{m^{2}}{\sin ^{2} \theta}+A\right] S=0$,
where $\theta \in[0, \pi], c \in \mathbb{Z}$, and the integer parameter m is the azimuthal quantum number of the wave field [1-3].

These angular functions play a key role in the mathematical description of many physical phenomena, such as: perturbation theory of rotating Kerr black holes [2,4-6], electromagnetic wave scattering [7], quantum-mechanical description of molecules [8,9], communication theory [10], and nuclear physics [11].

The characteristic angular equation (1) for the spheroidal harmonic functions is supplemented by a regularity requirement for the corresponding eigenfunctions $S(\theta ; c)$ at the two boundaries $\theta=0$ and $\theta=\pi$. These boundary conditions single out a discrete set of eigenvalues $\left\{A_{l m}\right\}$ which are labeled by the discrete spheroidal harmonic index l (where $l-|m|=\{0,1,2, \ldots\}$). For the special case $c=0$ the spheroidal harmonic functions $S(\theta ; c)$ reduce

[^0]to the spherical harmonic functions $Y(\theta)$, which are characterized by the familiar eigenvalue spectrum $A_{l m}=l(l+1)$.

The various asymptotic spectra of the spheroidal harmonics with $c^{2} \in \mathbb{R}$ (when $c \in \mathbb{R}$ the corresponding eigenfunctions are called oblate, while for $i c \in \mathbb{R}$ the eigenfunctions are called prolate) were explored by many authors, see [1,12-17] and the references therein. In particular, in the asymptotic regime $m^{2} \gg|c|^{2}$ the eigenvalue spectrum is given by $[12,13]$
$A_{l m}=l(l+1)-\frac{c^{2}}{2}\left[1-\frac{m^{2}}{l(l+1)}\right]+O(1)$,
while in the opposite limit, $|c|^{2} \gg m^{2}$ with $i c \in \mathbb{R}$, the asymptotic spectrum is given by $[1,13-15,17]$
$A_{l m}=[2(l-m)+1]|c|+O(1)$.
The asymptotic regime $c^{2} \gg m^{2}$ (with $c \in \mathbb{R}$) was studied in [1, 13-18], where it was found that the eigenvalues are given by:
$A_{l m}=-c^{2}+2[l+1-\bmod (l-m, 2)] c+O(1)$.
Note that the spectrum (4) is doubly degenerate.
It should be emphasized that all the previous asymptotic analyzes of the eigenvalue spectrum were restricted either to the regime $m \rightarrow \infty$ with a fixed value of $c[12,13]$, or to the complementary regime $|c| \rightarrow \infty$ with a fixed value of m [1,13-16]. A complete understanding of the asymptotic eigenvalue spectrum requires an analysis which is uniform in both m and c [that is,
a uniform asymptotic analysis which is valid for a fixed (nonnegligible) m / c ratio as both m and $|c|$ tend to infinity].

The main goal of the present paper is to present a uniform asymptotic analysis for the spheroidal harmonic eigenvalues in the double asymptotic limit
$m \rightarrow \infty$ and $|c| \rightarrow \infty$
with a fixed m / c ratio.

2. A transformation into the Schrödinger-type wave equation

For the analysis of the asymptotic eigenvalue spectrum, it is convenient to use the coordinate x defined by [12,17]
$x \equiv \ln \left(\tan \left(\frac{\theta}{2}\right)\right)$,
in terms of which the angular equation (1) for the spheroidal harmonic eigenfunctions takes the form of a one-dimensional Schrödinger-like wave equation [19]
$\frac{d^{2} S}{d x^{2}}-U S=0$,
where the effective radial potential is given by
$U(x(\theta))=m^{2}-\sin ^{2} \theta\left(c^{2} \cos ^{2} \theta+A\right)$.
Note that the transformation (6) maps the interval $\theta \in[0, \pi]$ into $x \in[-\infty, \infty]$.

The effective potential $U(\theta)$ is invariant under the transformation $\theta \rightarrow \pi-\theta$. It is characterized by two qualitatively different spatial behaviors depending on the relative magnitudes of A and c^{2}. We shall now study the asymptotic behaviors of the spheroidal eigenvalues in the two distinct cases: $A / c^{2}>1$ and $A / c^{2}<1$ [20].

3. The asymptotic eigenvalue spectrum

3.1. The asymptotic regime $\{|c|, m\} \rightarrow \infty$ with $c^{2}<m^{2}$

If $A>c^{2}$ then the effective radial potential $U(x(\theta))$ is in the form of a symmetric potential well whose local minimum is located at
$\theta_{\min }=\frac{\pi}{2}$ with $U\left(\theta_{\min }\right)=-A+m^{2}$.
[Note that $\theta_{\min }=\frac{\pi}{2}$ corresponds to $x_{\min }=0$.]
Spatial regions in which $U(x)<0$ (the 'classically allowed regions') are characterized by an oscillatory behavior of the corresponding wave function S, whereas spatial regions in which $U(x)>0$ are characterized by an exponentially decaying wave function (these are the 'classically forbidden regions'). The effective radial potential $U(x)$ is characterized by two 'classical turning points' $\left\{x^{-}, x^{+}\right\}$(or equivalently, $\left\{\theta^{-}, \theta^{+}\right\}$) for which $U(x)=0[21]$.

The one-dimensional Schrödinger-like wave equation (7) is in a form that is amenable to a standard WKB analysis. In particular, a standard textbook second-order WKB approximation yields the well-known quantization condition [22-26]
$\int_{x^{-}}^{x^{+}} d x \sqrt{-U(x)}=\left(N+\frac{1}{2}\right) \pi \quad ; \quad N=\{0,1,2, \ldots\}$
for the bound-state 'energies' (eigenvalues) of the Schrödinger-like wave equation (7), where N is a non-negative integer. The characteristic WKB quantization condition (10) determines the eigenvalues $\{A\}$ of the spheroidal harmonic functions in the double
limit $\{|c|, m\} \rightarrow \infty$. The relation so obtained between the angular eigenvalues and the parameters m, c, and N is rather complex and involves elliptic integrals. However, if we restrict ourselves to the fundamental (low-lying) modes which have support in a small interval around the potential minimum $x_{\min }$ [27], then we can use the expansion $U(x) \simeq U_{\text {min }}+\frac{1}{2} U_{\text {min }}^{\prime \prime}\left(x-x_{\min }\right)^{2}+O\left[\left(x-x_{\min }\right)^{4}\right]$ in (10) to obtain the WKB quantization condition [25]
$\frac{\left|U_{\text {min }}\right|}{\sqrt{2 U_{\min }^{\prime \prime}}}=N+\frac{1}{2} ; N=\{0,1,2, \ldots\}$,
where a prime denotes differentiation with respect to x. The subscript "min" means that the quantity is evaluated at the minimum $x_{\min }$ of $U(x(\theta))$. Substituting (8) with $x_{\min }=0$ into the WKB quantization condition (11), one finds the asymptotic eigenvalue spectrum
$A(c, m, N)=m^{2}+(2 N+1) \sqrt{m^{2}-c^{2}}+O(1) ;$
$N=\{0,1,2, \ldots\}$
in the $N \ll \sqrt{m^{2}-c^{2}}$ regime [27]. The resonance parameter $N=$ $\{0,1,2, \ldots\}$ corresponds to $l-|m|=\{0,1,2, \ldots\}$, where l is known as the spheroidal harmonic index.

It is worth noting that the eigenvalue spectrum (12), which was derived in the double asymptotic limit $\{|c|, m\} \rightarrow \infty$, reduces to (2) in the special case $m \gg|c|$ and reduces to (3) in the opposite special case $|c| \gg m$ with ic $\in \mathbb{R}$. The fact that our uniform eigenvalue spectrum (12) reduces to (2) and (3) in the appropriate special limits provides a consistency check for our analysis [28].

3.2. The asymptotic regime $\{c, m\} \rightarrow \infty$ with $c^{2}>m^{2}$

If $A<c^{2}$ then the effective radial potential $U(x(\theta))$ is in the form of a symmetric double-well potential: it has a local maximum at
$\theta_{\max }=\frac{\pi}{2}$ with $U\left(\theta_{\max }\right)=-A+m^{2}$,
and two local minima at [29]
$\theta_{\min }^{ \pm}=\frac{1}{2} \arccos \left(-A / c^{2}\right)$
with
$U\left(\theta_{\min }^{ \pm}\right)=-\frac{1}{4} c^{2}\left[1-\left(A / c^{2}\right)^{2}\right]-\frac{1}{2} A\left[1+\left(A / c^{2}\right)\right]+m^{2}$.
Thus, the two potential wells are separated by a large potentialbarrier of height

$$
\begin{align*}
\Delta U & \equiv U\left(\theta_{\max }\right)-U\left(\theta_{\min }^{ \pm}\right) \\
& =\frac{1}{4} c^{2}\left[1-\left(A / c^{2}\right)^{2}\right]-\frac{1}{2} A\left[1-\left(A / c^{2}\right)\right] \rightarrow \infty \text { as } c \rightarrow \infty \tag{16}
\end{align*}
$$

The fact that the two potential wells are separated by an infinite potential-barrier in the $c \rightarrow \infty$ limit (with $c^{2}>m^{2}$) [30] implies that the coupling between the wells (the 'quantum tunneling' through the potential barrier) is negligible in the $c \rightarrow \infty$ limit. The two potential wells can therefore be treated as independent of each other in the $c \rightarrow \infty$ limit [22,31]. Thus, the two spectra of eigenvalues (which correspond to the two identical potential wells) are degenerate in the $c \rightarrow \infty$ limit [32].

Substituting (8) with $\theta_{\min }=\frac{1}{2} \arccos \left(-A / c^{2}\right)$ into the WKB quantization condition (11), one finds the asymptotic eigenvalue spectrum
$A(c, m, N)=-c^{2}+2[m+(2 N+1) \sqrt{1-m / c}] c+O(1) ;$
$N=\{0,1,2, \ldots\}$
in the $N \ll m \sqrt{1-m / c}$ regime [33]. We recall that the spectrum (17) is doubly degenerate in the $c \rightarrow \infty$ regime [34]; each value of N corresponds to two adjacent values of the spheroidal harmonic index $l: N=\frac{1}{2}[l-m-\bmod (l-m, 2)][35]$.

It is worth noting that the eigenvalue spectrum (17), which was derived in the double asymptotic limit $\{|c|, m\} \rightarrow \infty$, reduces to (4) in the special case $c^{2} \gg m^{2}$. The fact that our uniform eigenvalue spectrum (17) reduces to (4) in the appropriate special limit provides a consistency check for our analysis [36].

Acknowledgements

This research is supported by the Carmel Science Foundation. I thank Yael Oren, Arbel M. Ongo, Ayelet B. Lata, and Alona B. Tea for stimulating discussions.

References

[1] C. Flammer, Spheroidal Wave Functions, Stanford University Press, Stanford, 1957.
[2] S.A. Teukolsky, Phys. Rev. Lett. 29 (1972) 1114;
S.A. Teukolsky, Astrophys. J. 185 (1973) 635.
[3] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1970.
[4] E. Berti, V. Cardoso, A.O. Starinets, Class. Quantum Gravity 26 (2009) 163001.
[5] S. Hod, Phys. Rev. Lett. 84 (2000) 10, arXiv:gr-qc/9907096;
U. Keshet, S. Hod, Phys. Rev. D 76 (2007) 061501 (Rapid communication), arXiv:0705.1179;
U. Keshet, arXiv:1207.2460.
[6] In the context of black-hole perturbation theory, the dimensionless parameter c stands for $a \omega$, where a is the specific angular momentum (angular momentum per unit mass) of the spinning black hole and ω is the conserved frequency of a scalar perturbation mode [2].
[7] S. Asano, G. Yamamoto, Appl. Opt. 14 (1975) 29;
N.V. Voshchinnikov, V.G. Farafonov, Astrophys. Space Sci. 204 (1993) 19;
M.I. Mishchenko, J.W. Hovenier, L.D. Travis (Eds.), Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Academic Press, New York, 2000.
[8] H. Eyring, J. Walter, G.E. Kimball, Quantum Chemistry, Wiley, New York, 1948; M.M. Madsen, J.M. Peek, Eigenparameters for the lowest twenty electronic states of the hydrogen molecule ion, At. Data 2 (1971) 171.
[9] P.E. Falloon, Theory and Computation of Spheroidal Harmonics with General Arguments (Thesis presented for the degree of Master of Science at The University of Western Australia, Department of Physics, September 2001), ftp://www.biophysics.uwa.edu.au/pub/Theses/MSc/Falloon/Masters-Thesis.pdf.
[10] C.L. Fancourt, J.C. Principe, Proc. IEEE ICASSP 1 (2000) 261; F. Grunbaum, L. Miranian, Proc. SPIE 4478 (1) (2001) 151; B. Larsson, T. Levitina, E.J. Brandas, Int. J. Quant. Chem. 85 (2001) 392.
[11] B.D.B. Figueiredo, J. Phys. A 35 (2002) 2877.
[12] H. Yang, D.A. Nichols, F. Zhang, A. Zimmerman, Z. Zhang, Y. Chen, arXiv:1207. 4253.
[13] E. Berti, V. Cardoso, M. Casals, Phys. Rev. D 73 (2006) 024013; E. Berti, V. Cardoso, M. Casals, Phys. Rev. D 73 (2006) 109902 (Erratum).
[14] J. Meixner, F.W. Schäfke, Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf Physikalische und Technische Probleme, Springer-Verlag, Berlin, 1954.
[15] R.A. Breuer, Gravitational Perturbation Theory and Synchrotron Radiation, Lect. Notes Phys., vol. 44, Springer, Berlin, 1975;
R.A. Breuer, M.P. Ryan Jr., S. Waller, Proc. R. Soc. Lond. Ser. A 358 (1977) 71.
[16] M. Casals, A.C. Ottewill, Phys. Rev. D 71 (2005) 064025.
[17] S. Hod, Phys. Lett. B 717 (2012) 462, arXiv:1304.0529; S. Hod, Phys. Rev. D 87 (2013) 064017, arXiv:1304.4683.
[18] We shall assume without loss of generality that $\Re c \geq 0, \Im c \geq 0$, and $m \geq 0$. Note that the angular differential equation (1) is invariant under the transformations $c \rightarrow-c$ and $m \rightarrow-m$. Thus, the eigenvalues are also invariant under these transformations.
[19] Note that in the quantum-mechanical terminology $-U$ stands for $\frac{2 m}{\hbar^{2}}(E-V)$, where E, V, and m are the total energy, potential energy, and mass of the of the particle, respectively.
[20] Below we shall show that these two cases correspond to $c^{2}<m^{2}$ and $c^{2}>m^{2}$, respectively.
[21] Note that these turning points are characterized by the relation $\theta^{-}<\theta_{\min }<$ θ^{+}.
[22] L.D. Landau, E.M. Liftshitz, Quantum Mechanics, 3rd ed., Pergamon, New York, 1977, Chap. VII.
[23] J. Heading, An Introduction to Phase Integral Methods, Wiley, New York, 1962.
[24] C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978, Chap. 10.
[25] B.F. Schutz, C.M. Will, Astrophys. J. 291 (1985) L33; S. Iyer, C.M. Will, Phys. Rev. D 35 (1987) 3621.
[26] Higher order corrections to the asymptotic eigenvalues [see formulas (12) and (17) below] can be obtained by using a higher-order WKB analysis [25].
[27] Substituting our final formula [see Eq. (12) below] into the effective potential (8), one finds that the turning points are located at $x^{ \pm}-x_{\min } \simeq$ $\pm \sqrt{\frac{A-m^{2}}{A-c^{2}}} \simeq \pm \sqrt{\frac{2 N+1}{\sqrt{m^{2}-c^{2}}}}$. Thus, the assumption $\left|x^{ \pm}-x_{\min }\right| \ll 1$ is valid in the $N \ll \sqrt{m^{2}-c^{2}}$ regime.
[28] It is worth noting that our analytical formula (12) agrees with the numerical results of [9] for the case $l=m=100$ with $c=100 i$ with a remarkable accuracy of $3.68 \times 10^{-3} \%$ (note that $c \rightarrow i c$ in the notations of [9]).
[29] Note the symmetry relation $\theta_{\min }^{+}=\pi-\theta_{\min }^{-}$.
[30] Substituting our final formula [see Eq. (17) below] into the effective potential (8), one finds that the potential barrier (16) is given by $\Delta U=(c-m)^{2}+O(c)$. Thus, $\Delta U \rightarrow \infty$ in the $c \rightarrow \infty$ limit with $c^{2}>m^{2}$.
[31] C.S. Park, M.G. Jeong, S.K. Yoo, D.K. Park, Phys. Rev. A 58 (1998) 3443; Z. Cao, Q. Liu, Q. Shen, X. Dou, Y. Chen, Y. Ozaki, Phys. Rev. A 63 (2001) 054103; F. Zhou, Z. Cao, Q. Shen, Phys. Rev. A 67 (2003) 062112.
[32] More precisely, the coupling between the two potential wells (due to the weak 'quantum tunneling' through the large potential barrier) introduces a small correction term of order $\exp \left[-\int_{\theta_{2}^{-}}^{\theta_{1}^{+}} d \theta \sqrt{U(\theta)}\right]$ to the r.h.s of the WKB quantization condition (10) [22,31], where θ_{2}^{-}and θ_{1}^{+}are the inner turning points of the effective potential barrier. This term is of the order of $e^{-\sqrt{\Delta U}} \sim e^{-(c-m)} \rightarrow 0$ [see Eqs. (16) and (17)] and is therefore negligible in the $c \rightarrow \infty$ limit with $c>m[22,31]$.
[33] Substituting our final formula (17) into the effective potential (8), one finds that the turning points are located at $x^{ \pm}-x_{\min } \simeq \pm \sqrt{\frac{N+\frac{1}{2}}{m \sqrt{1-\frac{m}{c}}}}$. Thus, the assumption $\left|x^{ \pm}-x_{\min }\right| \ll 1$ is valid in the $N \ll m \sqrt{1-\frac{m}{c}}$ regime.
[34] As discussed above, this double degeneracy of the asymptotic eigenvalue spectrum reflects the fact that the effective potential (8) with $c^{2}>m^{2}$ is composed of two identical potential wells which, in the $c \rightarrow \infty$ limit, are separated by an infinite potential-barrier.
[35] Thus, $l-|m|=\{0,1,2,3,4,5, \ldots\}$ correspond to $N=\{0,0,1,1,2,2, \ldots\}$.
[36] It is worth noting that our analytical formula (17) agrees with the numerical results of [9] for the case $l=m=100$ with $c=100$ with a remarkable accuracy of 0.22% (note that $c \rightarrow i c$ in the notations of [9]).

[^0]: * Correspondence to: The Ruppin Academic Center, Emeq Hefer 40250, Israel.

 E-mail address: shaharhod@gmail.com.

