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Abstract

We present the general expressions for the resummation, up to next-to-leading logarithmic accuracy, of Suda
logarithms in processes with an arbitrary number of hard-scattering partons. These results document the formulae u
authors in several previous phenomenological studies. The resummation formulae presented here, which are valid
space factorizable observables, determine the resummation correction in a process-independent fashion. All process d
is encoded in the colour and flavour structure of the leading order and virtual one-loop amplitudes, and in Sudakov
associated to the cross section kinematics. We explicitly illustrate the application to the case of Drell–Yan and promp
production.
 2003 Published by Elsevier B.V.Open access under CC BY license.
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The perturbative QCD calculations of a large cla
of infrared and collinear safe observables are sens
to Sudakov effects. Some classical examples of th
observables are thee+e− energy–energy correlatio
in the back-to-back region [1], the cross sect
for Drell–Yan production of lepton pairs in hadro
collisions [2], and severale+e− hadronic event shape
in nearly two-jet configurations [3].

The Sudakov effects appear when the observab
defined and/or measured close to the exclusive bo
ary of its phase space. We generically denote by
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(y > 0) the kinematical variable that measures the d
tance from the exclusive boundary, so that the Suda
region is specified byy � 1. When Sudakov sens
tive observable are computed as power series ex
sions in the QCD couplingαS , the perturbative se
ries involves terms of the typeαnSL

k (k � 2n), where
L = − lny. These double logarithmic terms are d
to final-state radiation of soft and collinear parto
and are a distinctive feature of any short-distance
namics that is governed by an underlying gauge fi
theory. SinceL� 1, the presence of logarithmically
enhanced terms spoils the convergence of the fix
order expansion inαS(Q2), even if the observable i
controlled by a typical hard-scattering scaleQ whose
value is large (such thatαS(Q2)� 1). The predictivity
of perturbative QCD can be recovered by reorganiz
 license.
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the perturbative series according to the degree o
vergence of the various logarithmic terms, and then
performing a systematic resummation, to all order
αS , of the contributions that are leading-logarithm
(LL), next-to-leading logarithmic (NLL), and so forth

Resummed calculations up to NLL accuracy
available for several production cross sections
hadron collisions (see the list of references in Sectio
of Ref. [4]), and for many hadronic event shapes
e+e− annihilation (see, e.g., Refs. [3,5]) and in dee
inelastic lepton–hadron scattering (see, e.g., Ref.
The inclusion of resummed Sudakov effects increa
the theoretical accuracy of perturbative calculatio
by extending their applicability to wider phase-spa
regions and reducing the uncertainty coming fr
yet uncalculated higher-order terms. This brings ab
relevant improvements in phenomenological appli
tions, as shown by the studies carried out in rec
years [7]. For example, ine+e− annihilation the use
of resummed calculations has become the stan
procedure in the comparison with data on hadro
event shapes [8]: these calculations allow one to
tend the perturbative treatment towards the two-jet
gion where statistics is higher; they also allow
vestigations of hadronic physics at the interface
tween perturbative and non-perturbative phenom
In hadron collisions, resummed calculations often le
to a considerable reduction in the scale dependenc
the perturbative predictions, as in the case of top qu
production at the Tevatron and bottom quark prod
tion at HERA B [9–11].

In recent years, different groups (KLOS [12
BCMN [9,10], BSZ [13]) have been working t
develop resummation formalisms that are proce
independent and observable-independent. The ai
to obtain generalized resummation formulae that
pend on universal coefficients, and that are appl
ble to different hard-scattering processes and dif
ent classes of observables within the same proce
terms of a minimal amount of information on the sp
cific observable to be computed. We have explic
checked that our generalized resummation formu
(which are presented here) reproduce known NLL
sults for several quantities, such as the thrust [3
and C-parameter [15] distributions ine+e− annihi-
lation, the cross sections for the production of le
ton pairs, vector bosons [2] and Higgs bosons [
in hadron collisions, the structure functions [17,1
f

in deep-inelastic lepton–hadron scattering at large
ues of the Bjorken variable. We used this formali
to derive the NLL resummed results of Ref. [10] f
the production of heavy quarks and prompt phot
in hadron collisions. However, a general descript
of the formalism has never appeared in the literat
The purpose of this work is to fill this gap. Here w
only give a brief illustration of our generalized resu
mation formulae. More details on the formalism a
its derivation are given in a forthcoming paper.

The Letter is organized as follows. We first consid
QCD hard-scattering processes without hadrons in
initial state. We discuss the kinematic properties of
observables to which our resummation formalism
plies. Then, we present our generalized resumma
formula up to NLL accuracy. The explicit formula
expressed in terms of factorized final-state factors(Ji)

and interference terms(�(int)). Then, we discuss th
more general case of hard scattering in hadron c
sions and in processes with tagged hadrons in the
state. Here the corresponding resummation form
include additional initial- and final-state factors(∆i).
We briefly illustrate the application of the general fo
malism by sketching the derivation of the resumm
tion formulae presented in Ref. [10]. Finally, we su
marize our main results.

We begin our presentation by considering a gen
infrared- and collinear-safe cross sectionσ (or a re-
lated observable) in a hard process that does no
volve hadrons in the initial state (for instance, had
production in lepton collisions or in heavy-boson d
cays). We suppose that the calculation ofσ at the
leading order (LO) in QCD perturbation theory i
volvesm final-state QCD partons with four-momen
{pi} = p1, . . . , pm. For simplicity of presentation, w
also limit ourselves to considering the case of ma
less (p2

i = 0) QCD partons (quarks, antiquarks a
gluons). Using a shorthand notation, we write the
contributionσ (LO) to the cross section as

(1)σ (LO) =
∫

dΦ
(
σ ; {pi}

)∣∣M(LO)({pi})∣∣2,
whereM(LO) is the corresponding LO matrix ele
ment, and|M(LO)|2 denotes the squared matrix e
ment summed over the colours and spins of the fi
state QCD partons. The kinematics of the cross s
tion are fully described by the phase-space fac
dΦ(σ ; {pi}). It includes the phase-space contributio
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for the production of the final-state particles as w
as any additional kinematics information (definiti
of jets, event shapes, energy flows,. . .) that is nec-
essary to precisely define the cross sectionσ that we
want to evaluate. The phase-space dependenceσ
is briefly indicated by the notation dΦ(σ). In particu-
lar, dΦ(σ) depends on the generic kinematic varia
y that controls the distance from the Sudakov regi
We assume that the LO termσ (LO) is well-behaved2

(not singular) asy → 0, while higher-order terms con
tain logarithmically-enhanced contributions of relat
orderαnSL

2n. The dependence ofσ on the momenta
of non-QCD partons (γ,Z0,W±,H, . . .) is always un-
derstood.

Note that the Sudakov logarithms inσ do not nec-
essarily occur by approaching the true physical pha
space boundary. These logarithms can also appea
side the phase space of certain observables.3 Indeed,
logarithmically-enhanced terms may arise [19] als
the phase-space boundary for a certain number of
tons lies inside that for a larger number, or if the o
servable itself is defined in a non-smooth way at so
perturbative orders. In these cases,σ (LO) in Eq. (1)
has to be regarded as the lowest-order contributio
which those partonic boundaries appear.

The practical feasibility of performing the resum
mation of the Sudakov logarithms at all perturbat
orders depends on the capability of properly appr
imating the higher-order contributions toσ . The ap-
proximation regards both the QCD dynamics (i.e.,
matrix elements) and the cross section kinematics
for dynamics, since the Sudakov limit singles out m
tiple radiation of soft and collinear partons, we c
exploit the universal (process-independent) factor
tion properties of the QCD multiparton matrix el
ments in the infrared (soft and collinear) region (s
e.g., Refs. [21,22]). As for kinematics, we restrict o
study to a (large) class of observables, whose ph
space isfactorizable. By phase-space factorization w
precisely mean the following. At higher perturbati
orders, we consider the contribution toσ from the

2 In practice, we consider the case in which all the LO invaria
pipj are of the order of the hard scaleQ2 wheny → 0.

3 A notable example ine+e− annihilation is theC-parameter
distribution, which has Sudakov logarithms in the vicinity ofC =
3/4 [19]. Other examples are discussed, for instance, in Refs
20].
-

final-state radiation of additional partons with m
mentaq1, . . . , qk. In the Sudakov limity → 0, these
momenta are kinematically forced to become sof
collinear to the momenta{pi}, and the cross sectionσ
is called factorizable if the corresponding phase sp
dΦ(σ ;p1, . . . , pm,q1, . . . , qk) behaves as

dΦ(σ ;p1, . . . , pm,q1, . . . , qk)

(2)−→
y→0

dΦ
(
σ ; {pi}

)[dq]
k∏

j=1

u
(
σ, {pi};qj

)
,

where dΦ(σ ; {pi}) is the LO phase space,[dq] =∏
j d4qj δ+(q2

j )/(2π)
3 is the phase-space contributio

from the unconstrained emission of the additio
partons4 with on-shell momentaq1, . . . , qk, and on the
right-hand side we have neglected relative correcti
that vanish in the soft and collinear limit. The functi
u(σ, {pi};qj ) is called Sudakov weight. It depends
the kinematical definition of the cross sectionσ (such
dependence implicitly embodies the dependence
y), on the LO parton momenta{pi} and on asingle
(soft and collinear) final-state momentumqj . The
right-hand side of Eq. (2) implies that the kinemat
dependence on the soft and collinear momenta isfully
factorized: it is factorized with respect to the L
phase space and, moreover, there are no correla
between those momenta, since each Sudakov-we
factor depends on a single momentumqj .

Note that the momenta{pi} on the right-hand side
of Eq. (2) are not precisely the momenta of the
partons on the left-hand side. The former exac
coincide with the latter in the soft limitqj → 0. When
some of the momentaqj are not soft but collinea
to the momentum of one of the LO partons, say
partoni, the momentumpi on the right-hand side i
obtained by reabsorbing the longitudinal-moment
recoil produced by the collinear radiation.

As a consequence of the infrared and colline
safety ofσ , the Sudakov weight fulfils the followin
important property:

u
(
σ, {pi};q

)= 1, whenq = 0,

(3)or q = (1− z)pi for i = 1, . . . ,m.

4 We are treating the partons as distinguishable particles. I
partonsj = 1, . . . , k were identical,[dq] should be multiplied by a
Bose-symmetry factor of 1/k!.



R. Bonciani et al. / Physics Letters B 575 (2003) 268–278 271

are
of
the

3].
not
les
To
ts, it
ace.
rse-
by

er

(2)
a
g,
ov

ely,
ate

e-
ed.

ng

se,

l

ion

me,

y
e

in
of

be

4)
ent
nd,

5].
ace
of

ent
he

pace

ion

g
tive
e

r.

e
he
ex-
ply
ing

-
ba-

in
Note that infrared and collinear safe observables
not necessarily factorizable. A classical example
non-factorizable observables are jet rates when
jets are defined by the JADE jet-finder algorithm [2
Moreover, phase-space factorization is typically
achievable in the space of the kinematic variab
where the cross section is originally defined.
overcome non-factorizable phase-space constrain
is often necessary to introduce a conjugate sp
For instance, the constraints of energy or transve
momentum conservation are usually factorized
respectively performing Mellin (or Laplace) or Fouri
transformations, and by working in theN -moment
[2,3,24] or impact-parameter [1] space. Thus Eq.
can be valid either in the original space or in
properly defined conjugate space. In the followin
y generically stands for either the original Sudak
variable or the variable conjugate to it (more precis
the inverse of this conjugate variable) in the conjug
space.

To proceed further, we require one additional kin
matics property on the observable to be resumm
In the Sudakov limit, the energy flow accompanyi
the LO hard scattering has to be suppresseduniformly
with respect to its emission direction. To be preci
we consider the behaviour of the Sudakov weightu(q)

(from now on,u(σ, {pi};q) is briefly denoted byu(q))
wheny → 0 at fixed value ofq . We write the on-shel
four-momentumqµ = ω(1, q̂) in terms of its energy
q0 = ω and a three-dimensional vectorq̂ of unit length
(q̂2 = 1), whose components parametrize the emiss
angle. Wheny → 0, we thus require thatu(q) → 0
and, without loss of generality, we can always assu
to dominant logarithmic accuracy, thatu(q) is approx-
imable by a step function:

u(q)�Θ(ωmax−ω),

(4)ωmax
(
y; {pi}, q̂

)−→
y→0

0,

where, the upper boundωmax on the radiated energ
depends on the momenta{pi}, on the emission angl
q̂ and on the Sudakov variabley. In the Sudakov limit,
we then require

(5)
d lnωmax(y; {pi}, q̂)

d lny
=
y→0

λ,
where the powerλ is positive, independent ofy and
{pi} and, in particular,independent5 of the radiation
angleq̂. Eqs. (4) and (5) state in a formal way that,
the Sudakov limit, the parametric suppression rate
the energy flow emitted from the LO partons has to
uniform with respect to the radiation angle.

Note that, by requiring the property in Eqs. (
and (5), we exclude from our resummation treatm
observables such as away-from-jet energy flows, a
in general, the so-called non-global observables [2

The general kinematic properties of phase-sp
factorization (see Eq. (2)) and uniform suppression
the energy flow (see Eqs. (4) and (5)) are suffici
to obtain our generalized resummation formula. T
all-order cross section is generically denoted byσu.
Hereσu can be either the original cross sectionσ , or
the corresponding cross section in the conjugate s
where Eq. (2) applies (in this case,σ is eventually
computed by performing the inverse transformat
of σu to the original space). The cross sectionσu is
written as

(6)σu = σ (res)
u + σ (fin)

u ,

where the resummed componentσ (res)
u contains all

the Sudakov logarithms, whileσ (fin)
u is well behaved

(finite or vanishing) order by order inαS wheny → 0.
Thus, σ (fin)

u can reliably be evaluated by truncatin
its perturbative expansion at the first few perturba
orders. In practice,σ (fin)

u can be obtained from th
fixed-order computation ofσu by subtraction of the
terms already included inσ (res)

u at the same fixed orde
The resummed component is given by

(7)σ (res)
u =

∫
dΦu

(
σ ; {pi}

)∣∣M(LO)({pi})∣∣2Σ(u),
where dΦu(σ ; {pi}) is either the LO phase spac
dΦ(σ ; {pi}), or its version in the conjugate space. T
expression (7) is completely analogous to the LO
pression in Eq. (1). Sudakov resummation is sim
achieved starting from the LO result and perform
the replacement|M(LO)|2 → |M(LO)|2Σ(u). The gen-
eralized effective form factorΣ(u) embodies the de
pendence on the Sudakov logarithms to all pertur

5 To be precise, we allow Eqs. (4) and (5) to be violated
angular regions of vanishing solid angle (for instance, whenq is
exactly parallel to a LO momentumpi ).
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tive orders. Since the Sudakov limity → 0 can for-
mally be regarded as the limitu→ 0, the presence o
logarithmically-enhanced terms inΣ(u) is identified
by contributions that order by order inαS are formally
divergent whenu(q)→ 0.

The Sudakov logarithms exponentiate, andΣ has
the following structure

Σ ∼ C(αS)exp
{
G(αS,L)

}
= [1+ αSC1 + · · ·]

(8)× exp
{
Lg1(αSL)+ g2(αSL)+ · · ·}.

The coefficient factorC(αS) is independent ofu (or
y) and is due to hard virtual radiation. Its pertu
bative coefficientsC1,C2, . . . depend on the specifi
cross sectionσ , but, since they are not logarithm
cally enhanced, they can be computed process
process at some finite perturbative orders. The ex
nentG(αS,L) contains the logarithmically-enhanc
terms. The functionLg1(αSL) resums the LL contri-
butionsαnSL

n+1 in the exponent, the functiong2(αSL)

resums all the NLL contributionsαnSL
n, and so forth.6

The explicit NLL resummation formulae we a
going to present have the structure of Eq. (8), with
only difference that the functionsC(αS) andG(αS,L)
are matrices in the flavour and colour indices of
hard-scattering partons, so that exponentiation ha
be understood in formal sense. The expression of
form factorΣ up to NLL accuracy is

Σ(u)

(9)

=
(

m∏
i=1

Ji(u)

)
〈MH({pj })|�(int)(u)|MH({pj })〉

|M(LO)({pj })|2 .

The first factor on the right-hand side of Eq. (
contains all the LL terms and part of the NLL term
It is given by the product of the jet functionsJi(u),
and there is a jet functionJi for each final-state parto
i in the corresponding LO process. The funct

6 In our definition of LL, NLL, etc. terms, we are referring to th
logarithmic hierarchy of the various contributions to the expon
G(αS,L) (i.e., to lnΣ ) in Eq. (8). Our systematic resummatio
procedure thus differs from the ones that refer to the expansionΣ
in successive logarithmic towers, such asαnSL

2n, αnSL
2n−1, etc. In

particular, our LL and NLL contributions include more logarithm
terms than those in the first two logarithmic towers ofΣ (see, for
instance, the discussion in Section 5 of Ref. [26]).
Ji(u), which generalizes the jet function of Refs. [
3,10], embodies all the logarithmic terms produc
by multiple radiation of partons that are colline
(either soft or not) to the direction of the momentu
pi of the LO partoni. The factorization in single
parton factors,Ji , is a consequence of the independ
character (which follows from colour coherence)
QCD collinear radiation.

The remaining factor on the right-hand side
Eq. (9) contains NLL terms and subleading logari
mic contributions. The radiative factor�(int)(u) gener-
alizes the analogous radiative factor introduced in
case of prompt-photon hadroproduction [10]. It e
bodies all the quantum-interference effects produ
by non-collinear (large-angle) soft-gluon radiation.
particular, this factor is sensitive to the colour corre
tions due to the colour flow dynamics of the LO ha
scattering.

The functionJi(u) has the following resumme
expression:

lnJi(u)= 4π
∫

d4q

(2π)3
δ+
(
q2)(u(q)− 1

)Θ(ziq )
piq

(10)

× Ã
(
αS
(
2(1− ziq)piq

))
Pi(ziq),

where the functionsPi(z), which depend on th
flavour (i = q, q̄, g) of the partoni, are related to the
Altarelli–Parisi splitting functions

Pq(z)= Pq̄(z)= CF
1+ z2

1− z
,

(11)

Pg(z)= CA

[
2

1− z
− 2+ z(1− z)

]

+ 1

2
Nf

[
z2 + (1− z)2

]
,

and Ã(αS) is the QCD coupling as defined in th
bremsstrahlung scheme [17], and is the related to
MS couplingαS by the NLO relation

Ã(αS)= αS

[
1+

(
αS

π

)
K

2

]
,

(12)K = CA

(
67

18
− π2

6

)
− 5

9
Nf .

The ‘energy fraction’ziq is defined with respect to
four-momentumnµi as

(13)ziq = 1− niq

n p
.

i i
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Indeed, to obtain our resummed formulae, we h
introducedm auxiliary momentanµi . These auxiliary
momenta are arbitrary, with the only constraint
being time-like (n2

i > 0) and hard.7 The LL terms
in Ji(u) do not depend on the definition of the
auxiliary momenta. The NLL dependence ofJi(u)
on ni is cancelled by the dependence onni in the
remaining factor on the right-hand side of Eq. (
so that our expression forΣ(u) is independent ofni
up to corrections that are beyond the NLL accura
of the present formalism. The main motivation f
introducing the auxiliary momentanµi is to factorize
collinear radiation in the jet functionsJi(u) without
the introduction of explicit angular boundaries.
practical calculations, the definition of the mome
n
µ
i can be adjusted to simplify the evaluation of t

integral in Eq. (10).
The NLL contribution�(int) to the form factor is

given by

(14)�(int)(u)= V(u)V(u),

where V(u) and V(u) are matrices acting onto th
colour indices of the LO partons. The explicit expre
sion ofV(u) is

V(u)= Pz exp

{∑
i �=j

1∫
0

dz
〈u(q)〉 − 1

1− z

αS((1− z)2µ2
R)

4π

(15)

×
∑
c

T c
i T

c
j ln

4(nipi)2(njpj )2

(pipj )2n
2
i n

2
j

}
,

whereµR is the renormalization scale, to be chos
of the order of the hard-scattering scaleQ. The sum∑

i �=j runs over the labelsi, j = 1, . . . ,m of the

LO partons andT c
i , T

c
j (c = 1, . . . ,N2

c − 1) are the

corresponding colour charges:T c
i is the colour matrix8

in the fundamental (adjoint) representation if t
partoni is a quark (gluon). The operatorPz denotes
z-ordering in the formal expansion of the exponen
matrix, andV(u) is obtained from Eq. (15) by simpl
replacingPz with P z, the ordering operator that ac

7 By hard, we mean that the invariantsn2
i

andnipj are of the

order of the hard scaleQ2 wheny → 0.
8 The colour charges are defined according to the notatio

Section 3.2 of Ref. [27].
in the opposite order. The notation〈u(q)〉 in Eq. (15)
stands for a properly defined average of the Suda
weight u(q). Parametrizing the light-like four-vecto
qµ asqµ = ω(1, q̂), the average is performed over t
angular directionŝq at fixed valueq0 = ω= (1−z)µR
of its energyq0. In practice, exploiting Eqs. (4) an
(5), and neglecting terms beyond NLL accuracy,
simply have

(16)〈u(q)〉 =Θ
(
yλ − (1− z)

)
.

In Eq. (9), the NLL colour matrix�(int) acts onto
the colour indices of them-parton matrix elemen
MH({pi}). This hard matrix element is independent
u and is perturbatively computable as a power se
in αS(µ2

R):

MH

({pi})=M(0)({pi})+ αS
(
µ2
R

)
M

(1)
H

({pi})
(17)+O

(
α2
S

)
,

whereM(0) is the LO matrix element andM(1)
H is the

hard part of its one-loop virtual corrections. SinceMH

does not containt logarithmically-enhanced terms
can be evaluated by truncation of its perturbative
pansion at some fixed order. In Eq. (9), the dep
dence ofMH on the colour indices is represented
the colour vectors|MH 〉 and〈MH |, which are defined
according to the notation in Section 3.2 of Ref. [27

The algebraic complications due to the non-triv
colour structure of the NLL contributions are straig
forwardly overcomed when the numberm of LO par-
tons ism= 2 orm= 3. In these cases the colour alg
bra can be carried out in closed form, since the co
matrices

∑
c T

c
i T

c
j in Eq. (15) are simply proportiona

to the unity matrix in colour space. The proportion
ity relations are (see Appendix A in Ref. [27])

(18)
∑
c

T c
1 T

c
2 = −C1 = −C2 (m= 2),

(19)
∑
c

T c
1 T

c
2 = 1

2
(C3 −C1 −C2) (m= 3),

whereCi is the Casimir invariant of the partoni (Ci =
CA if the partoni is a gluon,Ci = CF if the partoni is
a quark or an antiquark). Whenm= 3,

∑
c T

c
2 T

c
3 and∑

c T
c
3 T

c
1 are obtained from Eq. (19) by permutati

of the parton indices{1,2,3}. In the case of processe
with m � 4 LO partons, the colour algebra cannot
handled without additional information on the ha
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matrix elementMH({pi}), since the colour can flow
in many different ways through the hard scattering
general, the evaluation of

∑
c T

c
i T

c
j (and of Eq. (15))

requires the diagonalization of a linear combinat
of m(m − 3)/2 independent colour matrices (s
Appendix A in Ref. [27]).

The NLL resummed calculations of Ref. [12] de
with the non-trivial colour structure in the har
scattering ofm = 4 LO partons by considering ‘so
anomalous dimensions’ of gauge-dependent Wil
line operators. The Wilson line operators are int
duced and properly defined on a process-depen
basis. In this respect, the integrand in the expon
of Eq. (15) can be regarded as a universal (proc
independent and observable-independent) soft an
alous dimension matrix (in colour space),�, of soft
non-collinear gluons radiated by hard scattering of
arbitrary number(m� 4) of partons. The explicit ex
pression of�,

αS�
({pi, ni})

(20)= αS
∑
i �=j

∑
c

T c
i T

c
j ln

4(nipi)2(njpj )2

(pipj )2n
2
i n

2
j

,

is gauge independent, though dependent on the
iliary vectorsni . The Altarelli–Parisi splitting func-
tion Pi(z) in Eq. (10) controls the resummation of th
Sudakov logarithms produced by collinear (soft a
hard) radiation, and, by analogy,� controls the resum
mation of the Sudakov logarithms produced by s
non-collinear radiation. Obviously, the definition
the boundary between the collinear and non-collin
regions is quite arbitrary. In Eq. (20), this arbitrarine
is somehow parametrized by the dependence on
auxiliary vectorsni . For instance, using colour con
servation,

∑m
i=1T

c
i = 0 [27], Eq. (20) can be rewritte

as

αS�
({pi, ni})= αS

∑
i �=j

∑
c

T c
i T

c
j ln

4µ2
i µ

2
j

(pipj )2

(21)− 2αS

m∑
i=1

Ci ln
(nipi)

2

n2
i µ

2
i

,

whereµi are arbitrary scales (e.g.,µi = µR). The
second term on the right-hand side is proportiona
the unity matrix in colour space, and therefore it c
be absorbed in a corresponding redefinition of the
functionsJi in Eq. (9).
t

We now consider the general case of cross sect
in hadron collision processes. In these processes
hadronic cross sectionσ is obtained by convoluting
the partonic cross sectionsσa1,a2 with the parton
densitiesfa1/h1(x1,µ

2
F ) and fa2/h2(x2,µ

2
F ) of the

colliding hadrons with momentaP1 andP2:

σ =
∑
a1,a2

1∫
0

dx1 dx2fa1/h1

(
x1,µ

2
F

)

(22)× fa2/h2

(
x2,µ

2
F

)
σa1,a2,

whereµF is the factorization scale (to be chosen
the order of the hard-scattering scaleQ), and the sum∑

a1,a2
runs over the flavours (a1, a2 = q, q̄, g) of

the incoming partons with momentap1 = x1P1 and
p2 = x2P2.

At the LO in QCD perturbation theory, the parton
cross sectionσa1,a2 has the same structure as
Eq. (1), with m LO partons i (i = 1,2 are the
incoming partons andi = 3, . . . ,m are the outgoing
partons). The Sudakov logarithms at higher orders
be produced by soft and collinear radiation emit
from either the outgoing partons or the incomi
partons in the LO hard scattering. In general,
kinematically factorize the Sudakov effects in t
parton densities from those in the partonic cr
section, it is necessary to consider theN -moments
(Mellin moments)fa/h,N (µ2

F ) of the parton densities

(23)fa/h,N
(
µ2
F

)=
1∫

0

dx xN−1fa/h
(
x,µ2

F

)
,

and the correspondingN -momentsσN1,N2
a1,a2 of the

partonic cross section.
In the following we limit ourselves9 to considering

the cases in whichhard radiation collinear to the in
coming partons is suppressed in the Sudakov limit
that the Sudakov logarithms are produced by soft r
ation (at any angles) and hard radiation collinear to
outgoing partons. This simplifies the presentation
the resummed formulae, since the Sudakov effect
not change the flavoursa1, a2 of the incoming partons

9 We thus exclude observables such as, for example, theQT -
distribution of Drell–Yan lepton pairs, where powers of lnQT are
produced also by radiation of hard quarks and gluons that
collinear to the colliding partons.
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Our NLL resummed formulae apply to theN -
momentsσN1,N2

a1,a2 of the partonic cross sections th
fulfil the factorization property of Eq. (2) in a proper
defined conjugate space. We still require the prope
in Eqs. (4) and (5). Infrared and collinear safe
implies Eq. (3) in the case of radiation collinear
the outgoing partonsi = 3, . . . ,m. Wheni = 1,2 is an
incoming parton, Eq. (3) is modified by a kinematic
rescaling factor, which simply takes into account t
we are considering theNi -moments of the partoni
cross section. We have

u(q)= zNi−1 � exp
{−(Ni − 1)(1− z)

}
(24)whenq = (1− z)pi for i = 1,2,

where the approximate equality is valid in the s
region (1 − z � 1) we are interested in. The al
order partonic cross section has the same structu
in Eq. (6), and its resummed component is obtai
as in Eq. (7). The only difference is that the (fin
state) form factorΣ(u) has to be replaced by a mo
general radiative factor∆a1,N1;a2,N2(u). The latter is
given by an expression similar to Eq. (9), apart fro
two simple modifications that regard the LL and NL
terms, respectively.

The modification ofΣ(u) at the LL level is
obtained by performing the replacement

(25)

(
m∏
i=1

Ji(u)

)
−→∆a1,N1(u)∆a2,N2(u)

(
m∏
i=3

Ji(u)

)
.

In other words,∆a1,N1;a2,N2(u) is obtained fromΣ(u)
by supplementing the product of the final-state
functionsJi(u) with an initial-state factor∆ai,Ni (u)

for each incoming partoni = 1,2. The initial-state
Sudakov factor∆Ni (u), which generalizes the analo
gousN -moment factor of Refs. [2,10,12], resums t
Sudakov logarithms produced bysoft partons emitted
collinearly to the LO incoming partoni = 1,2. As in
the case of the parton densityfa/h,N(µ2

F ), the radia-
tive factor∆Ni (u) depends on the factorization sca
µF and on the factorization scheme used to define
partonic cross section. The NLL resummed expres
of ∆Ni (u) in theMS factorization scheme is
ln∆ai,Ni (u)

= 4π
∫

d4q

(2π)3
δ+
(
q2)(u(q)− ui(ziq)

)
× Θ(ziq )

piq
Ã
(
αS
(
2(1− ziq )piq

))
Pi(ziq )

+ Ci

π

1∫
0

dz
zNi−1 − 1

1− z

(26)×
4(1−z)2(nipi)2/n2

i∫
µ2
F

dk2

k2
Ã
(
αS
(
k2)).

The term on the right-hand side of the first line
Eq. (26) is completely analogous to the right-ha
side of Eq. (10) apart from the replacement(u(q)−
1) → (u(q) − ui(ziq)), whereui(z) = u(q = (1 −
z)pi). The Sudakov limit typically forces the parto
distributions towards the large-N (large-x) region, and
the term in Eq. (26) matches the sensitivity of t
parton distributionfai/h,Ni (µ

2
F ) to large logarithms

lnNi , of the Mellin indexNi .
The modification ofΣ(u) at the NLL level regards

the interference term�(int) or, more precisely, its
componentsV(u) and V(u) in Eq. (14). Eq. (15)
gives V(u) as an exponential of the soft anomalo
dimension matrix� in Eq. (20). When going from
processes with no initial-state partons to proces
in hadron–hadron collisions, we have to take in
account that the parton momentap1 andp2 have to
be crossed from the final to the initial state. As for t
anomalous dimension�, the crossing simply amoun
to the following analytic continuation, ln(pipj ) →
ln(pipj ) + iπ , of the terms withi = 1 or i = 2
andj � 3. Performing such a replacement, and us
colour-charge conservation,

∑m
j=3T

c
i = −(T c

1 + T c
2 ),

we obtain the overall replacement to be applied to�:

�
({pi, ni})

(27)

−→ �
({pi, ni})± 4iπ

∑
c

(
T c

1 + T c
2

)(
T c

1 + T c
2

)
.

Here, the signs ‘+’ and ‘−’ regard the replacemen
to be applied in the evaluation ofV(u) andV(u), re-
spectively. Note that the substitution on the right-ha
side of Eq. (27) is effective only in the case of hadro
hadron collisions withm � 4 hard-scattering parton
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at LO. In fact, whenm= 2 we haveT c
1 + T c

2 = 0, and
whenm = 3 we have

∑
c(T

c
1 + T c

2 )(T
c
1 + T c

2 )= C2
3

so that the substitution in Eq. (27) changesV(u) by a
pure phase factor that is cancelled by its complex c
jugate phase factor inV(u).

The replacement in Eq. (27), to be applied to
soft anomalous dimensions in hadron–hadron co
sions, has a direct and interesting physical interpr
tion. As is well know from QED (see, e.g., Ref. [28
Coulomb-type virtual exchanges produce infrar
divergent Coulomb phases that affect any scatte
amplitudes. Being them phases, they cancel in
evaluation of inclusive cross sections. The QCD a
logue [22] of the QED Coulomb phases are no
Abelian Coulomb ‘phases’, which are colour mat
ces. They lead to non-Abelian infrared divergen
that cancel, as in QED, in infrared- and collinear-s
observables with incoming massless partons [22,
However, in the non-Abelian case, the cancellat
mechanism of the infrared divergences can prod
residual (and non-trivial) finite contributions. The S
dakov logarithms produced by theiπ -term on the
right-hand side of Eq. (27) are a manifestation of th
residual10 finite effects. Very soft (and, hence, infrar
divergent) non-Abelian Coulomb-type interactions
cancel inσ . On the contrary, non-Abelian Coulom
type interactions of gluons that are harder (and, he
infrared finite) than bremsstrahlung gluons do not c
cel, since they are trapped by the colour fluctuati
produced by the radiated bremsstrahlung gluons.

We note that our resummation formulae apply a
to processes in which the partonic cross section ha
be convoluted with the partonic fragmentation fun
tions of hadrons that are tagged in the final state.
resummation formulae for these processes are
ply obtained by multiplicatively introducing a facto
of ∆ai,Ni (u) for each final-state partoni whose mo-
mentum has to be convoluted with theNi moment of
the corresponding fragmentation function. The fra
mentation factor∆ai,Ni (u) is the same as for pa
ton densities (i.e., Eq. (26)), provided the fragm

10 The iπ -term in Eq. (27) is not the absolute overall effect
Coulomb-type interactions in hadron–hadron collisions. It is
relative effect produced by the Coulomb-phase mismatch betw
processes with no initial-states hadrons and processes in ha
hadron collisions. Thus, it has conveniently been introduced by
corresponding analytic continuation procedure.
tation functions are defined in theMS factorization
scheme.

To illustrate the use of our generalized resumm
tion formulae, we briefly sketch their application to t
hadroproduction of Drell–Yan lepton pairs [2] and
prompt photons [10]. In both cases, the hadronic cr
section is obtained by the factorization formula
Eq. (22), and

√
S (S = (P1 +P2)

2) denotes the centre
of-mass energy. The hard-scattering scale is the inv
ant massQ of the lepton pair in the first case, and t
transverse energyET of the photon in the second cas
The variabley that parametrizes the distance from t
Sudakov region is respectively given byy = 1−Q2/S

andy = 1 − 4E2
T /S. We are interested in the corr

sponding inclusive total (i.e., integrated over the rap
ity of the observed final state) cross sections in the
dakov limit y � 1. We thus consider theN -moments
of the cross section in Eq. (22). TheN -moments are
defined with respect to(1 − y) at fixed values ofQ
andET , respectively. This setsN1 = N2 = N in the
corresponding partonic cross sectionsσN1,N2

a1,a2 . Since
the moment variableN is conjugate toy through the
Mellin transformation, the Sudakov limit correspon
to 1/N → 0 (i.e.,N → ∞). It is not difficult to prove
that the factorization property of Eq. (2) is valid inN -
space for both processes.

In the Drell–Yan process, the LO hard-scatter
subprocess isq(p1) + q̄(p2) → 55′(Q): the number
of LO partons ism = 2 and the LO kinematics se
Q2 = 2p1p2. The Sudakov weight is

(28)uDY(q)= exp

{
−N (p1 +p2)q

p1p2

}
,

which fulfils Eqs. (4) and (5) withλ= 1. Since the LO
process has no final-state partons, the Sudakov re
mation factor∆DY,N is the product of�(int) and two
initial-state factors,∆q1,N and∆q̄2,N . To apply our
generalized resummation formulae, it is convenien
choose the auxiliary vectors asn1 = n2 = p1 + p2.
We thus have�(int) = 1 (see Eqs. (14) and (15)) an
∆q1,N =∆q̄2,N (see Eq. (26)). Moreover, sinceu(q)=
ui(ziq ), the term on the right-hand side of the first li
of Eq. (26) vanishes. Therefore, from the second
of Eq. (26) we finally obtain the known NLL result fo
the Drell–Yan process [2].

In the prompt-photon process (see the second p
in Ref. [10]), there are two independent LO ha
scattering subprocesses,a1(p1)+ a2(p2)→ a3(p3)+
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γ (pγ ), with {a1 = q, a2 = q̄, a3 = g} and {a1 =
q, a2 = g, a3 = q}. The number of LO partons i
m= 3 and, in the Sudakov limit the LO kinematics s
2E2

T � 2p1p3 � 2p2p3 � p1p2. The Sudakov weigh
is

(29)uγ (q)= exp

{
−N 2p3q

p1p2

}
,

which fulfils Eqs. (4) and (5) withλ= 1. The Sudakov
resummation factor∆a1a3→a3γ,N is the product of two
initial-state factors (∆a1,N and∆a2,N ), one final-state
factor (Ja3) and the NLL factor�(int). To explicitly
evaluate these factors, it is convenient to choose
following auxiliary vectors:n1 = p1 + p3, n2 =
p2 + p3, n3 = p1 + p2 + p3. Using this choice
it is straightforward to check that the term on t
right-hand side of the first line of Eq. (26) give
subleading (beyond the NLL accuracy) contributio
As for the colour algebra, we can simply use Eq. (1
Performing the phase-space integrals in Eqs. (10),
and using Eq. (26), we obtain the explicit resumm
results anticipated in Section 4.2 of the second pa
in Ref. [10] and implemented in the phenomenologi
study of Ref. [30].

We have discussed a generalized formalism
perform the resummation of Sudakov logarithms
QCD hard-scattering processes. We have presente
plicit resummation formulae up to NLL accuracy. T
formulae are observable-independent and proc
independent. The dependence on the observable is
versally encoded in the one-particle Sudakov wei
u(σ, {pi};q). The dependence on the process is co
pletely specified by flavour, colour charge and kin
matics of the LO partons, the LO matrix element a
its hard virtual corrections at one-loop order. This
the minimal amount of process-dependent informa
that is necessary in any calculations at fixed pertu
tive order. Within a specific process, the formalism
applicable to a large class of QCD observables
are specified by some kinematic properties, such
phase-space factorizability. Phase-space factoriza
has already been exploited in the literature to perf
resummation of several observables in processes
trolled by LO hard scattering of two and three QC
partons. The extension of the NLL resummation te
niques to multiparton processes requires a forma
able to deal with the radiation pattern of non-colline
soft gluons emitted by the colour flow dynamics of t
-

-

-

underlying hard-scattering. Available NLL resumm
calculations of some specific cross sections in fo
parton processes treat the colour flow dynamics o
process-dependent basis. As for processes with hi
number of LO partons, no NLL resummed calcu
tion has been presented so far. Our NLL formalism
plies to arbitrary processes with any number of ha
scattering partons and with arbitrary colour flow d
namics. This opens prospects of phenomenolog
applications to multijet events at present and fut
high-energy colliders.
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