ELSEVIER

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Eigenvalue spectrum of the spheroidal harmonics: A uniform asymptotic analysis

Shahar Hod a,b,*

- ^a The Ruppin Academic Center, Emeg Hefer 40250, Israel
- ^b The Hadassah Institute, Jerusalem 91010, Israel

ARTICLE INFO

Article history:
Received 26 March 2015
Received in revised form 13 May 2015
Accepted 15 May 2015
Available online 19 May 2015
Editor: M. Cvetič

ABSTRACT

The spheroidal harmonics $S_{lm}(\theta;c)$ have attracted the attention of both physicists and mathematicians over the years. These special functions play a central role in the mathematical description of diverse physical phenomena, including black-hole perturbation theory and wave scattering by nonspherical objects. The asymptotic eigenvalues $\{A_{lm}(c)\}$ of these functions have been determined by many authors. However, it should be emphasized that all the previous asymptotic analyzes were restricted either to the regime $m \to \infty$ with a fixed value of c, or to the complementary regime $|c| \to \infty$ with a fixed value of m. A fuller understanding of the asymptotic behavior of the eigenvalue spectrum requires an analysis which is asymptotically uniform in both m and c. In this paper we analyze the asymptotic eigenvalue spectrum of these important functions in the double limit $m \to \infty$ and $|c| \to \infty$ with a fixed m/c ratio.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

The spheroidal harmonic functions $S(\theta;c)$ appear in many branches of physics. These special functions are solutions of the angular differential equation [1–3]

$$\frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial S}{\partial \theta} \right) + \left[c^2 \cos^2\theta - \frac{m^2}{\sin^2\theta} + A \right] S = 0 , \qquad (1)$$

where $\theta \in [0, \pi]$, $c \in \mathbb{Z}$, and the integer parameter m is the azimuthal quantum number of the wave field [1-3].

These angular functions play a key role in the mathematical description of many physical phenomena, such as: perturbation theory of rotating Kerr black holes [2,4–6], electromagnetic wave scattering [7], quantum-mechanical description of molecules [8,9], communication theory [10], and nuclear physics [11].

The characteristic angular equation (1) for the spheroidal harmonic functions is supplemented by a regularity requirement for the corresponding eigenfunctions $S(\theta;c)$ at the two boundaries $\theta=0$ and $\theta=\pi$. These boundary conditions single out a *discrete* set of eigenvalues $\{A_{lm}\}$ which are labeled by the discrete spheroidal harmonic index l (where $l-|m|=\{0,1,2,\ldots\}$). For the special case c=0 the spheroidal harmonic functions $S(\theta;c)$ reduce

to the spherical harmonic functions $Y(\theta)$, which are characterized by the familiar eigenvalue spectrum $A_{lm} = l(l+1)$.

The various asymptotic spectra of the spheroidal harmonics with $c^2 \in \mathbb{R}$ (when $c \in \mathbb{R}$ the corresponding eigenfunctions are called oblate, while for $ic \in \mathbb{R}$ the eigenfunctions are called prolate) were explored by many authors, see [1,12–17] and the references therein. In particular, in the asymptotic regime $m^2 \gg |c|^2$ the eigenvalue spectrum is given by [12,13]

$$A_{lm} = l(l+1) - \frac{c^2}{2} \left[1 - \frac{m^2}{l(l+1)} \right] + O(1),$$
 (2)

while in the opposite limit, $|c|^2 \gg m^2$ with $ic \in \mathbb{R}$, the asymptotic spectrum is given by [1,13-15,17]

$$A_{lm} = [2(l-m)+1]|c| + O(1).$$
(3)

The asymptotic regime $c^2 \gg m^2$ (with $c \in \mathbb{R}$) was studied in [1, 13–18], where it was found that the eigenvalues are given by:

$$A_{lm} = -c^2 + 2[l+1 - \text{mod}(l-m,2)]c + O(1).$$
(4)

Note that the spectrum (4) is doubly degenerate.

It should be emphasized that all the previous asymptotic analyzes of the eigenvalue spectrum were restricted either to the regime $m \to \infty$ with a *fixed* value of c [12,13], or to the complementary regime $|c| \to \infty$ with a *fixed* value of m [1,13–16]. A complete understanding of the asymptotic eigenvalue spectrum requires an analysis which is uniform in both m and c [that is,

^{*} Correspondence to: The Ruppin Academic Center, Emeq Hefer 40250, Israel. E-mail address: shaharhod@gmail.com.

a uniform asymptotic analysis which is valid for a fixed (non-negligible) m/c ratio as *both* m and |c| tend to infinity].

The main goal of the present paper is to present a uniform asymptotic analysis for the spheroidal harmonic eigenvalues in the *double* asymptotic limit

$$m \to \infty$$
 and $|c| \to \infty$ (5)

with a fixed m/c ratio.

2. A transformation into the Schrödinger-type wave equation

For the analysis of the asymptotic eigenvalue spectrum, it is convenient to use the coordinate x defined by [12,17]

$$x \equiv \ln\left(\tan\left(\frac{\theta}{2}\right)\right),\tag{6}$$

in terms of which the angular equation (1) for the spheroidal harmonic eigenfunctions takes the form of a one-dimensional Schrödinger-like wave equation [19]

$$\frac{d^2S}{dx^2} - US = 0 \,, (7)$$

where the effective radial potential is given by

$$U(x(\theta)) = m^2 - \sin^2 \theta (c^2 \cos^2 \theta + A)$$
. (8)

Note that the transformation (6) maps the interval $\theta \in [0, \pi]$ into $x \in [-\infty, \infty]$.

The effective potential $U(\theta)$ is invariant under the transformation $\theta \to \pi - \theta$. It is characterized by two qualitatively different spatial behaviors depending on the relative magnitudes of A and c^2 . We shall now study the asymptotic behaviors of the spheroidal eigenvalues in the two distinct cases: $A/c^2 > 1$ and $A/c^2 < 1$ [20].

3. The asymptotic eigenvalue spectrum

3.1. The asymptotic regime $\{|c|, m\} \to \infty$ with $c^2 < m^2$

If $A > c^2$ then the effective radial potential $U(x(\theta))$ is in the form of a symmetric potential well whose local minimum is located at

$$\theta_{\min} = \frac{\pi}{2} \quad \text{with} \quad U(\theta_{\min}) = -A + m^2 \ .$$
 (9)

[Note that $\theta_{\min} = \frac{\pi}{2}$ corresponds to $x_{\min} = 0$.]

Spatial regions in which U(x) < 0 (the 'classically allowed regions') are characterized by an oscillatory behavior of the corresponding wave function S, whereas spatial regions in which U(x) > 0 are characterized by an exponentially decaying wave function (these are the 'classically forbidden regions'). The effective radial potential U(x) is characterized by two 'classical turning points' $\{x^-, x^+\}$ (or equivalently, $\{\theta^-, \theta^+\}$) for which U(x) = 0 [21].

The one-dimensional Schrödinger-like wave equation (7) is in a form that is amenable to a standard WKB analysis. In particular, a standard textbook second-order WKB approximation yields the well-known quantization condition [22–26]

$$\int_{y_{-}}^{x^{+}} dx \sqrt{-U(x)} = (N + \frac{1}{2})\pi \quad ; \quad N = \{0, 1, 2, \ldots\}$$
 (10)

for the bound-state 'energies' (eigenvalues) of the Schrödinger-like wave equation (7), where N is a non-negative integer. The characteristic WKB quantization condition (10) determines the eigenvalues $\{A\}$ of the spheroidal harmonic functions in the double

limit $\{|c|, m\} \to \infty$. The relation so obtained between the angular eigenvalues and the parameters m, c, and N is rather complex and involves elliptic integrals. However, if we restrict ourselves to the fundamental (low-lying) modes which have support in a small interval around the potential minimum x_{\min} [27], then we can use the expansion $U(x) \simeq U_{\min} + \frac{1}{2}U_{\min}''(x - x_{\min})^2 + O[(x - x_{\min})^4]$ in (10) to obtain the WKB quantization condition [25]

$$\frac{|U_{\min}|}{\sqrt{2U_{\min}''}} = N + \frac{1}{2} \; ; \quad N = \{0, 1, 2, \ldots\} \,, \tag{11}$$

where a prime denotes differentiation with respect to x. The subscript "min" means that the quantity is evaluated at the minimum x_{\min} of $U(x(\theta))$. Substituting (8) with $x_{\min} = 0$ into the WKB quantization condition (11), one finds the asymptotic eigenvalue spectrum

$$A(c, m, N) = m^2 + (2N+1)\sqrt{m^2 - c^2} + O(1)$$
;
 $N = \{0, 1, 2, ...\}$ (12)

in the $N \ll \sqrt{m^2 - c^2}$ regime [27]. The resonance parameter $N = \{0, 1, 2, ...\}$ corresponds to $l - |m| = \{0, 1, 2, ...\}$, where l is known as the spheroidal harmonic index.

It is worth noting that the eigenvalue spectrum (12), which was derived in the *double* asymptotic limit $\{|c|, m\} \to \infty$, reduces to (2) in the special case $m \gg |c|$ and reduces to (3) in the opposite special case $|c| \gg m$ with $ic \in \mathbb{R}$. The fact that our uniform eigenvalue spectrum (12) reduces to (2) and (3) in the appropriate special limits provides a consistency check for our analysis [28].

3.2. The asymptotic regime $\{c, m\} \to \infty$ with $c^2 > m^2$

If $A < c^2$ then the effective radial potential $U(x(\theta))$ is in the form of a symmetric double-well potential: it has a local maximum

$$\theta_{\text{max}} = \frac{\pi}{2} \text{ with } U(\theta_{\text{max}}) = -A + m^2,$$
 (13)

and two local minima at [29]

$$\theta_{\min}^{\pm} = \frac{1}{2}\arccos(-A/c^2) \tag{14}$$

with

$$U(\theta_{\min}^{\pm}) = -\frac{1}{4}c^{2} \left[1 - (A/c^{2})^{2}\right] - \frac{1}{2}A\left[1 + (A/c^{2})\right] + m^{2}.$$
 (15)

Thus, the two potential wells are separated by a large potential-barrier of height

$$\begin{split} \Delta U &\equiv U(\theta_{\rm max}) - U(\theta_{\rm min}^{\pm}) \\ &= \frac{1}{4}c^2 \big[1 - (A/c^2)^2 \big] - \frac{1}{2} A \big[1 - (A/c^2) \big] \to \infty \quad \text{as} \quad c \to \infty \; . \end{split}$$

The fact that the two potential wells are separated by an infinite potential-barrier in the $c \to \infty$ limit (with $c^2 > m^2$) [30] implies that the coupling between the wells (the 'quantum tunneling' through the potential barrier) is negligible in the $c \to \infty$ limit. The two potential wells can therefore be treated as independent of each other in the $c \to \infty$ limit [22,31]. Thus, the two spectra of eigenvalues (which correspond to the two identical potential wells) are degenerate in the $c \to \infty$ limit [32].

Substituting (8) with $\theta_{\min} = \frac{1}{2}\arccos(-A/c^2)$ into the WKB quantization condition (11), one finds the asymptotic eigenvalue spectrum

$$A(c, m, N) = -c^{2} + 2[m + (2N+1)\sqrt{1 - m/c}]c + O(1) ;$$

$$N = \{0, 1, 2, ...\}$$
(17)

in the $N \ll m\sqrt{1-m/c}$ regime [33]. We recall that the spectrum (17) is doubly degenerate in the $c \to \infty$ regime [34]; each value of N corresponds to two adjacent values of the spheroidal harmonic index *l*: $N = \frac{1}{2}[l - m - \text{mod}(l - m, 2)]$ [35].

It is worth noting that the eigenvalue spectrum (17), which was derived in the *double* asymptotic limit $\{|c|, m\} \to \infty$, reduces to (4) in the special case $c^2 \gg m^2$. The fact that our uniform eigenvalue spectrum (17) reduces to (4) in the appropriate special limit provides a consistency check for our analysis [36].

Acknowledgements

This research is supported by the Carmel Science Foundation. I thank Yael Oren, Arbel M. Ongo, Avelet B. Lata, and Alona B. Tea for stimulating discussions.

References

- [1] C. Flammer, Spheroidal Wave Functions, Stanford University Press, Stanford, 1957
- [2] S.A. Teukolsky, Phys. Rev. Lett. 29 (1972) 1114; S.A. Teukolsky, Astrophys. J. 185 (1973) 635.
- [3] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1970.
- [4] E. Berti, V. Cardoso, A.O. Starinets, Class. Quantum Gravity 26 (2009) 163001.
- [5] S. Hod, Phys. Rev. Lett. 84 (2000) 10, arXiv:gr-qc/9907096; U. Keshet, S. Hod, Phys. Rev. D 76 (2007) 061501 (Rapid communication), arXiv:0705.1179; U. Keshet, arXiv:1207.2460.
- [6] In the context of black-hole perturbation theory, the dimensionless parameter c stands for $a\omega$, where a is the specific angular momentum (angular momentum per unit mass) of the spinning black hole and ω is the conserved frequency of a scalar perturbation mode [2].
- [7] S. Asano, G. Yamamoto, Appl. Opt. 14 (1975) 29; N.V. Voshchinnikov, V.G. Farafonov, Astrophys. Space Sci. 204 (1993) 19; M.I. Mishchenko, J.W. Hovenier, L.D. Travis (Eds.), Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Academic Press, New York, 2000.
- [8] H. Eyring, J. Walter, G.E. Kimball, Quantum Chemistry, Wiley, New York, 1948; M.M. Madsen, I.M. Peek, Eigenparameters for the lowest twenty electronic states of the hydrogen molecule ion, At. Data 2 (1971) 171.
- [9] P.E. Falloon, Theory and Computation of Spheroidal Harmonics with General Arguments (Thesis presented for the degree of Master of Science at The University of Western Australia, Department of Physics, September 2001), ftp://www.biophysics.uwa.edu.au/pub/Theses/MSc/Falloon/Masters-Thesis.pdf.
- [10] C.L. Fancourt, J.C. Principe, Proc. IEEE ICASSP 1 (2000) 261; F. Grunbaum, L. Miranian, Proc. SPIE 4478 (1) (2001) 151; B. Larsson, T. Levitina, E.J. Brandas, Int. J. Quant. Chem. 85 (2001) 392.
- [11] B.D.B. Figueiredo, J. Phys. A 35 (2002) 2877.
- [12] H. Yang, D.A. Nichols, F. Zhang, A. Zimmerman, Z. Zhang, Y. Chen, arXiv:1207. 4253.
- [13] E. Berti, V. Cardoso, M. Casals, Phys. Rev. D 73 (2006) 024013; E. Berti, V. Cardoso, M. Casals, Phys. Rev. D 73 (2006) 109902 (Erratum).
- [14] J. Meixner, F.W. Schäfke, Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf Physikalische und Technische Probleme, Springer-Verlag, Berlin, 1954.

- [15] R.A. Breuer, Gravitational Perturbation Theory and Synchrotron Radiation, Lect. Notes Phys., vol. 44, Springer, Berlin, 1975; R.A. Breuer, M.P. Ryan Jr., S. Waller, Proc. R. Soc. Lond. Ser. A 358 (1977) 71.
- [16] M. Casals, A.C. Ottewill, Phys. Rev. D 71 (2005) 064025.
- [17] S. Hod, Phys. Lett. B 717 (2012) 462, arXiv:1304.0529; S. Hod, Phys. Rev. D 87 (2013) 064017, arXiv:1304.4683.
- [18] We shall assume without loss of generality that $\Re c > 0$ $\Re c > 0$ and m > 0Note that the angular differential equation (1) is invariant under the transformations $c \to -c$ and $m \to -m$. Thus, the eigenvalues are also invariant under these transformations.
- [19] Note that in the quantum-mechanical terminology -U stands for $\frac{2m}{r^2}(E-V)$, where E, V, and m are the total energy, potential energy, and mass of the of the particle, respectively.
- [20] Below we shall show that these two cases correspond to $c^2 < m^2$ and $c^2 > m^2$, respectively.
- [21] Note that these turning points are characterized by the relation $\theta^- < \theta_{\rm min} <$
- [22] L.D. Landau, E.M. Liftshitz, Quantum Mechanics, 3rd ed., Pergamon, New York, 1977. Chap. VII.
- [23] J. Heading, An Introduction to Phase Integral Methods, Wiley, New York, 1962.
- [24] C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978, Chap. 10.
- [25] B.F. Schutz, C.M. Will, Astrophys. J. 291 (1985) L33; S. Iyer, C.M. Will, Phys. Rev. D 35 (1987) 3621.
- [26] Higher order corrections to the asymptotic eigenvalues [see formulas (12) and (17) below] can be obtained by using a higher-order WKB analysis [25].
- [27] Substituting our final formula [see Eq. (12) below] into the effective potential (8), one finds that the turning points are located at $x^{\pm}-x_{min}\simeq$ $\pm\sqrt{rac{A-m^2}{A-c^2}}\simeq\pm\sqrt{rac{2N+1}{\sqrt{m^2-c^2}}}.$ Thus, the assumption $|x^\pm-x_{\min}|\ll 1$ is valid in the $N \ll \sqrt{m^2 - c^2}$ regime.
- [28] It is worth noting that our analytical formula (12) agrees with the numerical results of [9] for the case l = m = 100 with c = 100i with a remarkable accuracy of $3.68 \times 10^{-3}\%$ (note that $c \rightarrow ic$ in the notations of [9]).
- [29] Note the symmetry relation $\theta_{\min}^+ = \pi \theta_{\min}^-$. [30] Substituting our final formula [see Eq. (17) below] into the effective potential (8), one finds that the potential barrier (16) is given by $\Delta U = (c - m)^2 + O(c)$. Thus, $\Delta U \to \infty$ in the $c \to \infty$ limit with $c^2 > m^2$.
- [31] C.S. Park, M.G. Jeong, S.K. Yoo, D.K. Park, Phys. Rev. A 58 (1998) 3443; Z. Cao, O. Liu, O. Shen, X. Dou, Y. Chen, Y. Ozaki, Phys. Rev. A 63 (2001) 054103; F. Zhou, Z. Cao, O. Shen, Phys. Rev. A 67 (2003) 062112.
- [32] More precisely, the coupling between the two potential wells (due to the weak 'quantum tunneling' through the large potential barrier) introduces a small correction term of order $\exp[-\int_{\theta_2^-}^{\theta_1^+} d\theta \sqrt{U(\theta)}]$ to the r.h.s of the WKB quantization condition (10) [22,31], where θ_2^- and θ_1^+ are the inner turning points of the effective potential barrier. This term is of the order of $e^{-\sqrt{\Delta U}}\sim e^{-(c-m)} o 0$ [see Eqs. (16) and (17)] and is therefore negligible in the $c \to \infty$ limit with c > m [22,31].
- [33] Substituting our final formula (17) into the effective potential (8), one finds that the turning points are located at $x^\pm-x_{\min}\simeq\pm\sqrt{\frac{N+\frac{1}{2}}{m\sqrt{1-\frac{m}{c}}}}.$ Thus, the assumption $|x^{\pm} - x_{\min}| \ll 1$ is valid in the $N \ll m \sqrt{1 - \frac{m}{c}}$ regime.
- [34] As discussed above, this double degeneracy of the asymptotic eigenvalue spectrum reflects the fact that the effective potential (8) with $c^2 > m^2$ is composed of two identical potential wells which, in the $c \to \infty$ limit, are separated by an infinite potential-barrier.
- [35] Thus, $l |m| = \{0, 1, 2, 3, 4, 5, ...\}$ correspond to $N = \{0, 0, 1, 1, 2, 2, ...\}$.
- [36] It is worth noting that our analytical formula (17) agrees with the numerical results of [9] for the case l = m = 100 with c = 100 with a remarkable accuracy of 0.22% (note that $c \rightarrow ic$ in the notations of [9]).