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Abstract

We present the general expressions for the resummation, up to next-to-leading logarithmic accuracy, of Sudakov-type
logarithms in processes with an arbitrary number of hard-scattering partons. These results document the formulae used by the
authors in several previous phenomenological studies. The resummation formulae presented here, which are valid for phase-
space factorizable observables, determine the resummation correction in a process-independent fashion. All process dependenc
is encoded in the colour and flavour structure of the leading order and virtual one-loop amplitudes, and in Sudakov weights
associated to the cross section kinematics. We explicitly illustrate the application to the case of Drell-Yan and prompt-photon
production.

0 2003 Published by Elsevier B.®@pen access under CC BY license.

The perturbative QCD calculations of a large class (y > 0) the kinematical variable that measures the dis-
of infrared and collinear safe observables are sensitive tance from the exclusive boundary, so that the Sudakov
to Sudakov effects. Some classical examples of theseregion is specified by « 1. When Sudakov sensi-
observables are the" e~ energy—energy correlation tive observable are computed as power series expan-
in the back-to-back region [1], the cross section sions in the QCD couplings, the perturbative se-
for Drell-Yan production of lepton pairs in hadron ries involves terms of the typeng (k < 2n), where
collisions [2], and several™e~ hadronic eventshapes L = —Iny. These double logarithmic terms are due
in nearly two-jet configurations [3]. to final-state radiation of soft and collinear partons,

The Sudakov effects appear when the observable isand are a distinctive feature of any short-distance dy-
defined and/or measured close to the exclusive bound-namics that is governed by an underlying gauge field
ary of its phase space. We generically denoteyby theory. Sincel > 1, the presence of logarithmically-

enhanced terms spoils the convergence of the fixed-
E-mail address: roberto.bonciani@physik.uni-freiburg.de order expansion I@S(QZ)’ even if the observable is
(R. Bonciani). controlled by a typical hard-scattering sc@lewhose

. 2 . . .
1 This work was supported by the European Union under Valueis Iargg (suchthats(Q“) < 1). The predICtIVIty.
contract HPRN-CT-2000-00149. of perturbative QCD can be recovered by reorganizing
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the perturbative series according to the degree of di- in deep-inelastic lepton—hadron scattering at large val-
vergence of the various logarithmic terms, and then by ues of the Bjorken variable. We used this formalism
performing a systematic resummation, to all orders in to derive the NLL resummed results of Ref. [10] for
as, of the contributions that are leading-logarithmic the production of heavy quarks and prompt photons
(LL), next-to-leading logarithmic (NLL), and so forth.  in hadron collisions. However, a general description
Resummed calculations up to NLL accuracy are of the formalism has never appeared in the literature.
available for several production cross sections in The purpose of this work is to fill this gap. Here we
hadron collisions (see the list of references in Section 5 only give a brief illustration of our generalized resum-
of Ref. [4]), and for many hadronic event shapes in mation formulae. More details on the formalism and
ete™ annihilation (see, e.g., Refs. [3,5]) and in deep- its derivation are given in a forthcoming paper.
inelastic lepton—hadron scattering (see, e.g., Ref. [6]).  The Letter is organized as follows. We first consider
The inclusion of resummed Sudakov effects increases QCD hard-scattering processes without hadrons in the
the theoretical accuracy of perturbative calculations, initial state. We discuss the kinematic properties of the
by extending their applicability to wider phase-space observables to which our resummation formalism ap-
regions and reducing the uncertainty coming from plies. Then, we present our generalized resummation
yet uncalculated higher-order terms. This brings about formula up to NLL accuracy. The explicit formula is
relevant improvements in phenomenological applica- expressed in terms of factorized final-state factdys
tions, as shown by the studies carried out in recent and interference term@ ‘™). Then, we discuss the
years [7]. For example, iate~ annihilation the use  more general case of hard scattering in hadron colli-
of resummed calculations has become the standardsions and in processes with tagged hadrons in the final
procedure in the comparison with data on hadronic state. Here the corresponding resummation formulae
event shapes [8]: these calculations allow one to ex- include additional initial- and final-state factard;).
tend the perturbative treatment towards the two-jet re- We briefly illustrate the application of the general for-
gion where statistics is higher; they also allow in- malism by sketching the derivation of the resumma-
vestigations of hadronic physics at the interface be- tion formulae presented in Ref. [10]. Finally, we sum-
tween perturbative and non-perturbative phenomena. marize our main results.
In hadron collisions, resummed calculations oftenlead ~ We begin our presentation by considering a generic
to a considerable reduction in the scale dependence ofinfrared- and collinear-safe cross sectier(or a re-
the perturbative predictions, as in the case of top quark lated observable) in a hard process that does not in-
production at the Tevatron and bottom quark produc- volve hadrons in the initial state (for instance, hadron
tion at HERA B [9-11]. production in lepton collisions or in heavy-boson de-
In recent years, different groups (KLOS [12], cays). We suppose that the calculationcofat the
BCMN [9,10], BSZ [13]) have been working to leading order (LO) in QCD perturbation theory in-
develop resummation formalisms that are process- volvesm final-state QCD partons with four-momenta
independent and observable-independent. The aim is{p;} = p1, ..., pm. For simplicity of presentation, we
to obtain generalized resummation formulae that de- also limit ourselves to considering the case of mass-
pend on universal coefficients, and that are applica- less (piz = 0) QCD partons (quarks, antiquarks and
ble to different hard-scattering processes and differ- gluons). Using a shorthand notation, we write the LO
ent classes of observables within the same process incontributiono (L9 to the cross section as
terms of a minimal amount of information on the spe-
cific observable to be computed. We have explicitly o =fd<15 (o3 {p)) [ MO ({p}) 2, (1)
checked that our generalized resummation formulae
(which are presented here) reproduce known NLL re- where M9 is the corresponding LO matrix ele-
sults for several quantities, such as the thrust [3,14] ment, and/M 9|2 denotes the squared matrix ele-
and C-parameter [15] distributions ia*e~ annihi- ment summed over the colours and spins of the final-
lation, the cross sections for the production of lep- state QCD partons. The kinematics of the cross sec-
ton pairs, vector bosons [2] and Higgs bosons [16] tion are fully described by the phase-space factor
in hadron collisions, the structure functions [17,18] d®(o; {p;}). Itincludes the phase-space contributions
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for the production of the final-state particles as well final-state radiation of additional partons with mo-
as any additional kinematics information (definition mentags, ..., gx. In the Sudakov limity — 0, these

of jets, event shapes, energy flows,) that is nec- momenta are kinematically forced to become soft or
essary to precisely define the cross sectiotinat we collinear to the momentgp; }, and the cross sectien
want to evaluate. The phase-space dependence on is called factorizable if the corresponding phase space
is briefly indicated by the notation d& (ohn particu- do(o; p1,..., Pm»9q1,--.,qx) behaves as

lar, d® (o) depends on the generic kinematic variable

y that controls the distance from the Sudakov region. d®(o; p1, ..., Pm, q1, - -, qk)

We assume that the LO teraf© is well-behaved k
(not singular) ag — 0, while higher-order terms con- — d®(o; {pi})[dg] l_[ u(o, {pi}; q;), (2)
tain logarithmically-enhanced contributions of relative y=0 j=1

orderagLZ”. The dependence af on the momenta
of non-QCD partonsy, Z%, W*, H, .. ) is always un-
derstood.

Note that the Sudakov logarithmsdndo not nec-

where db(o; {p;}) is the LO phase spacédg] =
[1; d*q; 8+(q%)/(27)3 is the phase-space contribution
from the unconstrained emission of the additional

. . ) partoné with on-shell momentay, ..., g, and on the
essarily occur by approachmg_ the true physical phas_e- right-hand side we have neglected relative corrections
space boundary. These Iogant_hms can also appear "Nthat vanish in the soft and collinear limit. The function
side Fhe phase space of certain obserya%lesleed, . u(o,{pi}; q;) is called Sudakov weight. It depends on
logarithmically-enhanced terms may arise [19] also if the kinematical definition of the cross sectier{such
the phase-space boundary for a certain number of par’dependence implicitly embodies the dependence on
tons lies inside that for a larger number, or if the ob-

) ; o C y), on the LO parton momentgp;} and on asingle
servable itself is defined in a non-smooth way at some (soft and collinear) final-state momentug. The
perturbative orders. In these case$:© in Eq. (1) '

- A right-hand side of Eq. (2) implies that the kinematics
has to be regarded as the lowest-order contribution atdependence on the soft and collinear momentalig
which those partonlc .bggndanes appear. factorized: it is factorized with respect to the LO

The practical feasibility of performing the resum- phase space and, moreover, there are no correlations
mation of the Sudakov logarithms at all perturbative | oo oo m’omenta sir,1ce each Sudakov-weight
prde_rs depen_ds on the capabi_lity pf properly approx- factor depends on a singlé momentym
|mat!ng the higher-order contributions &o .The.ap- Note that the momentgp;} on the right-hand side
proximation regards both the QCD dynamics (i.e., the of Eq. (2) are not precisely the momenta of the LO
matrix elements) and the cross section kinematics. As partons on the left-hand side. The former exactly
for dynamics, since the Sudakov limit singles out mul- - . = i4c \vith the latter in the sof.t limit; — 0. When
tiple radiation of soft and collinear partons, we can /

. : . . some of the momentg; are not soft but collinear
exploit the universal (process-independent) factoriza- to the momentum of one of the LO partons, say the
tion properties of the QCD multiparton matrix ele- ’

ts in the infrared (soft and colli ) partoni, the momentunp; on the right-hand side is
ments in the infrared (so and co llnear) region (see, obtained by reabsorbing the longitudinal-momentum
e.g., Refs. [21,22]). As for kinematics, we restrict our

recoil produced by the collinear radiation.
study to a (large) class of observables, whose phase ' produ y ! at

id izable. By oh f L As a consequence of the infrared and collineary
space Isactorizable. By phase-space factorization We — gatety of | the Sudakov weight fulfils the following
precisely mean the following. At higher perturbative

i - important property:
orders, we consider the contribution #o from the P property
u(o,{pi};q)=1, wheng =0,

2 In practice, we consider the case in which all the LO invariants org=A—-z)p;fori=1,...,m. 3)
pi pj are of the order of the hard scalF? wheny — 0.

3 A notable example irete™ annihilation is theC-parameter -
distribution, which has Sudakov logarithms in the vicinity ©f= 4 \We are treating the partons as distinguishable particles. It the
3/4 [19]. Other examples are discussed, for instance, in Refs. [6, partons;j =1,..., k were identical[dg] should be multiplied by a
20]. Bose-symmetry factor of /k!.
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Note that infrared and collinear safe observables are
not necessarily factorizable. A classical example of
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where the powet. is positive, independent o and
{pi} and, in particularjndependent® of the radiation

non-factorizable observables are jet rates when the angleq. Egs. (4) and (5) state in a formal way that, in

jets are defined by the JADE jet-finder algorithm [23].
Moreover, phase-space factorization is typically not
achievable in the space of the kinematic variables
where the cross section is originally defined. To

the Sudakov limit, the parametric suppression rate of
the energy flow emitted from the LO partons has to be
uniform with respect to the radiation angle.

Note that, by requiring the property in Egs. (4)

overcome non-factorizable phase-space constraints, itand (5), we exclude from our resummation treatment

is often necessary to introduce a conjugate space.
For instance, the constraints of energy or transverse-

momentum conservation are usually factorized by
respectively performing Mellin (or Laplace) or Fourier
transformations, and by working in th&¥-moment
[2,3,24] or impact-parameter [1] space. Thus Eqg. (2)
can be valid either in the original space or in a
properly defined conjugate space. In the following,
y generically stands for either the original Sudakov
variable or the variable conjugate to it (more precisely,
the inverse of this conjugate variable) in the conjugate
space.

To proceed further, we require one additional kine-
matics property on the observable to be resummed.
In the Sudakov limit, the energy flow accompanying
the LO hard scattering has to be suppreasefbrmly
with respect to its emission direction. To be precise,
we consider the behaviour of the Sudakov weigfat)
(from now onu (o, {p;}; q) is briefly denoted by (q))
wheny — 0 at fixed value of;. We write the on-shell
four-momentumy* = w(1, §) in terms of its energy
go = w and a three-dimensional vectpof unit length
(62 = 1), whose components parametrize the emission
angle. Wheny — 0, we thus require that(q) — 0
and, without loss of generality, we can always assume,
to dominant logarithmic accuracy, thaly) is approx-
imable by a step function:

u(q) =~ O(wmax— ),

wmax(y; {pi}. 4) ;;)0, 4
where, the upper boundnax on the radiated energy
depends on the momentg;}, on the emission angle
g and on the Sudakov variabje In the Sudakov limit,
we then require

dInwmax(y; {pi}, @)
diny

= A,
y—0

®)

observables such as away-from-jet energy flows, and,
in general, the so-called non-global observables [25].
The general kinematic properties of phase-space
factorization (see Eq. (2)) and uniform suppression of
the energy flow (see Eqs. (4) and (5)) are sufficient
to obtain our generalized resummation formula. The
all-order cross section is generically denoteddyy
Hereo, can be either the original cross secti@nor
the corresponding cross section in the conjugate space
where Eq. (2) applies (in this case, is eventually
computed by performing the inverse transformation
of o, to the original space). The cross sectignis
written as

oy = GLEreS) + Gu(fin)’

(6)

where the resummed componmﬁes contains all
the Sudakov logarithms, while{™ is well behaved
(finite or vanishing) order by order iag wheny — 0.
Thus,oLfﬁ”) can reliably be evaluated by truncating
its perturbative expansion at the first few perturbative
orders. In practicemff'”) can be obtained from the
fixed-order computation of, by subtraction of the
terms already included i\ at the same fixed order.
The resummed component is given by

o2 = [ @0, (o )M (p) Pz, (@)

where db,(o; {p;}) is either the LO phase space
do(o; {pi}), orits version in the conjugate space. The
expression (7) is completely analogous to the LO ex-
pression in Eq. (1). Sudakov resummation is simply
achieved starting from the LO result and performing
the replacements L9 |12 | 192 3 (4). The gen-
eralized effective form factoE (1) embodies the de-
pendence on the Sudakov logarithms to all perturba-

5 To be precise, we allow Egs. (4) and (5) to be violated in
angular regions of vanishing solid angle (for instance, whes
exactly parallel to a LO momentupy).
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tive orders. Since the Sudakov limit— O can for- Ji(u), which generalizes the jet function of Refs. [2,
mally be regarded as the limit— 0, the presence of  3,10], embodies all the logarithmic terms produced
logarithmically-enhanced terms iB'(x) is identified by multiple radiation of partons that are collinear
by contributions that order by order iy are formally (either soft or not) to the direction of the momentum

divergent whem(g) — 0. p; of the LO partoni. The factorization in single-
The Sudakov logarithms exponentiate, afichas parton factors/;, is a consequence of the independent
the following structure character (which follows from colour coherence) of
QCD collinear radiation.
¥ ~ Clas)exp{G(as. L)} The remaining factor on the right-hand side of
=[1+asC1+---] Eq. (9) contains NLL terms and suzle%ding logarith-
mic contributions. The radiative factar'™ () gener-
x eXp{Lgl(aSL) +g2(asL) + } ® alizes the analogous radiative factor introduced in the
The coefficient factoC (as) is independent of: (or case of prompt-photon hadroproduction [10]. It em-

y) and is due to hard virtual radiation. Its pertur- bodies all the quantum-interference effects produced
bative coefficientsCs, Cz, ... depend on the specific by non-collinear (large-angle) soft-gluon radiation. In
cross sectiorns, but, since they are not logarithmi-  particular, this factor is sensitive to the colour correla-
cally enhanced, they can be computed process bytions due to the colour flow dynamics of the LO hard
process at some finite perturbative orders. The expo- scattering.

nentG(ag, L) contains the logarithmically-enhanced The function J; (1) has the following resummed
terms. The functiorl g1(xsL) resums the LL contri- expression:
butionSOsz’“rl in the exponent, the functiogy (s L)

4 )
resums all the NLL contributions?L", and so forttf InJ;(u) =4 / d q33+(q2) (u(q) — 1)%

The explicit NLL resummation formulae we are (2”} piq
going to present have the structure of Eq. (8), with the x A(as(2(1— zig) piq)) Pi (zig),
only difference that the functiorG(as) andG(ag, L) (10)

are matrices in the flavour and colour indices of the \here the functionsP,(z), which depend on the
hard-scattering partons, so that exponentiation has ©Oflavour (i = q.d, g) of the partoni, are related to the
be understood in formal sense. The expression of the ajiarelli-Parisi splitting functions

form factor X up to NLL accuracy is

1 2
Zw) Pi@) = Py(0) = Crs,
(17 00| MEA DA™ @My () _ [ 2 ~ ]
_<,~Ejl(u)) MO ()2 B P

©) FaNg [+ -2, (11)
The first factor on the right-hand side of Eq. (9) 2
contains all the LL terms and part of the NLL terms. and A(«s) is the QCD coupling as defined in the
It is given by the product of the jet functionk(u), bremsstrahlung scheme [17], and is the related to the
and there is a jet functios; for each final-state parton ~ MS couplingas by the NLO relation

i in the corresponding LO process. The function as\ K
Aas) =Ols|:1+ <_)E]’

6 In our definition of LL, NLL, etc. terms, we are referring to the 67 2 5
logarithmic hierarchy of the various contributions to the exponent K = Cy (— — —) — —Ny. (12)
G(as, L) (i.e., to InX) in Eqg. (8). Our systematic resummation 18 6 9

procedure thus differs from the ones that refer to the expansigh of  The ‘energy fraction’ziq is defined with respect to a
i i i i 2n ny2n—1
in successive logarithmic towers, suchod. <", a's L ,etc. In four-momenturmf‘ as

particular, our LL and NLL contributions include more logarithmic
terms than those in the first two logarithmic towersXf(see, for niq

instance, the discussion in Section 5 of Ref. [26]). Zig = 1- i pi : (13)
L1
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Indeed, to obtain our resummed formulae, we have in the opposite order. The notatidgm(q)) in Eq. (15)

introducedm auxiliary momentazf‘. These auxiliary
momenta are arbitrary, with the only constraint of
being time-like (n? > 0) and hard.” The LL terms
in J;(u) do not depend on the definition of these
auxiliary momenta. The NLL dependence &f(u)
on n; is cancelled by the dependence enin the
remaining factor on the right-hand side of Eq. (9),
so that our expression far'(u) is independent of;
up to corrections that are beyond the NLL accuracy
of the present formalism. The main motivation for
introducing the auxiliary momenbaf is to factorize
collinear radiation in the jet function (1) without
the introduction of explicit angular boundaries. In
practical calculations, the definition of the momenta
nf‘ can be adjusted to simplify the evaluation of the
integral in Eq. (10). '

The NLL contributionA™ to the form factor is
given by
AT ) =V @)V (), (14)

where V(x) and V(x) are matrices acting onto the
colour indices of the LO partons. The explicit expres-
sion ofV(u) is

1

V()= P, exp{Z/dz

i#] 0

x Y TETS In
c

(@) — Las((1—2)%u2)
1-z2 47

4(n;i pi)*(n;jpj)?
(pipj)?n?ns
(15)
where ur is the renormalization scale, to be chosen

of the order of the hard-scattering scgbe The sum

> iz runs over the labels, j = 1,...,m of the
LO partons andr, Tf (¢ = 1,..., N2 — 1) are the
corresponding colour chargek: is the colour matrif

in the fundamental (adjoint) representation if the
parton: is a quark (gluon). The operatdt, denotes
z-ordering in the formal expansion of the exponential
matrix, andV («) is obtained from Eq. (15) by simply
replacingP, with P, the ordering operator that acts

7 By hard, we mean that the invariant§ andn; p; are of the
order of the hard scal@? wheny — 0.

8 The colour charges are defined according to the notation in
Section 3.2 of Ref. [27].

stands for a properly defined average of the Sudakov
weight u(q). Parametrizing the light-like four-vector
g" asq* = w(1, §), the average is performed over the
angular direction§ at fixed valugyo = w = (1 —2) ug

of its energyqgo. In practice, exploiting Egs. (4) and
(5), and neglecting terms beyond NLL accuracy, we
simply have

(@) =0("—1-2).

In Eq. (9), the NLL colour matrixA™ acts onto
the colour indices of then-parton matrix element
My ({p;}). This hard matrix element is independent of
u and is perturbatively computable as a power series
inas(u?):

My ((pi}) = MO((pi}) + as (i) M (1pi})
+0(af),

(16)

17)

whereM © is the LO matrix element andf}” is the
hard part of its one-loop virtual corrections. Sindey
does not containt logarithmically-enhanced terms, it
can be evaluated by truncation of its perturbative ex-
pansion at some fixed order. In Eq. (9), the depen-
dence ofMy on the colour indices is represented by
the colour vector$My) and{My|, which are defined
according to the notation in Section 3.2 of Ref. [27].

The algebraic complications due to the non-trivial
colour structure of the NLL contributions are straight-
forwardly overcomed when the numberof LO par-
tons ism = 2 orm = 3. In these cases the colour alge-
bra can be carried out in closed form, since the colour
matricesy . T ch in Eq. (15) are simply proportional
to the unity matrix in colour space. The proportional-
ity relations are (see Appendix A in Ref. [27])

D TiTS
c

1
Y TiT5=5(C3—C1=Co) (m=3),
c

=—C1=-C2 (m=2), (18)

(19)

where(C; is the Casimir invariant of the partor{C; =

C4 ifthe partoni is a gluon,C; = Cp if the partori is

a quark or an antiquark). Whem=3, > .75 T and

> . T§ Ty are obtained from Eq. (19) by permutation

of the parton indice$l, 2, 3}. In the case of processes

with m > 4 LO partons, the colour algebra cannot be
handled without additional information on the hard
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matrix elementM g ({p;}), since the colour can flow
in many different ways through the hard scattering. In
general, the evaluation of . T¢ TC (and of Eq. (15))
requires the diagonalization of a linear combination
of m(m — 3)/2 independent colour matrices (see
Appendix A in Ref. [27]).

The NLL resummed calculations of Ref. [12] deal
with the non-trivial colour structure in the hard-
scattering ofm = 4 LO partons by considering ‘soft
anomalous dimensions’ of gauge-dependent Wilson
line operators. The Wilson line operators are intro-

duced and properly defined on a process- dependent
basis. In this respect, the integrand in the exponent
of Eqg. (15) can be regarded as a universal (process-
independent and observable-independent) soft anom-

alous dimension matrix (in colour spacd), of soft
non-collinear gluons radiated by hard scattering of an
arbitrary numbe(m > 4) of partons. The explicit ex-
pression ofl,

asT ({pi,ni})
A(n;i pi)*(njp;)?
—as TeT¢ In P P (20)
;; t (Pipj)zﬂ,-zﬂi

R. Bonciani et al. / Physics Letters B 575 (2003) 268-278

We now consider the general case of cross sections
in hadron collision processes. In these processes, the
hadronic cross section is obtained by convoluting
the partonic cross sections, ., with the parton
densities fu,/n, (x1, #%) and fu,/n,(x2, 1) of the
colliding hadrons with moment&; and P»:

1
o= [ deadea farym(vi uF)

ai,a 0

X faz/hy (xz, M%)Ual az; (22)

whereur is the factorization scale (to be chosen of
the order of the hard-scattering sc&@, and the sum
Zal,az runs over the flavoursaf,a» = g, ¢, g) of
the incoming partons with momengg = x1P; and
p2=x2P>.

At the LO in QCD perturbation theory, the partonic
cross sectiono,, ., has the same structure as in
Eqg. (1), with m LO partonsi (i = 1,2 are the
incoming partons and = 3,...,m are the outgoing
partons). The Sudakov logarithms at higher orders can
be produced by soft and collinear radiation emitted
from either the outgoing partons or the incoming

is gauge independent, though dependent on the aux-Partons in the LO hard scattering. In general, to

iliary vectorsn;. The Altarelli-Parisi splitting func-
tion P;(z) in Eq. (10) controls the resummation of the
Sudakov logarithms produced by collinear (soft and
hard) radiation, and, by analody,controls the resum-
mation of the Sudakov logarithms produced by soft
non-collinear radiation. Obviously, the definition of

the boundary between the collinear and non-collinear

regions is quite arbitrary. In Eq. (20), this arbitrariness

kinematically factorize the Sudakov effects in the
parton densities from those in the partonic cross
section, it is necessary to consider tNemoments
(Mellin moments)fs 5, N(/LF) of the parton densities,

1
Furnn(12) = / dexV T fun (x, 12). (23)
0

is somehow parametrized by the dependence on thegzng the corresponding/-moments o\’ alz\’z of the

auxiliary vectorsn;. For instance, using colour con-
servationy /., T = 0[27], Eq. (20) can be rewritten
as

Olsr( p,,n} _aSZ ZTCTCm

i#j ¢

—20152C| ("’2”’2 :

where u; are arbltrary scales (e.gu; = ug). The
second term on the right-hand side is proportional to

Ay u,
(pipj)?

(21)

partonic cross section.

In the following we limit ourselvedto considering
the cases in whichard radiation collinear to the in-
coming partons is suppressed in the Sudakov limit, so
that the Sudakov logarithms are produced by soft radi-
ation (at any angles) and hard radiation collinear to the
outgoing partons. This simplifies the presentation of
the resummed formulae, since the Sudakov effects do
not change the flavours, az of the incoming partons.

9 We thus exclude observables such as, for example Qthe

the unity matrix in colour space, and therefore it can distribution of Drell-Yan lepton pairs, where powers ofdn are
be absorbed in a corresponding redefinition of the jet produced also by radiation of hard quarks and gluons that are
functionsJ; in Eq. (9). collinear to the colliding partons.
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Our NLL resummed formulae apply to th¥- In Ag;, N, ()
momentso. )2 of the partonic cross sections that dq ,
fulfil the factorization property of Eq. (2) in a properly =4r / (2n)33+(q )(u(q) — ui(zig))
defined conjugate space. We still require the properties Oi) -
in Egs. (4) and (5). Infrared and collinear safety x —L= Aas (2(1 = zig) piq) ) Pi (zig)
implies Eq. (3) in the case of radiation collinear to piq
the outgoing partons=3,...,m. Wheni = 1,2 isan C: Ni-1_q
incoming parton, Eqg. (3) is modified by a kinematical + = / dz ———
rescaling factor, which simply takes into account that T 0 1-z

we are considering th&/;-moments of the partonic U220 )2 2

cross section. We have dk2 - X
x f 2 Alas(). (26)
2
u(q) =zt~ exp{—(N; - D1~ 2)} "
_ The term on the right-hand side of the first line of
wheng = (1—2z)p; fori=1,2, (24) Eq. (26) is completely analogous to the right-hand

side of Eq. (10) apart from the replacemé&ntq) —
where the approximate equality is valid in the soft 1) — (4(g) — u;i (zig)), whereu;(z) = u(g = (1 —
region (1 — z < 1) we are interested in. The all-  7)p.). The Sudakov limit typically forces the parton
order partonic cross section has the same structure asiistributions towards the largh-(large«) region, and
in Eq. (6), and its resummed component is obtained the term in Eq. (26) matches the sensitivity of the
as in Eq. (7). The only difference is that the (final- parton distributionf,, /s v, (M%) to large logarithms,
state) form factor'(u) has to be replaced by a more | y;, of the Mellin index;.
general radiative facton,; y,.q, n,(). The latter is The modification of2 («) at the NLL level regards
given by an expression similar to Eq. (9), apart from the interference termA™ or, more precisely, its
two simple modifications that regard the LL and NLL  componentsV(x) and V(u) in Eq. (14). Eq. (15)

terms, respectively. givesV(x) as an exponential of the soft anomalous
The modification of X'(u) at the LL level is  dimension matrixI' in Eq. (20). When going from
obtained by performing the replacement processes with no initial-state partons to processes
in hadron—hadron collisions, we have to take into
m m account that the parton momenga and p2> have to
(l‘[ Ji(u)> — Aal,Nl(M)Aaz,Nz(M)(l_[ Ji(u)>. be crossed from the final to the initial state. As for the
i1 i3 anomalous dimensioR, the crossing simply amounts
(25) to the following analytic continuation, {p;p;) —
In(pip;) + im, of the terms withi =1 ori =2
In other words A4, Ny:a,.N, () is Obtained froms (u) andj > 3. Performing such a replacement, and using
by supplementing the product of the final-state jet colour-charge conservatioE.’/.":3 T =—(T7 + T5),
functions J; (1) with an initial-state factora, y, (1) we obtain the overall replacement to be applie@'to

for each incoming parton = 1, 2. The initial-state

Sudakov factora v, (), which generalizes the analo- L ({pi,ni})

gousN-moment factor of Refs. [2,10,12], resums the s T({p;,n;)) £ 4in Y (T + T5) (7§ + T5).
Sudakov logarithms produced lsgft partons emitted .

collinearly to the LO incoming parton= 1, 2. As in (27)

the case of the parton densify/h,N(M%), the radia- Here, the signs+’ and ‘~’ regard the replacements
tive factor Ay, (1) depends on the factorization scale to be applied in the evaluation &f(x) andV (u), re-

wr and on the factorization scheme used to define the spectively. Note that the substitution on the right-hand
partonic cross section. The NLL resummed expression side of Eq. (27) is effective only in the case of hadron—
of Ay, (u) in the MS factorization scheme is hadron collisions withn > 4 hard-scattering partons
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atLO. In fact, whenn = 2 we havely + 7; =0, and tation functions are defined in thdS factorization
whenm = 3 we haveY_ (Tf + T5)(T{ + T§) = C2 scheme.

so that the substitution in Eq. (27) chandés:) by a To illustrate the use of our generalized resumma-
pure phase factor that is cancelled by its complex con- tion formulae, we briefly sketch their application to the
jugate phase factor ¥ (u). hadroproduction of Drell-Yan lepton pairs [2] and of

The replacement in Eq. (27), to be applied to the prompt photons [10]. In both cases, the hadronic cross
soft anomalous dimensions in hadron—hadron colli- section is obtained by the factorization formula in
sions, has a direct and interesting physical interpreta- Eq. (22), and/S (S = (P1+ P2)?) denotes the centre-
tion. As is well know from QED (see, e.g., Ref. [28]), o0f-mass energy. The hard-scattering scale is the invari-
Coulomb-type virtual exchanges produce infrared- ant massD of the lepton pair in the first case, and the
divergent Coulomb phases that affect any scattering transverse energyr of the photon in the second case.
amplitudes. Being them phases, they cancel in the The variabley that parametrizes the distance from the
evaluation of inclusive cross sections. The QCD ana- Sudakov region is respectively given py=1— 02/
logue [22] of the QED Coulomb phases are non- andy =1 — 4E$/S. We are interested in the corre-
Abelian Coulomb ‘phases’, which are colour matri- sponding inclusive total (i.e., integrated over the rapid-
ces. They lead to non-Abelian infrared divergences ity of the observed final state) cross sections in the Su-
that cancel, as in QED, in infrared- and collinear-safe dakov limity <« 1. We thus consider th&-moments
observables with incoming massless partons [22,29]. of the cross section in Eq. (22). Th&-moments are
However, in the non-Abelian case, the cancellation defined with respect tgl — y) at fixed values ofQ
mechanism of the infrared divergences can produce and Er, respectively. This setd/; = N2 = N in the
residual (and non-trivial) finite contributions. The Su- corresponding partonic cross sectimjg?g,évz. Since
dakov logarithms produced by thier-term on the the moment variablé/ is conjugate toy through the
right-hand side of Eq. (27) are a manifestation of these Mellin transformation, the Sudakov limit corresponds
residuat® finite effects. Very soft (and, hence, infrared to 1/N — 0 (i.e., N — 00). Itis not difficult to prove
divergent) non-Abelian Coulomb-type interactions do that the factorization property of Eq. (2) is valid M+
cancel ino. On the contrary, non-Abelian Coulomb- space for both processes.
type interactions of gluons that are harder (and, hence, In the Drell-Yan process, the LO hard-scattering
infrared finite) than bremsstrahlung gluons do not can- subprocess ig(p1) + g(p2) — ¢¢'(Q): the number
cel, since they are trapped by the colour fluctuations of LO partons ism = 2 and the LO kinematics set

produced by the radiated bremsstrahlung gluons. 02 = 2p1 p». The Sudakov weight is
We note that our resummation formulae apply also (p1+ p2)
to processes in which the partonic cross section has toupy (¢) = exp{ —Nw } (28)
pip2

be convoluted with the partonic fragmentation func-
tions of hadrons that are tagged in the final state. The which fulfils Egs. (4) and (5) withh = 1. Since the LO
resummation formulae for these processes are sim-process has no final-state partons, the Sudakov resum-
ply obtained by multiplicatively introducing a factor ~mation factorApy y is the product oA ‘™™ and two
of A, (u) for each final-state partonwhose mo-  initial-state factorsA,, v and Az, v. To apply our
mentum has to be convoluted with theé moment of generalized resummation formulae, it is convenient to
the corresponding fragmentation function. The frag- choose the auxiliary vectors &g = nz = p1 + p2.
mentation factorA,, v.(u) is the same as for par- We thus haveA™ =1 (see Egs. (14) and (15)) and
ton densities (i.e., Eq. (26)), provided the fragmen- Ay v = Ag, v (€€ EQ. (26)). Moreover, sinag¢q) =
u; (ziq), the term on the right-hand side of the first line

- of Eq. (26) vanishes. Therefore, from the second line

10 The i -term in Eq. (27) is not the absolute overall effect of  of Eq. (26) we finally obtain the known NLL result for
Coulomb-type interactions in hadron—hadron collisions. It is the the Drell=Yan process [2]_

relative effect produced by the Coulomb-phase mismatch between Inth t-phot th d
processes with no initial-states hadrons and processes in hadron— n the prompt-photon process (see the second paper

hadron collisions. Thus, it has conveniently been introduced by the N Ref-. [10]), there are two independent LO hard-
corresponding analytic continuation procedure. scattering subprocesses(p1) + a2(p2) — az(p3) +
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y(py), With {a1 = q,a2 = q,a3 = g} and {a1 =

qg,a2 = g,a3 = q}. The number of LO partons is

m = 3 and, in the Sudakov limit the LO kinematics set

ZE% ~ 2p1p3 >~ 2p2p3 > p1p2. The Sudakov weight
2p3q

IS
uy(q) =exp{—N },
pip2

which fulfils Egs. (4) and (5) with. = 1. The Sudakov
resummation facton 4,4, a4y, v IS the product of two
initial-state factors 4., y and A, y), one final-state
factor (J,;) and the NLL factorA™. To explicitly
evaluate these factors, it is convenient to choose the
following auxiliary vectors:ni1 = p1 + p3, hn2 =

p2 + p3, n3 = p1 + p2 + p3. Using this choice,

it is straightforward to check that the term on the
right-hand side of the first line of Eq. (26) gives
subleading (beyond the NLL accuracy) contributions.
As for the colour algebra, we can simply use Eq. (19).
Performing the phase-space integrals in Egs. (10), (15)
and using Eq. (26), we obtain the explicit resummed
results anticipated in Section 4.2 of the second paper
in Ref. [10] and implemented in the phenomenological
study of Ref. [30].

We have discussed a generalized formalism to
perform the resummation of Sudakov logarithms in
QCD hard-scattering processes. We have presented ex
plicit resummation formulae up to NLL accuracy. The

(29)

formulae are observable-independent and process-
independent. The dependence on the observable is uni-

versally encoded in the one-particle Sudakov weight
u(o, {p;i}; q). The dependence on the process is com-
pletely specified by flavour, colour charge and kine-
matics of the LO partons, the LO matrix element and
its hard virtual corrections at one-loop order. This is
the minimal amount of process-dependentinformation
that is necessary in any calculations at fixed perturba-
tive order. Within a specific process, the formalism is
applicable to a large class of QCD observables that
are specified by some kinematic properties, such as
phase-space factorizability. Phase-space factorization
has already been exploited in the literature to perfom

resummation of several observables in processes con-

trolled by LO hard scattering of two and three QCD
partons. The extension of the NLL resummation tech-
nigques to multiparton processes requires a formalism
able to deal with the radiation pattern of non-collinear
soft gluons emitted by the colour flow dynamics of the
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underlying hard-scattering. Available NLL resummed
calculations of some specific cross sections in four-
parton processes treat the colour flow dynamics on a
process-dependent basis. As for processes with higher
number of LO partons, no NLL resummed calcula-
tion has been presented so far. Our NLL formalism ap-
plies to arbitrary processes with any number of hard-
scattering partons and with arbitrary colour flow dy-
namics. This opens prospects of phenomenological
applications to multijet events at present and future
high-energy colliders.
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