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Abstract 

A (0, 1}-matrix M is arborescence graphic if there exists an arborescence T such that the arcs 
of T are indexed on the rows of M and the columns of M are the incidence vectors of the arc sets 
of dipaths of T. If such a T exists, then T is an arborescence realization for M. This paper 
presents an almost-linear-time algorithm to determine whether a given (0, l}-matrix is arbores- 
cence graphic and, if so, to construct an arborescence realization. The algorithm is then applied 
to recognize a subclass of the extended-Horn satisfiability problems introduced by Chandru 
and Hooker (1991). 

1. Introduction 

A (0, l}-matrix M is arborescence graphic if there exists an arborescence T such that 
the arcs of Tare indexed on the rows of M and the columns of M are the incidence 
vectors of the arc sets of dipaths of T. If such a T exists, then T is an arborescence 
realization for M. (Note that not every dipath of T need correspond to a column of M.) 
The arborescence-realization problem is to determine whether a given (0, I}-matrix is 
arborescence graphic and, if so, to construct an arborescence realization. An algo- 
rithm is presented to solve the arborescence-realization problem; the complexity of 
the algorithm is O(a(n,r)n), where n is the number of nonzero entries and r is the 
number of rows of the given (0, 1}-matrix and a(r,n) is a functional inverse of 
Ackermann’s function. The function cr(n,r) is extremely slow growing, and for all 
“practical” values of n and r, cc(n, r) G 4; see Tarjan [17] for details. 

The arborescence-realization problem has a number of applications. Ball et al. [l] 
describe a reliability covering problem that is NP-hard in general. They give a poly- 
nomial-time algorithm for solving the problem in the case that a certain matrix 
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associated with the problem is arborescence graphic. Thus, the algorithm of this paper 
can be used to recognize this special case of the reliability problem. 

The arborescence-realization problem also arises in information-retrieval prob- 
lems; see, for example, Lipski [14]. In this context, the rows of a (0, 1}-matrix 
M correspond to pieces of information, or records, and the columns of M are the 
incidence vectors of prescribed subsets of related records. The arborescence-realiz- 
ation problem corresponds to determining a tree-structured storage configuration in 
which the prescribed subsets of related records are stored contiguously. Contiguous 
storage allows for efficient retrieval of the related items, 

A third application arises in propositional logic. Chandru and Hooker [6] describe 
a class of satisfiability problems that can be solved in linear time; in general, the 
satisfiability problem is NP-complete. This class, called extended Horn, generalizes 
the well-studied Horn class. In Section 6, a polynomial-time algorithm is given 
to recognize a subclass of extended Horn, which also generalizes Horn. This 
algorithm uses, as a subroutine, an algorithm for solving the arborescence-realization 
problem. 

The arborescence-realization problem generalizes the consecutive-ones problem, 
which is that of determining whether the rows of a given {0, 1}-matrix can be 
permuted such that in the resulting matrix, the l’s in each column are consecutive. In 
particular, a matrix has the consecutive-ones property if and only if it is arborescence 
graphic and has an arborescence realization that is a dipath, which is true if and only if 
the given matrix, augmented with a column of all l’s, is arborescence graphic. 

A vertex version of the arborescence-realization problem is posed by Truszczynski 
[19], who also provides a polynomial-time algorithm for the problem. In an unpub- 
lished paper, Dietz et al. [S] give a linear-time algorithm. In Section 5 of this paper, 
Truszczynski’s problem is shown to be equivalent to the arborescence-realization 
problem. Thus, the Dietz-Furst-Hopcroft algorithm also solves the arborescence- 
realization problem. Comparisons between the Dietz-Furst-Hopcroft algorithm and 
the one presented in this paper are given in Section 5. 

The remainder of the paper is organized as follows. Section 2 provides background 
material, Section 3 states the arborescence-realization algorithm, and Section 4 dis- 
cusses some details of the algorithm. Section 5 describes the relationship of the 
arborescence-realization problem to its vertex analogue. Finally, Section 6 describes 
an algorithm for recognizing a subclass of extended-Horn problems. 

2. Definitions 

Undefined graph-theory terminology and notation is consistent with Bondy and 
Murty [4]. For convenience, cycles, paths, and trees of a graph are equated with their 
edge sets, and the arc set of a directed graph (or digraph) is equated with the edge set of 
its underlying (undirected) graph. All graphs and digraphs considered in this paper are 
loopless. 



R.P. Swaminathan. D.K. Wagner/ Discrete Applied Mathemarics 59 (1995) 267-283 269 

An arborescence is a digraph T, the underlying graph of which is a tree, that has 
exactly one vertex of indegree zero; this vertex is the root of T. Note that every vertex 
of T other than the root has indegree exactly one. If (u, u) is an arc of T, then u is the 
parent of v and v is a child of u. A digraph D is strongly connected if there exists 
a (u, u)-dipath for every pair of vertices u and u of D. 

All matrices considered in this paper are assumed to have at least one nonzero entry 
in every row and column. Clearly this is not a restrictive assumption with respect to 
the arborescence-realization problem. For algorithmic purposes, matrices are as- 
sumed to be stored in column-list form, which means that for each column, the rows 
having nonzeros in that column are given in a linked list. 

3. The main algorithm 

Let M be an arborescence-graphic matrix, and let T be an arborescence realization 
of M. The matrix M can be represented by a digraph D constructed by adding an arc 
to Tjoining the ends of each dipath that corresponds to a column of M such that the 
dipath plus the arc form a dicycle. Then, T is spanning tree of D. 

Given an arbitrary (0, 1}-matrix M, the algorithm below determines whether M is 
arborescence graphic by attempting to construct a digraph D having spanning tree 
T that is an arborescence realization of M and such that D and Tare related as in the 
previous paragraph. The algorithm consists of three main steps, which are outlined 
after three definitions that facilitate the discussion. 

Let G be a graph, and let T be a spanning tree of G. The pair (G, T) is called 
a graph-tree pair (abbreviated gt-pair). Each cycle of G that contains exactly one edge 
not in T is afundamental cycle of (G, T). Each path of T of the form C - {e}, where 
C is a fundamental cycle of (G, T) and e# T is a fundamental path of (G, T). 

The first step of the algorithm constructs a gt-pair (G, T), if one exists, such that the 
columns of M correspond to the fundamental paths of (G, T). If M is arborescence 
graphic, then such a gt-pair necessarily exists. 

If M is arborescence graphic, then there also exists a digraph D having T as 
a spanning tree such that the columns of M correspond to the fundamental paths of 
(D, T) and such that every fundamental cycle of (D, T) is a dicycle. The second step of 
the algorithm attempts to find such a digraph by appropriately orienting G. It is 
proved that if M is arborescence graphic, then G has such as orientation. 

If (D, T) is the output of the second step and T is an arborescence of D, then T is an 
arborescence realization of M. If not, the third step attempts to modify (D, T) so 

as to turn T into an arborescence. Any such modification must preserve the 
fundamental dicycles of (0, T) which suggests the relevance of the notions of 
2-isomorphism introduced by Whitney [21] for graphs and Thomassen [lS] for 
digraphs. 

Let D = (V, A) be a 2-connected digraph. Let F E A be such that 
I V(D[F]) n V(D[A - F])I = 2, and let u and u be the vertices common to D[F] and 
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D[A - F]. Define D’ to be the digraph obtained from D by interchanging the 
incidences of u and u in D[F] and reversing the orientations of the arcs in F. Then, D’ 

is obtained from D by the reversal of D[F]. Observe that D and D’ have the same set of 
dicycles. Also observe that any spanning tree of D is also a spanning tree of D’. In 
general, a digraph D” is 2-isomorphic to a digraph D if D” is obtained from D by 
a sequence of reversals. For (undirected) graphs, reversal and 2-isomorphism are 
defined as above, but without any reference to the orientation of the arcs. 

A final observation is needed before stating the algorithm. If the rows and columns 
of the matrix M can be permuted so that it admits a block decomposition as shown in 
Fig. 1, then the arborescence-realization problem can be decomposed. In particular, it 
is easy to verify that M is arborescence graphic if and only if its blocks M 1, . . . , M, are 
arborescence graphic. Moreover, the blocks can be computed in time linear in the 
number of nonzeros of M; see, for example, Bixby and Wagner [2]. Therefore, it can 
be assumed that M has no block decomposition into two or more blocks; such 
a matrix is connected. A consequence of this assumption is that if (G, T) is a gt-pair 
such that the columns of M correspond to the fundamental paths of (G, T), then G is 
2-connected; again, see Bixby and Wagner [2]. 

Algorithm ARBORESCENCE REALIZATION. 
Input: A connected r x c (0, 1}-matrix M given in column-list form. 
Output: An arborescence realization T of M or the conclusion that M is not 
arborescence graphic. 
Step 1: Construct a gt-pair (G, T), if one exists, such that the columns of M are the 
incidence vectors of the fundamental paths of (G, T); if no such gt-pair exists, 
conclude that M is not arborescence graphic and stop. 
Step 2: Construct an orientation D of G, if one exists, such that each fundamental 
cycle of (D, T) is a dicycle; if no such orientation exists, conclude that M is not 
arborescence graphic and stop. 
Step 3: Construct a digraph D’ 2-isomorphic to D, if one exists, in which T is an 
arborescence; if no such digraph exists, conclude that M is not arborescence graphic 
and stop; otherwise, output the arborescence T and stop. 

From the previous discussion, it is clear that if the algorithm outputs an arbores- 
cence T, then T is an arborescence realization of M. What needs to be shown is that if 

Fig. 1. A block decomposition of M. 
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the algorithm declares that M is not arborescence graphic, then this is indeed the case. 
The proof of the algorithm’s correctness uses results of Whitney [21] and Thomassen 
[18] on 2-isomorphism, which appear as Theorems 1 and 2 below. 

Theorem 1. Let G and G’ be 2-connected graphs on the same edge set. Then, G and G 
have the same set of cycles if and only if they are 2-isomorphic. 

The cycle space of a digraph is the vector space generated by the incidence vectors 
of the cycles of the underlying graph using modulo-2 arithmetic. For simplicity, in this 
context, cycles are equated with their incidence vectors. 

Theorem 2. Let D and D’ be strongly connected 2-connected digraphs on the same arc 
set that have the same cycle space. If there exists a set of dicycles common to D and D’ 
that generates this space, then D and D’ are 24somorphic. 

Lemma 3. Let D be a 2-connected digraph, and let T be a spanning tree of D. If every 
fundamental cycle of (D,T) is a dicycle, then D is strongly connected. 

Proof. If D is not strongly connected, then there exists vertices u and v for which no 
(u,v)-dipath exists. Let U be the set of vertices that are reachable from U. Since D is 
connected, there exists an arc e that has its head, but not its tail, in U. Since D is 
2-connected, e is in some fundamental cycle C of (D, T). Since C is a dicycle, it has an 
arc that has its tail, but not its head, in U, a contradiction. 0 

Theorem 4. Algorithm ARBORESCENCE REALIZATION is correct. 

Proof. As observed earlier, if M is arborescence graphic, then there exists gt-pair 
(G, T) such that the columns of M correspond to the fundamental paths of (G, T). 
Thus, the stopping criterion in Step 1 is correct. 

Suppose that the algorithm incorrectly stops in Step 2, and let T be an arborescence 
realization of M. Construct a digraph D’ by adding an arc joining the ends of each 
dipath of T that corresponds to a column of M such that the dipath plus the arc form 
a dicycle. Let G’ be the underlying graph of D’. Then, (G, T) and (G’, T) have the same 
set of fundamental cycles (assuming an appropriate choice of edge names). Since a set 
of fundamental cycles determines all of the graph’s cycles, Theorem 1 implies that 
G can be obtained from G’ by a sequence of reversals. Any reversal in a sequence 
taking G’ to G corresponds to a reversal in a sequence taking D’ to some digraph, say 
D, that is an orientation of G. Moreover, since reversals preserve dicycles, every 
fundamental cycle of (D, T) is a dicycle, a contradiction. 

Finally, suppose that the algorithm incorrectly stops in Step 3 with the conclusion 
that M is not arborescence graphic, and again let T be an arborescence realization of 
M. As in the previous paragraph, construct the pair (D’, T). Then, (D, T) (the output of 
Step 2) and (D’, T) have the same fundamental cycles. Thus, D and D’ have the same 
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cycle space. Moreover, by construction, every fundamental cycle is a dicycle of both 
D and D’. By Lemma 3, D and D’ are strongly connected. Therefore, by Theorem 2, 
D and D’ are 2-isomorphic, a contradiction. 0 

The problem described in Step 1 of the algorithm is sometimes called the graph- 
realization problem. Several algorithms exist for its solution, the most efficient of 
which are those of Bixby and Wagner [Z] and Fujishige [lo]. Each of these algorithms 
requires O(cc(n,r)n) time, where n is the number of nonzeros of M, r is the number of 
rows of M, and a(n,r) is a functional inverse of Ackermann’s function. 

The orientation desired in Step 2, if it exists, can be found as follows. Compute 
a spanning tree S of the bipartite graph B associated with M. (B has a vertex for each 
row and column of M and an edge for each nonzero entry.) Note that the vertex set of 
B coincides with the edge set of G. Arbitrarily choose a vertex s of B. Partition 
the remaining vertices into levels: vertex u is at leoel i if the (s,u)-path in S has 
exactly i edges. Now arbitrarily assign an orientation to the edge s of G. Assuming 
the desired orientation of G exists, the orientation assigned to the edge s 
uniquely determines an orientation for each edge at level 1. More generally, if 
orientations at level k have been assigned, then the orientations at level k + 1 are 
uniquely determined. Thus, by proceeding level by level, either the desired orientation 
of G is found or it is concluded no such orientation exists. Construction of S and its 
levels requires O(n) time using breadth-first search. Assigning orientations requires 
examination of each fundamental cycle of (G, T) exactly once, and so also takes O(n) 
time. 

Step 3, which is more involved, is covered in the next section. 

4. Step 3 of the main algorithm 

The main tool used to solve the problem described in Step 3 is a graph decomposi- 
tion first introduced by Tutte [20] and studied further by Cunningham and Edmonds 
[7] and Hopcroft and Tarjan [12]. This decomposition is a convenient way to 
“display” all graphs 2-isomorphic to a given graph. The first part of this section 
describes a modification of this decomposition. 

The decomposition is based on the 2-separations of a graph. Let G = (V, E) be 
a 2-connected graph. A 2-separation of G is a partition {E,, E,) of E such that 
IEl) 2 2 < lEzl and 1 V(G[E,]) n V(G[EJ)j = 2. If G has no 2-separation, then it is 
3-connected. (This definition of 3-connected differs slightly from that of Bondy and 
Murty [4] in that loops and parallel edges are not allowed.) 

Let D be a 2-connected digraph, and let T be a spanning tree such that each 
fundamental cycle of (D, T) is a dicycle; such a pair is an oriented gt-pair. Let {E,, E2} 
be a 2-separation of D, and let {u ,v} := V(D[E,]) n V(D[E,]). Then, either Tn El is 
a spanning tree of D[EJ or T n E2 is a spanning tree of D[EJ; assume the former and 
set T1 := T n El. Define D1 by adding a new arc e to D[E,] joining u and v such that 
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(01, T,) is an oriented gt-pair. (It is not hard to check that this is always possible.) 
Define D2 by adding the same arc e to D[EJ such that its orientation in D2 is opposite 
that in D1, and set T2 := (T n E,) u (e}. Then, it is not difficult to verify that (D2, T2) is 
also an oriented gt-pair. Define the pair {(D,, T,), (D2, T,)} to be the simple decomposi- 

tion associated with the 2-separation {E,, E2}. The arc e is a marker arc of D1 and D2. 

A decomposition of (D, T) is inductively either the set {(D, T)> or the set obtained from 
a decomposition of (D, T) by replacing some member S of the decomposition by the 
members of a simple decomposition of S. 

Let 9 = {(Dl, T,), . . . . (D,, T,)} be a decomposition of (D, T), and let Gi, . . . . G, and 
G be the respective underlying graphs of D1, . . . , D, and D. Then, $9 := { Gi, . . . , G,} is 
a decomposition of G. Of particular interest is when every member of $9 is either 
3-connected, a bond (a connected loopless graph on two vertices), or a polygon 
(a connected graph, every vertex of which has degree two) and there does not exist any 
two bond or any two polygon members of Q that have a marker edge in common. In 
this case, Q is a 3-decomposition of G and 9 is a 3-decomposition of (D, T). Cunning- 
ham and Edmonds [7] proved that every graph has a unique 3-decomposition up to 
the choice of the names of the marker edges. 

Associated with a decomposition 9 of an oriented gt-pair is a decomposition tree 9; 
the vertices of Y are the members of 9 and two vertices are adjacent if and only if they 
have a marker arc in common. Observe that a subtree Y of 9 is a decomposition tree 
of some decomposition, say 9, of an oriented gt-pair, which is obtained by recursively 
merging adjacent members of Y. To be precise, the merging is done by first reversing 
the orientation of the common marker arc in one of the two members, then identifying 
the marker arc in the two members (i.e., head to head, tail to tail), and finally deleting 
this arc. Note that the order in which the members of 9’ are merged does not matter. 
The resulting oriented gt-pair is denoted m(9’). 

Now consider Step 3 of the algorithm, and suppose that D is 2-isomorphic to 
a digraph D’ in which T is an arborescence. Suppose that a 3-decomposition 9 of 
(D, T) has been computed. Then, as shown below (Lemma 6) a 3-decomposition of 
(D’, T) can be obtained by replacing the members of 9 with appropriate 2-isomorphic 
copies. Thus, in determining whether such a D’ exists, it is sufficient to compute 9, 
replace the members of 9 by appropriate 2-isomorphic copies if possible, and then 
merge the resulting 3-decomposition to obtain (D’, T). Computing the 3-decomposi- 
tion of (D, T) is done by adapting the Hopcroft-Tarjan [12] algorithm for 
computing the 3-decomposition of the underlying graph of D and is discussed below. 
Replacing the members of 9 by 2-isomorphic copies is done by a one-time 
pass through the decomposition tree and is discussed in detail below. Finally, the 
merging of the resulting 3-decomposition is straightforward and is not discussed 
further. 

Hopcroft and Tarjan [12] give a linear-time algorithm for computing the 3- 
decomposition of a graph. This algorithm is used to compute decomposition of an 
oriented gt-pair (D, T) as follows. First, compute the 3-decomposition 9 of G, the 
underlying graph of D. Choose G1 ~99 such that Gi has exactly one marker edge, say e. 
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(Such a member always exists.) Either T n E(G,) or (T A E( G,)) u {e} is a spanning 
tree of G,; determining which requires 0( IE(G,) I) time. In either case, define Tt to be 
this spanning tree. Now, the edges of G1 are appropriately oriented to obtain 
a digraph Dt. For an edge other than e, its orientation is that induced by D. The 
orientation of e is that which makes (DI, T,) an oriented gt-pair. Such an orientation 
of e exists (and is unique) and it is obtained by examining any fundamental cycle of 
(G,, T,) that contains e. This requires O(IE(G,)I) time. By choice of Gi, $9 - {G,} is 
a decomposition, and so the above construction can be applied recursively to 
yield a 3-decomposition of (D, T). Note that the orientation of e in the 
member of B other than G1 is now determined; it is opposite of that in D,. The 
total time required is 0(x:= I IE(GJI), which is O(IA(D)I) by a result of Hopcroft and 
Tarjan [12]. 

The above construction also proves the following result. 

Lemma 5. Let (D, T) be an oriented #-pair, and let G be the underlying graph of D. Let 

{G 1, . . . , G,} be a decomposition of G. Then, there exists a decomposition of (D, T) such 

that Gi is the underlying graph of Di, for 1 < i < t. 

It is convenient to now assume that the decomposition tree associated with 
a decomposition is in fact an arborescence. This is done by specifying one member of 
the decomposition to be the root. For a member other than the root, define its parent 
marker to be the unique marker arc of the member that is in common with its parent. 

The following notation is fixed for the remainder of the section. Let 9 be the 
3-decomposition of (D, T), the input to Step 3, and let (Do, T,) be a fixed member of 9. 
Let t be the number of children of (Do, T,,), and let .9i be the subdecomposition of 
9 consisting the ith child together with all of its descendants. Define (Di, Ti) := m(9i). 

Then, (DI, T,), . . ..(Df. T,) are the complete children of (Do, To). Define 

(R 7’~) := m(((&, To), . . . . (D,, T,)}). (Thus, if (Do, To) is the root of 9, then 
(R, Ts) = (D, T).) Let pi be the parent marker Of (Di, Ti). If (Do, To) is not the root of 9, 
then let p be the parent marker of (Do, T,); otherwise choose p to be any nonmarker 
arc of D,,, and define it to be the parent marker of (Do, To). 

Lemma 6 below is an adaptation of a similar result of Bixby and Wagner [2]. 

Lemma 6. Let R’ be 2-isomorphic to R. Then, there exists a decomposition of (R’, T,) 

consisting of oriented &-pairs (DA, T,), . . . , (D:, Tt ) such that 06, . . . ,Dl are 2-isomorphic 

to D 0, . . . . D,, respectively. 

Proof. Let H, H’, Ho, . . . . H, be the respective underlying graphs of R, R’, Do, . . . . D,. 

Then, H and H’ are 2-isomorphic. Now, by Bixby and Wagner [2, Theorem 4.11, there 
exists a decomposition X’ of H’ consisting of graphs H& , .., Hi 2-isomorphic to 

Ho> . . . , H,, respectively. By Lemma 5, there exists a decomposition of (R’, T) consisting 
of oriented gt-pairs (DA, T,), . . . , (D;, TJ such that Hf is the underlying graph of Dl, for 
0 < i d t. Since Hi and Hf are ‘&isomorphic, (Di, Ti) and (D,!, Ti) have the same 
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fundamental cycles, for 0 < i d t. Thus, by Lemma 3 and Theorem 2, Di and Dl are 
2-isomorphic, for 0 < i < t. 0 

Recursive application of Lemma 6 implies that (D’, T) can be obtained from 9 by 
replacing some of its members by 2-isomorphic copies and then merging. Note that 
the converse is also true. That is, if 9’ is obtained from 9 by replacing some of its 
members by 2-isomorphic copies, then m(9’) and (D, T) are 2-isomorphic. 

Determining whether it is possible to replace some of the members of 9 by 
2-isomorphic copies in such a way that merging the resulting 3-decomposition gives 
an oriented gt-pair in which T is an arborescence is done by a one-time 
“bottom-to-top” pass through 9. Since each member of 9 is either 3-connected, 
a bond or a polygon, the set of digraphs 2-isomorphic to a given member is easy to 

describe. 
As motivation for what follows, suppose that the 3-decomposition 9 of (D, T) 

has just two members, say (Do, TO) and (Dl, T,), with (DO, T,,) as the parent of (Dl, T,). 

Now it is easy to see that if T is an arborescence in some digraph D’ 2-isomorphic 
to D, then both TO and T1 are arborescences in their respective members of any 
3-decomposition of (D’, 7). Consider two 2-isomorphic copies of D1, say Di and D;‘, 

such that Tl is an arborescence in both Di and 0;’ and such that the root of T, is not 
an end of pi in Di, but is in 0;‘. A key observation is that if T is an arborescence in the 
oriented gt-pair obtained by merging (Di, T,) with some 2-isomorphic copy of 
(Do, TO), then it is also an arborescence in the oriented gt-pair obtained by merging 
(D;‘, T,) with the same 2-isomorphic copy of (Do, TO). On the other hand, there exist 
examples where T is an arborescence if (D;‘, T,) is merged with some 2-isomorphic 
copy of (DO, TO), but it is not an arborescence if (Di, T,) is merged with any 2- 
isomorphic copy of (DO, TO). For example, this happens when the root TO is not an end 
of p1 in any 2-isomorphic copy of (DO, T,,). These observations lead to the conclusion 
that the preferred choice of a 2-isomorphic copy of (Dl, T,) is one in which T1 is an 
arborescence, the root of which is incident to pl. 

The following classification scheme for oriented gt-pairs is introduced for the 
purpose of carrying out the above preference idea. Let (Q, S) be an oriented gt-pair, 
and let m be a distinguished arc of Q. Then, the arrangement of (Q, S,m), denoted 
a(Q, S, m), is equal to 1 if T is an arborescence of Q and the root of T is an end of m; is 
equal to 2 if T is an arborescence of Q and the root of T is not an end of m; and is equal 
to 3 otherwise. The type of (Q, S,m), denoted t(Q, S,m), is min{a(Q’,S, m) 1 Q’ is 
2-isomorphic to Q}. The triple (Q, S, m) is good if t(QJ, m) = a(Q,S, m) < 3. 

For simplification purposes, a(R, TR,p) is abbreviated to a(R), t(R, TR,p) to t(R), 
a(Di, Ti,pi) to a(Di), and t(Di, Ti,pi) to t(Di). This simplification is also used with 
digraphs 2-isomorphic to R or Di. The term good means a(R) = t(R) < 3, etc. 

If D, is 3-connected or a bond, then the only digraph 2-isomorphic to it is 
its converse, i.e., the digraph obtained by reversing the orientation on each arc. 
Polygons, on the other hand, have several 2-isomorphic copies. In the case that DO is 
a polygon, the following procedure is used to choose an appropriate 2-isomorphic 
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copy during the pass through 9. To relink a polygon is to construct a 2-isomorphic 
copy of it. 

Procedure RELINK(D,J. 
If p$ T,, and the type of D1 (say) is different from 1, then relink Do so that the head of 
p is incident to pl. 

If p E T,, and t(Di) # 2 for 1 < i < t, then relink Do so that the head of the unique arc 
not in To is incident to p. 

If {p,pl} c T, and the type of D1 (say) is 2, then relink Do so that the head of the 
unique arc not in T, is incident to pl. 

The algorithm for solving the problem of Step 3 can now be stated. 

Algorithm 2-ISOMORPHISM. 
Input: An oriented gt-pair (D, T). 

Output: An oriented gt-pair (D’, T) 2-isomorphic to (D, T) in which T is an arbores- 
cence or the conclusion that no such oriented gt-pair exists. 
Step 1: Compute a 3-decomposition 9 of (D, T), and choose as the root of 
9 a member that has an arc that is not a marker arc; define this arc to be the parent 
marker of the root. Let h be the height of the arborescence, and for 1 < i < h, define 
Pi to be the subset of members of $9 that are at distance i from the root. Set j c h. 
Comment: The 3-decomposition 9 might be modified below; for convenience, the 
resulting 3-decomposition is still called 9. 
Step 2: Choose an oriented gt-pair (Do, To)e P, and set Pj + Pj - {(Do, T,,)}. Let 

(Di, T,), . ..> (D,, T1) be the complete children of (Do, T,). 
If Do is 3-connected or a bond, then define 06 to be the converse of Do. Set 

(R, Ta) := m({(Do, To), . . ..(Db rt)}) and (R’, 7’~) := m(((D& Tc),(Dr, T,), . . ..(DI. T,)}). 
Set (R”, T,) := (R, T,) if a(R) < a@‘) and (R”, TR) := (R’, T,) otherwise. 
If D,, is a polygon, then apply RELINK(Do) and set (R”, T,) := m({(Do, T,,), 

. . ..(Dz. T,)}). 
If a@“) = 3, then stop with the conclusion that (D, T) is not 2-isomorphic to an 
oriented gt-pair in which T is an arborescence. If Pj # 8, then go to Step 2. 
Step 3: Ifj = 0, then output (D, T) := m(9) and stop; otherwise set j + j - 1 and go 
to Step 2. 

Lemma 7. Let 0; be 2-isomorphic to D1, and let (R’, TR): = m({(D,,, T,), 

(D;, TI), (Dz, T,), . . . . (D,, T,)}). Z. a(D;) d a(D1), then a(K) Q a(R). 

Proof. If a(Dl) = 3, then there exists a vertex of D1 that has indegree at least two in 
T1. This implies that there exists a vertex of R that has indegree at least two in TR. 
Thus, a(R) = 3, and the result follows. Therefore, it can be assumed that T1 is an 
arborescence in D1 and thus 0;. 

Since T1 is an arborescence of Di, each vertex of T, in R’ that is not an end of m, 
has indegree at most one in T,. The indegree in TR of every other vertex of R’ is less 
than or equal to that of the corresponding vertex in R. The results follows. 0 
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The following two theorems are the main theorems for justifying the algorithm. 

Theorem 8. Let Do be either 3-connected or a bond, and let Db be the converse of Do. Let 

(R’, T,) := m{(D& T,),(D,, T,), . . . . (D,, TJ>. If Di is goodfor 1 < i < t, then either R or 

R’ is good, or t(R) = 3. 

Proof. By Lemma 6, there exist digraphs Dt, . . . ,D;’ that are 2-isomorphic to 

D D,, 0, *.a, respectively, such that if (R”, TR) is defined to be 

m(((D;;, To), (D;‘, T,), . . . . (D;‘, T,)}), then a(R”) = t(R). Since, for 1 Q i < t, Di is good, 
a(Di) < a(Di’). Since Do is 3-connected or a bond, either 0: = Do or 0; = D& By 
Lemma 7, either a(R) < a(R”) or a(R’) Q a(R”). 0 

Theorem 9. Let Do be a polygon, and suppose RELINK(Do) has been applied. If Di is 
good for 1 < i < t, then either R is good or t(R) = 3. 

Proof. First suppose that p$ To. If t(Di) = 1, for 1 < i d t, then a(R) = 1, and the 
result follows. Suppose D1 (say) is type 2 and t(D2) = ... = t(Dt) = 1. By RE- 
LINK(Do), the head of p is incident to pl. It follows that a(R) = 2. Now Lemma 
6 implies that in any digraph 2-isomorphic to R, there exists a vertex that is not an end 
of p and has an indegree of zero in T,, which implies that t(R) 3 2; the result follows. 
Similarly, if D1 and D2 (say) are both of type 2, then t(R) = 3. 

Now suppose that PE To. Let e be the unique arc of the Do not in To. 

If t(Di) # 2, for 1 < i < t, then by RELINK(Do), the head of e is incident to p. Since 
Di is good, for 1 < i < t, a(Di) = 1, which implies a(R) = 1; the result follows. 

If t(DI) = 2 and p1 E To, then, by RELINK(Do), the head of e is incident to pl. If 
t(DJ = 2 and p1 6 To, then p1 = e. In either case, if t(Di) = 1 for 2 < i < t, then 
a(R) = 2. Lemma 6 implies that in any digraph 2-isomorphic to R, there exists a vertex 
that is not an end of p, and has indegree zero in TR. This implies that t(R) 2 2, and the 
result follows. If D2 (say) is type 2, then Lemma 6 implies that in any digraph 
2-isomorphic to R, there exists at least two vertices of indegree zero in TR. This implies 
that t(R) = 3, and the result follows. 0 

Theorem 10. Algorithm 2-ISOMORPHISM is correct and has time complexity 

O(I4D)l). 

Proof. As observed earlier, a 3-decomposition of (D, 7) can be computed in 0( 1 A(D 

time. Moreover, the procedure is easily adapted to compute the sets Pi, . . . , Ph needed 
in Step 1 within the same time complexity. 

In Step 2, applying RELINK(Do) to a polygon Do requires O(IA(D,)I) time. 
Computing the converse of Do can also be done in 0( I A(D time. Determining the 
arrangement of R (or R’ or R”) can be done without actually computing R. In 
particular, one can replace each complete child (Di, Ti) of (Do, To) by a “small” 
oriented gt-pair (F, Si) having the same arrangement and then compute the arrange- 

ment ofm{(Do,To),(F1,S1),..., (F,,S,)}. This can be done in O(lA(D,)I) time. 
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Throughout the algorithm, Step 2 might examine every member of 9. Thus, Step 
2 requires O(C(lA(Di)l: (Oi, 7’i)Eg)) time, which is O(JA(D)l) time by a theorem of 
Hopcroft and Tarjan [12]. Computing m(g) in Step 3 requires the same amount of 
time. Thus, Algorithm 2-ISOMORPHISM requires O(IA(D)l) time. 

If a(R”) = 3, then Theorems 8 and 9 imply that t(R) = 3. Thus, in any graph 
2-isomorphic to R, there exists a vertex that has indegree at least two in T,. Lemma 
6 then implies in any graph 2-isomorphic to D, there exists a vertex of indegree at least 
two in T. Therefore, the stopping criterion in Step 2 is correct. 

If Step 3 is executed, then the algorithm did not stop in Step 2 when D,, was the root 
of the 3-decomposition. Thus, in Step 2, a(R”) < 3, from which it follows that T is an 
arborescence of D’. 0 

Combining the results of the previous two sections yields the following result. 

Theorem 11. Algorithm ARBORESCENCE REALIZATION has time complexity 

W(n, r)n). 

5. Related results 

A (0, 1}-matrix M is vertex-arborescence graphic if there exists an arborescence 
T such that the vertices of Tare indexed on the rows of M and the columns of M are 
the incidence vectors of the vertex sets of dipaths of T. If such a T exists, then T is 
a vertex-arborescence realization for M. The vertex-arborescence-realization problem is 
to determine whether a given (0, I)-matrix is vertex-arborescence graphic and, if so, to 
construct a vertex-arborescence realization. The first polynomial-time algorithm for 
this problem was developed by Truszczynski [19]. In an unpublished paper, Dietz et 
al. [8] gave an O(n) algorithm. Theorem 13 below shows that the arborescence- 
realization problem and the vertex-arborescence-realization problem are equivalent. 

Lemma 12. Let (D,T) be an oriented gt-pair in which D is 2-connected and T is an 
arborescence. Then, the root of T has degree one in T. 

Proof. Suppose that there are two arcs of T incident to the root. Since D is 2- 
connected, there exists a fundamental cycle C of (D, T) that contains both arcs. Since 
(D, T) is an oriented gt-pair, C is a dicycle, implying that the root has indegree greater 
than zero, a contradiction. 0 

Theorem 13. A connected (0, 1}-matrix M is arborescence graphic ifand only ifit is ver- 
tex-arborescence graphic. 

Proof. The proof is by construction. Suppose M is arborescence graphic, and let T be 
an arborescence realization for M. Construct an arborescence T’ from T as follows. 
Delete the root and its unique (by Lemma 12) incident arc, and for every arc e of T, 
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change the name of the head of e to e. Then, T’ is a vertex-arborescence realization for 
M. Reversing the above construction shows that if M is vertex-arborescence graphic, 
then it is arborescence graphic. 0 

By Theorem 13 and its proof, the Dietz-Furst-Hopcroft algorithm yields an O(n) 
algorithm for the arborescence-realization problem. This bound is theoretically better 
than the O(a(!(n, r)n) bound presented here, but from a practical view point, they are the 
same. The algorithms differ further in that the present algorithm is graph theoretic, 
requiring only simple data structures (assuming that the Bixby-Wagner algorithm [2] 
is used for Step l), whereas the time bound for Dietz-First-Hopcroft algorithm is 
obtained by employing a sophisticated data structure called a PQR-tree, which is an 
extension of the PQ-tree developed by Booth and Lueker [S]. 

One important feature of the present algorithm is that it can be adapted to 
recognizing a subclass of extended-Horn problems; this is discussed in the next 
section. It is not clear how to use the Dietz-Furst-Hopcroft algorithm in this way. 

The algorithm presented here is also related to some structural results first obtained 
by Bland and Ko [3] and independently by Swaminathan and Wagner [15,16]. Bland 
and Ko characterized when a spanning tree of a connected graph is one that can be 
obtained by applying depth-first search. Call a gt-pair (G, T) a &-pair if T is a tree 
that can be obtained by applying depth-first search to G. Bland and Ko’s result is of 
the form that a gt-pair (G, T) is a dfs-pair if and only if it does not have a “minor” that 
is in some specified list of gt-pairs. Note that (G, r) is a dfs-pair if and only if G has an 
orientation D such that (D, T) is an oriented gt-pair and T is an arborescence of 
D. The Bland-K0 result is actually comprised of two results. The first result character- 
izes those gt-pairs that underlie oriented gt-pairs, and the second result characterizes 
the subset of these that are dfs-pairs. 

Finally, Ko [ 131 gave an algorithm that provides an alternative to Steps 2 and 3 of 
the main algorithm. Ko’s algorithm is similar to the approach presented here in that it 
uses the same decomposition and achieves the same complexity. 

6. Simple extended-Horn sets 

The well-known satisfiability problem is the quintessential NP-complete problem; 
see Garey and Johnson [ll]. Restricted versions of the satisfiability problem are 
known to be solvable in polynomial time. Among the more well-known restrictions is 
the satisfiability problem defined over Horn sets. A propositional clause is Horn if it 
contains at most one positive literal; a set of propositional clauses is Horn if each of its 
clauses is Horn. The satisfiability problem defined over Horn sets can be solved in 
linear time; see Dowling and Gallier [9]. Recognizing whether an instance is Horn can 
obviously be done in linear time. 

Chandru and Hooker [6] introduced a generalization of Horn sets, called extended- 
Horn, and showed that the satisfiability problem for extended-Horn sets can 
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also be solved in linear time. The definition of extended-Horn sets is rather complic- 
ated. No polynomial-time algorithm is known for recognizing whether an instance of 
the satisfiability problem is extended-Horn. This section presents a recognition 
algorithm for a subclass of extended-Horn, called simple extended-Horn. The recogni- 
tion algorithm solves a sequence of arborescence-realization problems. 

An instance of the satisfiability problem is specified by a collection of (0, f l}- 
vectors indexed on a set of variables U. Each vector represents a clause; a + 1 
represents a positive literal and a - 1 a negative literal. 

Let C be a clause on a variable set U, and let T be an arborescence on arc set U with 
root s. Then, C is extended-Horn with respect to Tif the set of arcs having a + 1 in C is 
a dipath P of T and the set of arcs having - 1 in C is an arc-disjoint union of dipaths 

Q 1, . . . , Qr of T such that one of the following holds: 

1. QI,..., Qt start at the root s. 

2. Q 1, . . . . Qt_ i, (say), start at the root s, and Qt and P start at a vertex q # s. 

The clause C is simple extended-Horn with respect to T if it is extended-Horn with 
respect to Tand condition 1 is satisfied. A set of clauses is extended-Horn (respectively, 
simple extended-Horn) if there exists an arborescence T such that each clause in the set 
is extended-Horn (respectively, simple extended-Horn) with respect to T. 

Simple extended-Horn sets include Horn sets since a Horn set is simple extended- 
Horn with respect to the arborescence in which all the arcs are incident to the root. 

Let 59 = {C,, . . . . C,} be a set of clauses on a set of variables U. Let Pi and Ni, for 
1 < i < k, denote the subsets of U corresponding to the set of positive and negative 
literals of Ci, respectively. Let 9 := lJ:= 1 Pi and JV := Uf= 1 Ni. If u E JV - 9, then 
u can be deleted from each clause because the set after deletion is simple extended- 
Horn if and only if the original set is. In particular, if the set after deletion is simple 
extended-Horn with respect to an arborescence T, then adding an arc to T corres- 
ponding to u incident to the root of T results in an arborescence with respect to which 
the original set is simple extended-Horn. Thus, assume X G 9 = U. 

If 97 is simple extended-Horn, then there exists an arborescence in which P,, . . . , P, 
are dipaths. In other words, the matrix M, the columns of which are the incidence 
vectors of P,, . . . . P,, is arborescence graphic. The arborescence graphicness of M is 
necessary for V to be simple extended-Horn; in general, it is not sufficient. 

Let M,, . . . . M, be the blocks of M, and let S i, . . ..gpt be the partition of P( = the 

row set of M) induced by Mi, . . . . M,. Observe that by the definition of blocks, either 
Pi G ~j or Pi n 9j = 0, for all 1 $ i < k and 1 < j < t. This partition of B also 
induces a partition of each Ni. Namely, for 1 < i < k and 1 <j d t, define 
Nij: = Ni n 9j. AS will be seen shortly, the partition Ni 1, . . . , Ni, of Ni corresponds to 
that required in the definition of simple extended-Horn. 

For 1 <j 6 t, define Sj to be the matrix obtained from Mj by adding columns that 
are the incidence vectors of members of {Nijl 1 d i < k, Nij # 0). Define Zj to be the 
intersection over all the members of the set {Nij( 1 Q i < k, Nij # 0). 

The following theorem serves as the basis for the recognition algorithm. 
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Theorem 14. The set % is simple extended-Horn ifand only ifs,, . . . , S, are arborescence 
graphic and have respective arborescence realizations T,, . . . , T, in which some member of 
Ij is incident to the root of Tj, for 1 < j d t. 

Proof. Suppose that S1, . . . . S, are arborescence graphic with respective realizations 
T 1, a.., T, as described above. For 1 < j < t, let (Dj, Tj) be the corresponding oriented 
gt-pair. Since Mj is connected, Sj is connected. Thus, Dj is 2-connected. By Lemma 12, 
the root of Tj has degree one in TF Since some member of Zj is incident to the root, Nij 
is a dipath of Tj that starts at the root for 1 < i d k. Moreover, each Pi that is 
contained in Bj is a dipath of Ti. It follows that % is simple extended-Horn with 
respect to the arborescence obtained by identifying the roots of T1, . . . . T,. 

Now suppose that ‘Z is simple extended-Horn with respect to some arborescence, 
say T. Then, PI, . . . , Pk are dipaths of T. Moreover, since JV s 9, every arc of T is in at 
least one Pi. Thus, T is an arborescence realization of the matrix M. Convert T to an 
oriented gt-pair, say (D, T), by adding an arc joining the ends of each Pi. Let D1, . . . , D, 
be the blocks of D, and let (Dl, T,), . . . , (D,, Tt) be the corresponding oriented gt-pairs. 
Then, Tj is an arborescence realization of block Mj, for 1 d j d t. 

Now, consider Ni, for some i E { 1, . . . , k}. It is the disjoint union of dipaths of T, each 
of which starts at the root of T. Observe that Nij = Ni n Tj, for 1 < j < t. It follows 
that if Nij is nonempty for some j, then Nij is a dipath in Tj starting at the root of Tj. In 
other words, Tj is the required realization of the matrix Sj. 0 

Theorem 14 can be used to determine whether a given set $9 = {C,, . . . . C,} of 
clauses is simple extended-Horn as follows. The first step is to construct the matrices 
S 1, . . ., S,. This is done as follows. First scan each clause to determine the sets PI, . . . , Pk 
and N,, ..,, Nk, and then construct the matrix M defined above. Given that the 
number of variables in U is m, this can be done in O(mk) time. Next, find the blocks 
M 1, . . . , M, of M; this can also be done in O(m k) time, as observed in Section 2. Using 
the partition of the row set of M given by Ml, . . . , M,, the partition of each Ni into the 
set Nil, . . . . Nit can be found in O(m) time. Thus, the matrices S1, . . ., S, can be found in 
O(mk) time. Observe that the total number of nonzeros in the matrices S1, . . . , S, is 
bounded by mk. Thus, by Theorem 16, determining whether S1, . . . . S, are arbores- 
cence graphic can be done in time O(cc(mk,m)mk). 

Suppose that S1, . . . . S, are found to be arborescence graphic. Let T,, . . . , T, be the 
respective realizations. The next step is to determine whether each Sj has an arbores- 
cence realization of the desired type. Consider S1. First, construct the set I1 by 
scanning each row of S1. Second, construct the oriented gt-pair, say (Dl, T,), corres- 
ponding to the realization T1. Choose eel,, and consider applying Algorithm 
2-ISOMORPHISM to (Dl, T,) with the following refinements of Step 1. After com- 
puting a 3-decomposition 9 of (Dl, T,), choose as the root of 9, the member that 
contains e, and choose as the parent marker of the root, the arc e. Since S1 is 
arborescence graphic, the output of Algorithm 2-ISOMORPHISM is an oriented 
gt-pair (D;, T,) in which T1 is an arborescence. Moreover, by Step 2 and Theorems 
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8 and 9, the triple (D;, T1, e) is good. The implication of (D;, Ti, e) being good is that if 
there exists a digraph 2-isomorphic to D, in which T1 is an arborescence and e is 
incident to the root of T1, then 0; is such a digraph. It follows that by running 
Algorithm 2-ISOMORPHISM for each arc e in I,, it can be determined whether there 
exists an arborescence realization of S1 in which some arc of I1 is incident to the root. 

By repeating the analysis for SZ, . . . , St, it can be determined whether % is simple 
extended-Horn. In addition to the O(a(mk,m)mk) time for determining whether 
S i, . . . . S, are arborescence graphic, the complexity is dominated by executing Algo- 
rithm 2-ISOMORPHISM once for each edge in I1 u ... u I,. Note the size of this 
union is bounded by m. Thus, the following result has been proved. 

Theorem 15. Determining whether a set of k clauses on m variables is simple extended- 
Horn can be done in O(m2k) time. 0 
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