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a b s t r a c t

A model for the effects of a predator on a genetically distinguished prey population is
formulated and investigated. The predator-free system settles at an equilibrium which
can be destabilized by the predators if a suitably defined parameter, the predator invasion
number, exceeds a threshold. The system can then coexist at a stable equilibrium or via
persistent oscillations.

© 2012 Elsevier Ltd. All rights reserved.

1. The model

Ecoepidemiology (see Chapter 7 of [1] and its references) studies interacting populations among which diseases spread.
In this study,we extend the idea to a population containing genetically different characteristics and investigate the influence
of another population on its evolution.

In fact, we consider a genetically differentiated prey population, in which x and y represent the two genotypes, subject
to the interference of natural predators z. Let R denote the reproduction rate and p and q = 1− p denote the fractions of the
newborns being of genotypes x and y respectively. Assuming that the two subpopulations live in the same environment, let
a denote the population pressure felt by genotype x and b the same pressure experienced by the genotype y, taking possibly
a ≠ b to allow for more generality. Let m denote the mortality rate of the predators, let h and g be the possibly different
rates at which the two genotypes are hunted and let e < 1 represent the conversion factor of prey into predators’ newborns.
All the model parameters are assumed to be nonnegative. The model then can be written as follows:

dx
dτ

= [Rp − ax](x + y) − hxz, (1)

dy
dτ

= [Rq − by](x + y) − gyz,

dz
dτ

= z[e(hx + gy) − m].

The first two equations then describe prey reproduction, intraspecies competition and predator hunting. The last equation
contains the predator dynamics, regulated by the return obtained from successful prey hunting and natural mortality.
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The system trajectories are bounded. LettingW = x+y+z be the total environmental population and taking an arbitrary
m > η > 0, we find

dW
dτ

+ ηW = (x + y)(R + η − ax − by) + (e − 1)(hxz + gyz) + (η − m)z

≤ x(R + η − ax) + y(R + η − by) + (η − m)z ≤
(R + η)2

4ab
(a + b) ≡ V ,

so integrating for all τ , we haveW (τ ) ≤ max{Vη−1
+ ϵ,W (0)}, for any arbitrary ϵ > 0.

Note that in the case of the absence of predators the above result is immediate on taking a box in the phase plane, bounded
by the coordinate axes and the horizontal and vertical lines y = yh > Rqb−1, x = xv > Rpa−1, as trajectories on these lines
are seen to enter into the box.

We now adimensionalize (1). Let X(t) = αx(τ ), Y (t) = βy(τ ), Z(t) = ζ z(τ ), and t = γ τ . Taking then γ = m,
α = β = a−1Rp, ζ = g−1m, and defining the new parameters c = hg−1, r = Rpm−1, s = ba−1, and w = qp−1,
v = egpR(am)−1

= egra−1, the model (1) becomes

dX
dt

= r(X + Y )(1 − X) − cXZ, (2)

dY
dt

= r(X + Y )(w − sY ) − YZ,

dZ
dt

= Z[v(cX + Y ) − 1].

2. Analysis

2.1. Equilibria

The system (2) has the following equilibria: the origin E0, the predator-free equilibrium EĎ = (EĎ0 , 0), with EĎ0 = (XĎ, Y Ď)
being the equilibrium of the predator-free subsystem, and the coexistence equilibrium E∗

= (X∗, Y ∗, Z∗). Explicitly, for the
second one, XĎ

= 1, Y Ď
= ws−1, while for the third one we have

X∗
=

1
c


1
v

− Y ∗


, Z∗

=
r
Y

∗

(X∗
+ Y ∗)(w − sY ∗) =

r
cX∗

(X∗
+ Y ∗)(1 − X∗) (3)

and Y ∗ solves the quadratic

v(cs − 1)Y 2
− Y (cvw + cs + cv − 1) + cw = 0. (4)

We denote its roots by Y±, with Y− < Y+. For cs < 1, by Descartes’ rule of signs there is one positive root Y ∗
= Y+; for

cs > 1, the discriminant can be restated as follows: ∆ = [cvw − (cs − 1)]2 + c2v2(1 + 2w) + 2cv(cs − 1) and then, again
using Descartes’ rule, if also cvw + sc + cv > 1 there are two real positive roots 0 < Y ∗

1 (≡ Y−) < Y ∗

2 (≡ Y+).
E0, E

Ď
0 and EĎ are always feasible; for E∗ we must instead require

X±
≤ 1, Y±

≤ min

1
v
,
w

s


. (5)

Remark 1. The expression forY± canbe explicitly evaluated,whichweomit, but it is important to note that it is independent
of r and consequently also X∗ is independent of the adimensionalized reproduction rate, r .

2.2. Stability

The Jacobian J of (2) isr(1 − 2X − Y ) − cZ r(1 − X) −cX
r(w − sY ) r(w − sX − 2sY ) − Z −Y

cvZ vZ v(cX + Y ) − 1.


. (6)

At the origin, since the characteristic equation factors, the eigenvalues are −1, and in addition those of the predator-
free subsystem 0 and r(1 + w). This result indicates that the origin for the predator-free subsystem is unstable and this
characteristic remains unaltered also in the larger system, on the introduction of the predators. This is a result with the
good outcome that the ecosystem will never completely disappear.
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Fig. 1. Persistent oscillations obtained for the parameter values r = 0.4, c = 0.0024, s = 0.0005, w = 0.35, v = 0.1; note that the oscillation for the x
variable is extremely small.

At EĎ the Jacobian becomes a diagonal matrix with eigenvalues

λ1 = −r

1 +

w

s


, λ2 = −rs


1 +

w

s


, λ3 = v


c +

w

s


− 1 (7)

where λ1 and λ2 are the eigenvalues of the equilibrium EĎ0 in the predator-free subsystem. The latter is therefore always
locally asymptotically stable and no Hopf bifurcations are possible. We can also introduce the predator invasion number as

RZ = v

c +

w

s


. (8)

Depending on whether RZ > 1, the predators establish themselves permanently in the ecosystem.
For the coexistence equilibrium the Jacobian evaluated at the equilibrium, J∗ = J(E∗), simplifies somewhat; using (3) we

find J∗33 = 0 and

J∗11 = −
r
X∗

[(X∗)2 + Y ∗
] < 0, J∗22 = −

r
Y ∗

[s(Y ∗)2 + wX∗
] < 0. (9)

The characteristic equation is the cubicλ3
−trJ∗λ2

+M∗

2λ−det J∗ = 0,where the coefficients are evaluated at the equilibrium
E∗, andM2 represents the sum of the principal minors of order 2 of (6). The first Routh–Hurwitz condition for stability from
(9) is then clearly satisfied, −trJ∗ > 0; for the second one, observe that

det J∗ = vZ∗
{−cr[(1 − X∗)Y ∗

+ X∗(w − sY ∗)] + c2X∗J∗22 + Y ∗J∗11} < 0

since all the terms are negative in view of (5), so it is also satisfied: − det J∗ > 0. For the third one, let us define Q ∗
=

trJ∗M∗

2 − det J∗. We need to show it to be negative. Performing the expansions and using (5), and using the simplification
J∗33 = 0, the inequality Q ∗ < 0 becomes

|J∗11 + J∗22|(|J
∗

11J
∗

22| − J∗12 − J∗21) > J∗32J
∗

21|J
∗

13| + J∗31J
∗

12|J
∗

23| + |J∗13|J
∗

31|J
∗

22| + |J∗23|J
∗

32|J
∗

11|. (10)

We substitute the relevant quantities into (10) and letting A∗
= v(X∗

+ Y ∗)(w − sY ∗)L and B∗
= ((X∗)2Y ∗)−1Mwith

L = cwX∗
+ cs(Y ∗)2 + (X∗)2 + Y ∗

+ cwX∗
− csX∗Y ∗

+ cY ∗
− cX∗Y ∗,

M = s(X∗Y ∗)2 + w(X∗)3 + s(Y ∗)3 + sX∗(Y ∗)2 + w(X∗)2Y ∗
− sw(X∗Y ∗)2

we introduce r+
≡ AB−1. Here it is relevant to observe that, in view of Remark 1, all the quantities appearing on the right

hand side of this equation do not depend on r . Stability is then attained for

r > r+. (11)

Further, r can be taken as a bifurcation parameter. When r = r+ then, we have equality in the third Routh–Hurwitz
condition, so purely imaginary roots arise. Hence at r+ the equilibrium E∗ bifurcates. In Fig. 1 we show the limit cycles
obtained for the parameter values r = 0.4, c = 0.0024, s = 0.0005, w = 0.35, v = 0.1. Observe that in them, the value of
the x subpopulation is however essentially constant.
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2.3. Persistence

For this task, we must destabilize all boundary equilibria at the same time. For the predator-free subsystem the result
holds, since the origin is unconditionally unstable. For system (2), the origin remains unstable. Further, EĎ can be destabilized
by imposing λ3 > 0, since λ1 < 0, λ2 < 0; see (7). Thus

RZ > 1 (12)

ensures not only that the presence of the predators in the environment becomes permanent, but also the persistence of the
system (2).

From the main theorem of [2] the system (2) is therefore permanent for λ3 > 0, since it is uniformly persistent and
uniformly bounded.

2.4. Global stability for the prey subsystem

For the system (2) without predators, the origin is always unstable, while at EĎ0 the eigenvalues are still λ1 and λ2 of (7).
The equilibrium is then always locally asymptotically stable and no bifurcations are possible. Further, on lettingu = (X, Y )T ,
taking G(X, Y ) = (X + Y )−1 and evaluating ∇ · (Gu̇) = −r(1 + s) < 0, by Dulac’s criterion we can exclude the possibility
that there are limit cycles.

Consider then the set Ω = {0 ≤ X ≤ H, 0 ≤ Y ≤ K} in the phase space, with H > 1, K > ws−1. On its sides we find

dX
dt


X=H

= r(H + Y )(1 − H) < 0,
dY
dt


Y=K

= r(X + K)(w − sK) < 0,

which implies that all the trajectories enter into Ω through its sides in the first quadrant. The other sides on the coordinate
axes cannot be crossed by the system’s trajectories in view of the existence and uniqueness theorem, since the system is
homogeneous. ThusΩ is a positively invariant set. Since in it the equilibrium EĎ0 is the only one that is locally asymptotically
stable, and no cycles exist, its global stability then follows.

3. Discussion and conclusion

The proposed model shows that the predator population can destabilize the equilibrium between the two genetically
different strains of prey. Not only can the predators establish themselves permanently in the system if (12) holds, but also
they can destabilize the equilibrium giving rise to limit cycles, when the reproduction rate r falls below the threshold r+

given by (11).
The subsystem without predators attains instead always the globally asymptotically stable equilibrium EĎ0 .
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