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Abstract

In perturbative SU(N) Chern–Simons gauge theory, it is shown that the Schwinger–Dyson equations 
assume a quite simplified form. The generating functional of the correlation functions of the curvature 
is considered; it is demonstrated that the renormalized Schwinger–Dyson functional is related with the 
generating functional of the correlation functions of the gauge connections by some kind of duality trans-
formation.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In quantum field theory, the Schwinger–Dyson equations [1,2] can be understood [3] as a 
consequence of the invariance of the path-integral under field translations. Let φ(x) denote a set 
of fields entering the action S[φ] and let us introduce the product X[φ] = φ(y1)φ(y2) · · ·φ(yn). 
Invariance of the functional integration under a field translation means that the path-integrals 
over φ(x) and over φ(x) + η(x) — where η(x) is a given localised classical configuration — 
furnish the same result

〈X[φ]〉 =
∫

Dφ eiS[φ] X[φ]∫
Dφ eiS[φ] =

∫
Dφ eiS[φ+η] X[φ + η]∫

Dφ eiS[φ] . (1.1)
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Therefore, by means of a functional derivative in η(x), one obtains〈
δS[φ]
δφ(x)

X[φ]
〉
= i

〈
δX[φ]
δφ(x)

〉
= i

n∑
j=1

δ(x − yj )
〈
φ(y1) · · ·φ(yj−1)φ(yj+1) · · ·φ(yn)

〉
. (1.2)

Equation (1.2) shows that, in the expectation values, the classical field equations are valid up to 
the presence of contact terms, which appear on the right-hand-side of equality (1.2).

The Schwinger–Dyson equations can be generalised to the case in which, in the expectation 
values, one considers — instead of the field product X[φ] = φ(y1)φ(y2) · · ·φ(yn) — also com-
posite field operators. In particular, when X[φ] = δS[φ]/δφ(y1) S[φ]/δφ(y2) · · · δS[φ]/δφ(yn), 
the Schwinger–Dyson equations concern the expectation values of the products of the composite 
operator δS[φ]/δφ(x) in different points. These expectation values are collectively described by 
the so-called Schwinger–Dyson functional

ZSD[b] =
∫

Dφ eiS[φ] ei
∫

dx b(x) δS[φ]/δφ(x)∫
Dφ eiS[φ] , (1.3)

where b(x) denotes a classical source.
The Schwinger–Dyson equations give significant constraints on the structure of the correlation 

functions in the quantum Chern–Simons (CS) gauge field theory [4,5]. In the case of the abelian 
U(1) CS theory, the Schwinger–Dyson functional for the connected correlation functions of the 
curvature has the same structure of the action and determines the complete solution [6,7] of the 
theory. In the non-abelian case, the form of the two-point proper vertex is completely specified [8]
by the Schwinger–Dyson equations. In this article, the non-abelian CS gauge theory with gauge 
group SU(N) is considered; the peculiar form of the Schwinger–Dyson equations is illustrated in 
a few examples, and the renormalized Schwinger–Dyson functional ZSD[�a

μ] is examined. The 
nonabelian extension of the result for the abelian theory turns out to be quite peculiar. In fact, 
it is demonstrated that ZSD[�a

μ] is related with the usual generating functional Z[J aμ] of the 
correlation functions of the gauge fields Aa

μ by some kind of duality transformation. The exact 
expression of the 3-point correlation function of the curvature in the CS theory is derived and its 
gauge-independence is discussed.

2. Renormalized Chern–Simons theory

The field variation of the Chern–Simons (CS) action S[A],

S[A] = k

4π

∫
d3x εμντ

{
1
2Aa

μ∂νA
a
τ − 1

6 f abcAa
μAb

νA
c
τ

}
, (2.1)

is proportional to the curvature

δS[A]
δAa

μ(x)
=

(
k

8π

)
εμντF a

ντ =
(

k

4π

)
εμντ

(
∂νA

a
τ − 1

2 f abcAb
νA

c
τ

)
. (2.2)

Therefore the structure of the Schwinger–Dyson equations in the CS theory is originated by

〈
εμντF a

ντ (x)X[A]〉 = 2i

(
4π

k

)〈
δX[A]
δAa (x)

〉
. (2.3)
μ
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In general, equation (2.3) must be integrated with the corrections coming from the gauge-fixing 
procedure. This point will be discussed in a while; for the moment let us proceed with the basic 
argument. Since the curvature Fa

μν transforms covariantly under a local gauge transformation, 
the contact terms in the Schwinger–Dyson equations can combine to produce a gauge-invariant 
expression. In particular, according to the rule shown in equation (2.3), the 3-points function of 
the curvature should be given by the gauge-invariant combination

〈
εμαβF a

αβ(x) ενγ δF b
γ δ(y) ετσξF c

σξ (z)
〉
= 16

(
4π

k

)2

f abc εμντ δ3(x − y) δ3(z − y) . (2.4)

In the CS theory, the value of the 3-points correlation function of the curvature corresponds to 
the gauge-invariant expression (2.4), which is proportional to the structure-constants tensor f abc

of the gauge group divided by the square of the coupling constant k. As it will be shown below, 
the expression appearing in equation (2.4) should have a gauge-independent meaning because 
it can also be obtained in the limit of vanishing gauge-fixing. As a check, one can easily verify 
the validity of equation (2.4) to lowest orders of perturbation theory when the CS theory is 
formulated in R3.

In order to proceed with the derivation of the properties of the renormalized Schwinger–Dyson 
functional in the CS theory, one needs to specify the gauge-fixing procedure and the renormaliza-
tion conditions. Let us consider the perturbative approach to the CS theory in R3. Really, in the 
following argument R3 can be replaced by a generic 3-manifold M which is a homology sphere 
because, in this case, the field variables have no zero modes [6] and the standard perturbative 
expansion is well defined. In the Landau gauge, the gauge-fixing term [9] is given by

Sφπ = k

4π

∫
d3x

{
− Ba∂μAa

μ + ∂μca
(
∂μca − f abcAb

μcc
)}

. (2.5)

Let � be the renormalized effective action of the CS theory; i � is given by the sum of the 
one-particle-irreducible diagrams with external legs represented by classical fields.

� can be computed by means of various techniques; one convenient method is the standard 
quantum field theory procedure which is called the renormalized perturbation theory in the 
Peskin–Schroeder book [10]. Of course, any other renormalization method leads to the same 
physical conclusions; the use of renormalized perturbation theory is quite instructive because the 
basic concepts of the renormalization clearly emerge. In renormalized perturbation theory, the 
values of all the parameters entering the lagrangian coincide with the renormalized values, and 
the so-called local counterterms cancel precisely all the possible contributions to these parame-
ters which are found in the loop expansion. In this way, the normalization conditions [3,10] are 
indeed satisfied to all orders of perturbation theory, as it must be.

Renormalized perturbation theory represents one of the fundamental constituents of the theory 
of quantized fields [11,12]; this subject was of particular interest for Raymond Stora [13]. So I 
will elaborate a bit on this issue in the context of the quantum CS field theory. At the beginning 
of the years 90’s, with Raymond we had fruitful discussions on this matter.

The renormalization process of the CS action (2.1) concerns two parameters: the wave func-
tion normalization and the coupling constant. Actually, as in any gauge theory, because of the 
gauge invariance one of the normalization conditions is superfluous [3]; therefore, in our case, 
only one parameter needs to be specified. The CS normalization conditions can then be expressed 
as
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(i) � is invariant under BRST transformations [14] which act on the fields — appearing in the 
action — according to

δ Aa
μ(x) = ∂μca(x) − f abdAb

μ(x)cd(x) , δ ca(x) = 1
2f abdcb(x)cd(x)

δ ca(x) = −Ba(x) , δ Ba(x) = 0 . (2.6)

(ii) The renormalized coupling constant k is specified by the 2-point proper vertex at vanishing 
momenta. More precisely, let �AA be the term of the expansion of � in powers of the fields 
which is quadratic in the field Aa

μ,

�AA = 1
2

∫
d3p

(2π)3
Ãa

μ(p)Ãb
ν(−p)�(2)μν

ab (p) . (2.7)

Then the normalization condition takes the form

lim
p→0

�(2)μν

ab (p) =
(

k

4π

)
δab εμντ (−ipτ ) . (2.8)

Since there are no gauge anomalies in three dimensions, condition (i) is well-suited, and con-
dition (ii) gives the definition of the coupling constant. Condition (2.8) is the analogue of the 
normalization condition in quantum electrodynamics or in Yang–Mills theory [3,10] and admits 
the following equivalent formulation. Let �AAA be the term of the expansion of � in powers of 
the fields which is cubic in the field Aa

μ,

�AAA = 1
6

∫
d3p1

(2π)3

d3p2

(2π)3
Ãa

μ(p1)Ã
b
ν(p2)Ã

c
τ (−p1 − p2)�(3)μντ

abc (p1,p2) . (2.9)

Because of the BRST invariance, condition (2.8) is equivalent to

lim
p1→0
p2→0

�(3)μντ

abc (p1,p2) = −
(

k

4π

)
fabc εμντ . (2.10)

In renormalized perturbation theory, the real parameter k multiplying the action (2.1) denotes 
the renormalized CS coupling constant that takes integer values (k = 1, 2, 3, . . .) and receives no 
corrections. Consequently, the coupling constant entering equations (2.3) and (2.4) represents the 
renormalized coupling constant. All the equations of the present article are expressed in terms of 
the renormalized coupling constant k.

The exact scale invariance [15,16] of � implies that, in the correlation functions, typical 
logarithms of the momenta cannot appear; the CS theory is actually finite because, at the reg-
ularized level, all the potential divergences cancel. The BRST symmetry together with a vector 
supersymmetry invariance [17,18] of the action specify the value of �AA uniquely; in facts the 
Sorella–Piguet non-renormalization theorem [19] states

Theorem 1 (Sorella–Piguet). In the CS theory with Landau gauge fixing, one has

�AA = k

4π

∫
d3x 1

2 εμντ Aa
μ(x)∂νA

a
τ (x) . (2.11)

Proof. In Landau gauge, the total action STOT = S + Sφπ is invariant under a vector super-
symmetry [17,18]. If, at a given order of perturbation theory, this vector supersymmetry has no 
anomalies, one can define a renormalized effective action such that the Ward identities coming 
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from this supersymmetry are satisfied. Then the Schwinger–Dyson equations combined with the 
Ward identities and BRST invariance imply [8,19] that the 2-point proper vertex has the form 
�AA ∝ ∫

Aa ∧ dAa . All the explicit computations at one loop and at two loops show that the 
vector supersymmetry in the CS theory has no anomalies. Actually, Sorella and Piguet have 
demonstrated [19] that this vector supersymmetry is not anomalous to all orders of perturbation 
theory. Therefore the exact 2-point proper vertex is given by �AA = β

∫
Aa ∧ dAa where β is a 

real parameter. The value of this parameter is specified precisely by the normalization condition 
(ii), and so β = k/8π . �

A consequence of the non-renormalization theorem is that the Feynman propagator for the 
components of Aa

μ actually coincides with the dressed propagator,

�ab
μν(x − y) = Aa

μ(x) Ab
ν(y) = δab

(
4π

k

)∫
d3p

(2π)3

eip·x ενμλp
λ

p2
. (2.12)

Similarly, the ghosts propagator also gets no loop corrections [8,19] as a consequence of the 
vector supersymmetry

�ab(x − y) = ca(x) cb(y) = iδab

(
4π

k

)∫
d3p

(2π)3

eip·x

p2
. (2.13)

Equation (2.11) is in agreement with the outcome of renormalized perturbation theory. The result 
(2.11) is also consistent with the topological character of the CS theory because the Gauss linking 
number does not admit nontrivial radiative corrections.

2.1. Normalization conditions

Let us concentrate on renormalizable quantum field theories. In each model, the normaliza-
tion conditions specify the finite (renormalized) values of all the parameters of the model which 
enter the correlation functions, the transition amplitudes, and the observables in general. For 
instance, in quantum electrodynamics (QED) the cross sections for the electromagnetic scat-
terings between electrons and photons depend on the electromagnetic renormalized coupling 
constant αem. The finite value of αem which is measured in laboratories (αem � 1/137) can be 
specified by a suitable normalization condition [3,10] that must be satisfied by the 2-point proper 
vertex of the electromagnetic vector potential Aμ. Really one needs to specify a complete set 
of normalization conditions but, in order to simplify the exposition, let us concentrate on αem. 
Since the normalization conditions give the definition of the coupling constant, the normalization 
conditions must be satisfied at each order of perturbation theory. Thus the value of αem does not 
receive loop corrections; there is no shift in αem. In fact, the value of αem is one of the inputs of 
the theory, whereas the predictions are obtained by computing how the other observables depend 
on αem. This is why all the textbooks on quantum field theory do not contain computations of 
the radiative corrections to αem; they contain instead computations showing how the transition 
amplitudes, cross sections, etc. depend on αem � 1/137.

In order to construct the renormalized effective action �, certain renormalization methods in-
troduce, in the intermediate steps of the regularization/renormalization procedure, one or several 
regulator cut-offs and bare lagrangian parameters. So one could imagine that the dependence of 
the renormalized coupling constant on the bare coupling constant is a meaningful issue. But this 
is not the case, because the bare coupling constant is not observable; this point is precisely the 
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fundamental discovery in renormalization theory. It turns out that the dependence of the renor-
malized coupling constant on the bare coupling constant is not unique and, in the perturbative 
expansion, it can be modified [3,10–12] without any observable or physical consequence. Instead, 
how the observables of each field theory model depend on the renormalized coupling constant 
— that satisfies the normalization conditions — is uniquely determined. For this reason, renor-
malized perturbation theory is very instructive, because in this procedure there are no imagined 
bare parameters at all.

Similarly, in the CS theory one needs to specify the value of the renormalized coupling con-
stant k; this can be done by means of the condition (2.8). Gauge invariance requires that the 
renormalized value of k must be an integer, k = 1, 2, 3, . . . ; precisely like αem in QED, this inte-
ger k does not get loop corrections [9,20] because the normalization conditions must be satisfied 
at each order of perturbation theory. Thus there is no shift of the coupling constant k in the CS 
theory simply because there is no shift of αem in QED, and there is no shift of the renormalized 
coupling constant in any renormalizable quantum field theory.

What is remarkable in the CS theory is that, according to the non-renormalization theorem — 
and in agreement with the two-loops computations [9] —, the entire 2-point proper vertex is not 
modified by radiative corrections. Consequently, the CS vacuum polarization is vanishing to all 
orders of perturbation theory; this implies that, in the CS theory, the ordinary Schwinger–Dyson 
equations gets somewhat modified and assume a simplified form, as it will be illustrated in the 
next section.

3. Equations for proper vertices

In the gauge-fixed CS theory, the Schwinger–Dyson equations for the proper vertices — con-
taining at least one gauge field — can be obtained [3] from the equation〈[

δSTOT

δAa
μ(x)

+ J aμ(x)

]
ei

∫
J ·φ

〉
= 0 , (3.1)

which is a particular case of equation (1.2). The expectation value (3.1) must be computed by 
using the gauge-fixed CS action

STOT = S + Sφπ . (3.2)

Moreover,

ei
∫

J ·φ = exp

{
i

∫
d3x

[
J aμ(x)Aa

μ(x) + La(x)Ba(x) + ηa(x)c a(x) + η a(x)ca(x)
]}

,

(3.3)

in which the classical sources of commuting type J aμ, La and of anticommuting type ηa , η a

have been introduced. By means of the generating functional W of the connected correlation 
functions,

eiW [J aμ,La,ηa,η a] =
〈
ei

∫
J ·φ〉

, (3.4)

equation (3.1) can be rewritten as
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Fig. 1. Vanishing of the vacuum polarization for the connection.

Fig. 2. Vanishing of the vacuum polarization for the ghosts.

0 = εμντ ∂ν

δW

δJ aμ(x)
− 1

2εμντ f abc δW

δJ bν(x)

δW

δJ cτ (x)
+ i

2εμντ f abc δ2W

δJbν(x)J cτ (x)

+ f abc ∂μ
x

δW

δηb(x)

δW

δηc(x)
− if abc ∂μ

x

δ2W

δηb(x)ηc(y)

∣∣∣∣∣
x=y

+ ∂μ δW

δLa(x)
+

(
4π

k

)
J aμ(x) . (3.5)

Now one can put

W = � +
∫ [

J aμAa
μ + LaBa + ηac a + η aca

]
(3.6)

in equation (3.5), where the Legendre transform � of W satisfies

δ�

δAa
μ(x)

= −J aμ(x) ,
δ�

δBa
μ(x)

= −La(x) ,

δ�

δca(x)
= ηa(x) ,

δ�

δca(x)
= −ηa(x) . (3.7)

The various functional derivatives of the expressions appearing in equation (3.5) give rise to a 
sequence of relations for the proper vertices and the dressed propagators. These relations assume 
a quite peculiar form because of the validity of the non-renormalization theorem. As depicted in 
Fig. 1, equation (2.11) states that the vacuum polarization for the gauge fields is vanishing.

Because of the CS vector supersymmetry, also the 2-point proper vertex for the ghosts fields 
receives no corrections; in agreement with equation (2.13) one has then

�cc = k

4π

∫
d3x ∂μca(x) ∂μca(x) . (3.8)

Equation (3.8) can be represented by the diagram shown in Fig. 2.
By taking one functional derivative with respect to Ad

ν(y) of the functions appearing in equa-
tion (3.5), and by letting all the sources vanish, one obtains the relation∫

d3ud3w
δ3�

δAd
ν (y)δAe

α(u)δAh
β(w)

�eb
ατ (u − x)�hc

βλ(w − x)εμτλf abc =

= 2
∫

d3ud3w
δ3�

δAd
ν (y)δc e(u)δch(w)

∂μ
x �eb(u − x)�hc(w − x)f abc , (3.9)

which can be represented as shown in Fig. 3.
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Fig. 3. Schwinger–Dyson equation for the 2-point vertex of the gauge fields.

Fig. 4. Schwinger–Dyson equation for the 3-point vertex of the gauge fields.

In deriving equation (3.9), the relations illustrated in Fig. 1 and Fig. 2 have been taken into 
account. A further derivative in the gauge field of the functionals entering equality (3.5) leads to 
the relation shown in Fig. 4.

It is tempting to conjecture that, because of their simplified structure, the Schwinger–Dyson 
equations — for the CS theory in R3 — can be solved. So far, only the first few terms of the 
perturbative expansion have been explored.

4. Schwinger–Dyson functional

Another basic feature of the CS theory is that the interaction lagrangian LI is a cubic func-
tion of the gauge fields, i.e. LI ∼ A3. Consequently, the Schwinger–Dyson functional is strictly 
related with the generating functionals of the correlation functions, as it will be shown in this sec-
tion. The Schwinger–Dyson functional ZSD[�a

μ] for the gauge-fixed CS theory in R3 is defined 
by

ZSD[�a
μ] =

〈
exp

(
i

∫
d3x �a

μ(x)
[
δ(S + Sφπ)/δAa

μ(x)
])〉

, (4.1)

where �a
μ(x) is a classical source field. Let Z[J aμ] be the standard generating functional of the 

renormalized correlation functions of the field Aa
μ,

Z[J aμ] =
〈
exp

(
i

∫
d3x J aμ(x)Aa

μ(x)

)〉
. (4.2)

Proposition 1. The functionals ZSD[�a
μ] and Z[J aμ] are related by a duality transformation 

according to
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ZSD[�a
μ] = eiR[�a

μ] Z[J̃ [�]aμ] , (4.3)

where

R[�a
μ] = − k

4π

∫
d3x εμντ

{
1
2�a

μ∂ν�
a
τ + 1

3f abc�a
μ�b

ν�
c
τ

}
, (4.4)

and

J̃ [�]aμ(x) = k

8π
εμντ f abc�b

ν(x)�c
τ (x) . (4.5)

Proof. Relation (4.3) is a consequence of the invariance of the path-integral under a field trans-
lation, as indicated in equation (1.1). Indeed one has

STOT [A + �] = STOT [A] +
∫

d3x �a
μ(x)

[
δSTOT/δAa

μ(x)
]

+ S[�] − k

8π

∫
d3x εμντ f abcAa

μ(x)�b
ν(x)�c

τ (x) . (4.6)

This equation can be written in the form

STOT [A] +
∫

d3x �a
μ(x)

[
δSTOT/δAa

μ(x)
] = R[�a

μ] + STOT [A + �]

+ k

8π

∫
d3x εμντ f abc

(
Aa

μ(x) + �a
μ(x)

)
�b

ν(x)�c
τ (x) . (4.7)

Consequently, the integration over the field variables gives∫
D(fields) eiSTOT [A]+i

∫
�a

μ(δSTOT/δAa
μ)∫

D(fields) eiSTOT
= eiR[�a

μ]
∫

D(fields) eiSTOT [A+�]+i
∫
(Aa

μ+�a
μ)J̃ aμ∫

D(fields) eiSTOT
,

(4.8)

where D(fields) = DAa
μ DBc Dcb Dcd . Therefore one obtains〈

exp

(
i

∫
d3x �a

μ(x)
[
δSTOT/δAa

μ(x)
])〉

= eiR[�a
μ]

〈
exp

(
i

∫
d3x J̃ [�]aμ(x)Aa

μ(x)

)〉
,

(4.9)

and this concludes the proof. �
Note that the validity of equation (4.3) is not restricted to the case of the Landau gauge. 

Provided that Sφπ is a linear function of Aa
μ, the result (4.3) follows where, independently of 

the particular choice of the gauge-fixing, R[�a
μ] takes the form shown in equation (4.4). In the 

f abc → 0 limit, one recovers the results of the abelian CS theory; indeed in this limit one finds 
J̃ [�]aμ(x) → 0 and the term of R[�a

μ] which is quadratic in the source field �a
μ(x) determines 

the Schwinger–Dyson functional of the U(1) CS theory [6].
The composite operator δSTOT/δAa

μ(x) has dimension 2 and enters the construction of the 
renormalized CS effective action; so for smooth classical source �a

μ(x), equation (4.3) is ex-
pected to give the relation between the renormalized Schwinger–Dyson functional ZSD[�a

μ] and 
the renormalized generating functional Z[J aμ].
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In order to recover equation (2.4), let us consider the case in which the action Sλ of the 
gauge-fixed theory is given by

Sλ = S + λSφπ , (4.10)

where S and Sφπ are shown in equations (2.1) and (2.5), and λ is a real parameter. Since S and 
Sφπ are separately BRST-invariant, for any fixed value of λ the action Sλ is invariant under the 
BRST transformations (2.6). Let 〈Y 〉λ denote the normalised expectation value of a generic field 
function Y in the particular field theory model that is specified by the action Sλ. Since the gauge 
fixing lagrangian is a linear function of the gauge field Aa

μ, one obtains〈
exp

(
i

∫
d3x �a

μ

[
δSλ/δA

a
μ

])〉
λ

= eiR[�a
μ]

〈
exp

(
i

∫
d3x J̃ [�]aμAa

μ

)〉
λ

. (4.11)

Let us now consider the expansion in powers of �a
μ of the functions which appear in equation 

(4.11); we are interested in the coefficient of the term which is cubic in �a
μ. Because

δSλ

δAa
μ(x)

=
(

k

8π

)(
εμαβF a

αβ(x) + 2λ∂μBa + 2λf apq∂μc p(x)cq(x)
)

, (4.12)

the left-hand-side of equation (4.11) gives

left
∣∣
λ

=
(

ik

8π

)3 〈 [
εμαβF a

αβ(x) + 2λ∂μBa(x) + 2λf apq∂μcp(x)cq(x)
]
×

×
[
ενγ δF b

γ δ(y) + 2λ∂νBb(y) + 2λf brs∂νcr (y)cs(y)
]
×

×
[
ετσξF c

σξ (z) + 2λ∂τBc(z) + 2λf ctv∂τ ct (z)cv(z)
] 〉

λ
. (4.13)

Since the nontrivial part of 〈ei
∫

J aμAa
μ〉 is at least quadratic in J aμ, only R[�a

μ] contributes to 
the cubic term in �a

μ on the right-hand-side of equation (4.11),

right
∣∣
λ

= −2i

(
k

4π

)
f abcεμντ δ3(x − y)δ3(z − y) . (4.14)

Let us now consider the λ → 0 limit. Expression (4.14) does not depend on λ. Whereas,

lim
λ→0

left |λ = − i

8

(
k

4π

)3 〈
εμαβF a

αβ(x) ενγ δF b
γ δ(y) ετσξF c

σξ (z)
〉

(4.15)

denotes the 3-points correlation function of the curvature in the limit of vanishing gauge-fixing. 
In the λ → 0 limit, equality (4.11) then implies

f abcεμντ δ3(x −y)δ3(z−y) = 1

16

(
k

4π

)2 〈
εμαβF a

αβ(x) ενγ δF b
γ δ(y) ετσξF c

σξ (z)
〉

, (4.16)

which coincides with equation (2.4). Thus, similarly to the expectation values of the gauge-
invariant observables in any gauge theory, equation (2.4) can formally be obtained in the limit in 
which the gauge-fixing lagrangian term is absent.
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