Finite dimensional backward shift invariant subspaces of Arveson spaces

V. Bolotnikov, L. Rodman*

Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
Received 13 August 2001; accepted 11 December 2001
Submitted by H. Schneider

Abstract

A description is given of finite dimensional backward shift invariant subspaces of Arveson spaces, which are certain multivariable analogues of the Hardy space of the unit disk. © 2002 Elsevier Science Inc. All rights reserved.

AMS classification: 15A48; 47B32
Keywords: Shift invariant subspaces; Arveson space.

1. Preliminaries: Backward shift on the Hardy space

The classical Hardy space H_2 can be characterized as the set of all functions that are analytic in the open unit disk \mathbb{D} and whose Taylor expansions are square summable:

$$H_2 = \left\{ f(z) = \sum_{n=0}^{\infty} f_n z^n : \|f\|_{H_2}^2 = \sum_{n=0}^{\infty} |f_n|^2 < \infty \right\}.$$

It is the reproducing kernel Hilbert space with reproducing kernel $k(z, w) = k_w(z) = (1 - z \overline{w})^{-1}$.

In other words, the inner product of H_2 reproduces point evaluation

* Corresponding author. Fax: +1-757-221-7400.
E-mail address: lxrodm@math.wm.edu (L. Rodman).

The research of this author was partially supported by NSF grant DMS 9988579.

0024-3795/02/$ - see front matter © 2002 Elsevier Science Inc. All rights reserved.
PII: S0024-3795(02)00251-3
\[\langle f, k_w \rangle_{H_2} = f(w) \quad (w \in \mathbb{D}, \ f \in H_2). \]

Let \(H^p_2 \) be the Hilbert space of \(\mathbb{C}^p \)-valued vector functions \(F(z) = \sum_{n=0}^{\infty} F_n z^n \) with entries in \(H_2 \) and with norm

\[
\| F \|_{H^p_2} = \left(\sum_{n=0}^{\infty} \| F_n \|^2 \right)^{1/2},
\]

where \(\| \cdot \| \) stands for the Euclidean norm in \(\mathbb{C}^p \), the vector space of \(p \)-dimensional columns with complex entries. The space \(H^p_2 \) is invariant with respect to the backward shift operator

\[
RF = \frac{F(z) - F(0)}{z}. \tag{1.1}
\]

It is readily seen that \(\| RF \|^2_{H^p_2} = \| F \|^2_{H^p_2} - \| F(0) \|^2 \). The operator \(R \) is the adjoint of the operator \(M_z \) of multiplication by the independent variable \(M_z F = zF(z) \). Note that \(M_z \) is isometric on \(H^p_2 \). A backward shift invariant subspace of \(H^p_2 \) can have finite dimension. A description of all such subspaces is given by the following theorem (see [9, Theorem 3.1], also [11]). We denote by \(\mathbb{C}^{p \times n} \) the set of \(p \times n \) complex matrices.

Theorem 1.1. An \(n \)-dimensional space is a backward shift invariant subspace of \(H^p_2 \) if and only if it is spanned by the columns of a \(p \times n \) matrix valued function of the form

\[
F(z) = C (I_n - zA)^{-1}, \tag{1.2}
\]

where \(C \in \mathbb{C}^{p \times n}, A \in \mathbb{C}^{n \times n} \) are such that the spectrum of \(A \) is inside the unit disk, and the pair \((C, A) \) is observable.

The observability of \((C, A) \) means, by definition, that

\[
\bigcap_{j=0}^{\infty} \text{Ker} \ (CA^j) = \{0\}.
\]

It is easy to see that the columns of \(F(z) = C(I_n - zA)^{-1} \) are linearly independent if and only if \((C, A) \) is observable. Moreover, if \((C^{(1)}, A^{(1)}) \) and \((C^{(2)}, A^{(2)}) \) are two pairs of matrices satisfying the requirements of Theorem 1.1 for the same backward shift invariant subspace, then they are similar: \(C^{(1)} = C^{(2)} S, \ A^{(1)} = S^{-1} A^{(2)} S \) for some (in fact, unique) invertible matrix \(S \).

Besides independent interest, study of finite dimensional backward shift invariant subspaces is motivated by strong connections with interpolation problems (see [9,11]).

Inclusion between invariant subspaces is easily decided using form (1.2).

Proposition 1.2. Let \(\mathcal{M} \) and \(\mathcal{N} \) be two finite dimensional backward shift invariant subspaces of \(H^p_2 \), and let
\(F_M(z) = C_M (I_m - zA_M)^{-1} \) and \(F_N(z) = C_N (I_n - zA_N)^{-1} \)
be representations of \(\mathcal{M} \) and of \(\mathcal{N} \), respectively, as in Theorem 1.1. Then \(\mathcal{M} \subseteq \mathcal{N} \) if and only if
\[
C_M = C_N Q, \quad QA_M = A_N Q
\]
for some matrix \(Q \), which necessarily has linearly independent columns.

Proof. The approach used in the proof has been exploited before, see, e.g., proof of Theorem 7.1.4 in [13]. Clearly, \(\mathcal{M} \subseteq \mathcal{N} \) if and only if
\[
C_M (I_n - zA_M)^{-1} = C_N (I_n - zA_N)^{-1} Q
\]
for some matrix \(Q \). The columns of \(Q \) are necessarily linearly independent, for otherwise we would have \(C_M (I_n - zA_M)^{-1} x = 0 \) for a nonzero vector \(x \), a contradiction with the observability of \((C_M, A_M)\).

Assume (1.4) holds. Equating the coefficients of like powers of \(z \) in both sides of (1.4), we obtain
\[
\begin{bmatrix}
C_M \\
C_M A_M \\
\vdots \\
C_M A_M^q
\end{bmatrix} = Q,
\quad \begin{bmatrix}
C_N \\
C_N A_N \\
\vdots \\
C_N A_N^q
\end{bmatrix},
\]
Fixing \(q \) sufficiently large, it follows that
\[
Q = \begin{bmatrix}
C_N \\
C_N A_N \\
\vdots \\
C_N A_N^q
\end{bmatrix}^{-1} \begin{bmatrix}
C_M \\
C_M A_M \\
\vdots \\
C_M A_M^q
\end{bmatrix},
\]
where the superscript \([-1]\) denotes a left inverse. Now using the equality
\[
\begin{bmatrix}
C_M \\
C_M A_M \\
\vdots \\
C_M A_M^q
\end{bmatrix} A_M = \begin{bmatrix}
C_N \\
C_N A_N \\
\vdots \\
C_N A_N^q
\end{bmatrix} A_N Q,
\]
which follows from (1.5) (replacing there \(q \) by \(q + 1 \)), we obtain (1.3).

Conversely, if (1.3) holds, then
\[
C_M A_M^j = C_N Q A_M^j = C_N A_N^j Q, \quad j = 0, 1, \ldots,
\]
and (1.4) follows. □

Observe also that a finite dimensional backward shift invariant subspace of \(H_2^p \) necessarily consists of rational functions. In this connection note that formula (1.2)
(without the spectrum requirement on A) represents the general form of a finite dimensional backward shift invariant subspace consisting of rational vector functions that are analytic at $z = 0$. See [11] for details.

In this paper we extend Theorem 1.1 and Proposition 1.2 to multivariable analogues of H^2, known as Arveson spaces. As in the one variable case, our study is motivated by connections with multivariable interpolation problems [7], besides independent interest in invariant subspaces. In the next section we give background on Arveson spaces and state the main results. Proofs are given in Section 3. In Section 4 we apply the main result to a characterization of finite dimensional Hilbert spaces that are isometrically contained in Arveson spaces.

2. Main results

Consider functions of d complex variables. Points in \mathbb{C}^d (with slight abuse of notation) will be denoted by $z = (z_1, \ldots, z_d)$, where $z_j \in \mathbb{C}$. In (2.1) and throughout the paper

$$\langle z, w \rangle = \langle z, w \rangle_{\mathbb{C}^d} = \sum_{j=1}^{d} z_j w_j \quad (z, w \in \mathbb{C}^d)$$

stands for the standard inner product in \mathbb{C}^d. Denoting by \mathbb{N} the set of nonnegative integers, for multiindices $n = (n_1, \ldots, n_d) \in \mathbb{N}^d$ we use the standard notation:

$$n_1 + n_2 + \cdots + n_d = |n|, \quad n_1!n_2!\cdots n_d! = n!, \quad z_1^{n_1}z_2^{n_2}\cdots z_d^{n_d} = z^n.$$

We start with the kernel

$$k(z, w) = k_w(z) = \frac{1}{1 - \langle z, w \rangle}, \quad (2.1)$$

which is positive on the unit ball $\mathbb{B}^d = \{ z \in \mathbb{C}^d : \langle z, z \rangle < 1 \}$ of \mathbb{C}^d, and we denote the corresponding reproducing kernel Hilbert space by $H(k)$. This space (which exists by the fundamental result of Aronszajn [4]) is called Arveson space. It is a natural multivariable analogue of H_2 and has been comprehensively studied in [5]. It is an important reproducing kernel space; as it was shown in [1], it is a universal (in an appropriate sense) complete Nevanlinna–Pick kernel. Arveson space was studied also in [6] from the point of view of multiplier space.

Similarly to the one variable case, we introduce the Hilbert space $H^p(k)$ of \mathbb{C}^p-valued vector functions with entries in $H(k)$ with the naturally defined norm. It can be shown (see [5, Lemma 3.8]) that in the inner product of $H(k)$:

$$\langle z^n, z^m \rangle_{H^p(k)} = \begin{cases} \frac{n}{n!} & \text{if } n = m, \\ 0 & \text{otherwise}, \end{cases} \quad (2.2)$$

which leads to the following characterization of $H^p(k)$:
\[H^p(k) = \left\{ F(z) = \sum_{n \in \mathbb{N}^d} F_n z^n \text{ with } F_n \in \mathbb{C}^p \right\} \]
\[
\text{and } \|F\|_{H^p(k)}^2 = \sum_{n \in \mathbb{N}^d} \frac{n!}{|n|!} \|F_n\|^2 < \infty. \tag{2.3}
\]

It follows directly from characterization (2.3) that for every function \(f \in H^p(k) \), the function \(F(j) = z_j F(z) \) also belongs to \(H^p(k) \) and moreover, \(\|F(j)\|_{H^p(k)} \leq \|F\|_{H^p(k)} \). In other words, the operators \(M_{z_j} \) of multiplication by the coordinate functions \(z_j \) of \(\mathbb{C}^d \),
\[
M_{z_j} F = z_j F(z) \quad (j = 1, \ldots, d)
\]
are contractive on \(H^p(k) \). The \(d \) backward shifts on \(H^p(k) \) are defined as adjoints \(M_{z_j}^* \) of \(M_{z_j} \) \((j = 1, \ldots, d) \) in the metric of \(H^p(k) \). They are also contractions and moreover,
\[
E_0 + M_{z_1} M_{z_1}^* + \cdots + M_{z_d} M_{z_d}^* = I_{H^p(k)}, \tag{2.4}
\]
where \(E_0 \) is the orthogonal projection of \(H^p(k) \) onto the subspace of constant functions:
\[
E_0 F = F(0) \quad (F \in H^p(k)). \tag{2.5}
\]

For a proof of (2.4) see [5, Lemma 2.8].

The scalar version \((p = 1)\) of the next lemma can found in [5, Proposition 1.8]. The vector valued case can be treated in much the same way; we present a proof for the sake of completeness.

Lemma 2.1. For every function \(F \in H^p(k) \) it holds that
\[
\|F(z)\|_{\mathbb{C}^p} \leq \frac{\|F\|_{H^p(k)}}{\sqrt{1 - \langle z, z \rangle}}, \quad z \in \mathbb{B}^d. \tag{2.6}
\]

Proof. Fix \(x \in \mathbb{C}^p \) and \(z \in \mathbb{B}^d \). By the reproducing kernel property and on account of Cauchy’s inequality, we have
\[
|x^* F(z)| = |\langle F, k_z x \rangle_{H^p(k)}| \leq \|F\|_{H^p(k)} \|k_z x\|_{H^p(k)} = \frac{\|F\|_{H^p(k)} \cdot \|x\|}{\sqrt{1 - \langle z, z \rangle}}
\]
and taking the supremum over all unit vectors \(x \in \mathbb{C}^p \), we get (2.6). \(\square \)

The next theorem characterizes finite dimensional subspaces of \(H^p(k) \) that are \(M_{z_j}^* \)-invariant for \(j = 1, \ldots, d \), and is the main result of the present paper.
In this theorem, we use the notion of a joint spectrum, denoted \(\sigma_{\text{joint}} (A_1, \ldots, A_d) \), for a \(d \)-tuple \((A_1, \ldots, A_d)\) of operators on a Hilbert space \(\mathcal{H} \). There are several such notions in the literature, see, for example, [8,12,14], and references therein. Specifically, we adopt here the following definition: The point \(\lambda = (\lambda_1, \ldots, \lambda_d) \in \mathbb{C}^d \) is said to be in the joint spectrum of the \(d \)-tuple of operators \((A_1, \ldots, A_d)\) if there are no bounded operators \(X_1, \ldots, X_d \) in the smallest inverse-closed, norm-closed subalgebra \(\mathcal{B} \) containing \(A_1, \ldots, A_d \) such that
\[
X_1(A_1 - \lambda_1 I) + \cdots + X_d(A_d - \lambda_d I) = I. \tag{2.7}
\]
In finite dimensions joint spectra of commuting operators can be conveniently characterized.

Proposition 2.2. Let \((A_1, \ldots, A_d)\) be a \(d \)-tuple of commuting operators on a finite dimensional Hilbert space \(\mathcal{H} \). Then the following statements are equivalent for a fixed \(\lambda = (\lambda_1, \ldots, \lambda_d) \in \mathbb{C}^d \):

(a) \(\lambda \in \sigma_{\text{joint}} (A_1, \ldots, A_d) \).

(b) There exist a subspace \(\mathcal{M} \subseteq \mathcal{H} \) which is invariant for all \(A_j \)'s and a vector \(x \notin \mathcal{M} \) such that \(A_j x - \lambda_j x \in \mathcal{M} \) for \(j = 1, \ldots, d \). (The case when \(\mathcal{M} = \{0\} \) is not excluded.)

(c) There exists a basis in \(\mathcal{H} \) with respect to which the matrices representing the \(A_j \)'s are all upper triangular, and there exists an index \(q \) \((1 \leq q \leq \dim \mathcal{H}) \) such that \(\lambda_j \) is the \((q,q)\) entry of the matrix representing \(A_j \) for \(j = 1, \ldots, d \).

(d) There exists an index \(q \) as in Item (c) for every basis in \(\mathcal{H} \) with respect to which the matrices representing \(A_j \)'s are all upper triangular.

(e) There exists a nonzero vector \(x \) such that \(A_j x = \lambda_j x, \; j = 1, \ldots, d \).

(f) There do not exist \(X_j \in \mathbb{C}^{n \times n} \) such that (2.7) holds.

Note that existence of a basis with respect to which \(A_1, \ldots, A_d \) are upper triangular is a well-known property of commuting operators on a finite dimensional (complex) Hilbert space.

Proof. (b) \(\Rightarrow \) (a). Arguing by contradiction, if \(X_1, \ldots, X_d \) as in the definition of the joint spectrum existed, then the subspace \(\mathcal{M} \) must be invariant also for \(X_1, \ldots, X_d \). Therefore, the left-hand side of (2.7) when applied to the vector \(x \) belongs to \(\mathcal{M} \), a contradiction with \(x \notin \mathcal{M} \).

(c) \(\Rightarrow \) (b). Clear: Take \(\mathcal{M} = \{0\} \) if \(q = 1 \), \(\mathcal{M} \) the span of the first \(q - 1 \) vectors in the basis if \(q > 1 \), and \(x \) the \(q \)th vector in the basis.

The implications (d) \(\Rightarrow \) (c); (e) \(\Rightarrow \) (a); (e) \(\Rightarrow \) (f) are obvious, whereas (f) \(\Rightarrow \) (a) is clear by the definition of the joint spectrum.

(a) \(\Rightarrow \) (d). Arguing by contradiction, let \(x_1, \ldots, x_n \) be a basis of \(\mathcal{H} \) with respect to which all \(A_j \)'s are upper triangular matrices, and \(\lambda \) is not the \(d \)-tuple of \((q,q)\) entries of \(A_1, \ldots, A_d \) for every index \(q \). We may assume \(n > 1 \) (if \(n = 1 \), the proposition is trivial). Fix \(k, \; 1 \leq k < n \). Let
and write the A_j’s in the block matrix form with respect to the direct sum decomposition $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$:

$$A_j = \begin{bmatrix} A_{j1} & A_{j2} \\ 0 & A_{j3} \end{bmatrix}, \quad j = 1, \ldots, d.$$

Using induction on the dimension of \mathcal{H}, and assuming that the proposition is already proved for Hilbert spaces of smaller dimensions, we obtain that there exist X_{d1}, \ldots, X_d in the subalgebra generated by $I_{\mathcal{H}_1}$ and A_{d1}, \ldots, A_d (in fact, this subalgebra is inverse closed) such that

$$\sum_{j=1}^{d} X_j(A_j - \lambda_j I_{\mathcal{H}_1}) = I_{\mathcal{H}_1}.$$

Then clearly there exist X_1, \ldots, X_d in the subalgebra generated by $I_{\mathcal{H}}$ and A_1, \ldots, A_d such that

$$\sum_{j=1}^{d} X_j(A_j - \lambda_j I_{\mathcal{H}}) = \begin{bmatrix} I_{\mathcal{H}_1} & * \\ 0 & T \end{bmatrix}$$

for some operator T on \mathcal{H}_2. Analogously, there exist Y_1, \ldots, Y_d in the same subalgebra such that

$$\sum_{j=1}^{d} Y_j(A_j - \lambda_j I_{\mathcal{H}}) = \begin{bmatrix} S & * \\ 0 & I_{\mathcal{H}_2} \end{bmatrix}$$

for some operator S on \mathcal{H}_1. Now, letting $\alpha, \beta \in \mathbb{C}$ be such that $\alpha I + \beta S$ and $\alpha T + \beta I$ are both invertible, we obtain that

$$\sum_{j=1}^{d} (\alpha X_j + \beta Y_j)(A_j - \lambda_j I_{\mathcal{H}})$$

is invertible, and therefore λ does not belong to the joint spectrum of (A_1, \ldots, A_d).

(a) \Rightarrow (e). Assume first that one of the A_j’s, say A_1, has more than one distinct eigenvalue. Then without loss of generality we may assume that

$$A_1 = \begin{bmatrix} X_1 & 0 \\ 0 & Y_1 \end{bmatrix},$$

where the matrices X_1 and Y_1 have disjoint spectra. Because the A_j’s commute, we necessarily have

$$A_j = \begin{bmatrix} X_j & 0 \\ 0 & Y_j \end{bmatrix}, \quad j = 2, \ldots, d,$$

conformally with the block diagonal decomposition of A_1. Using the already proved equivalence of (a), (b), (c), and (d), it easily follows that
\[\sigma_{\text{joint}}(A_1, \ldots, A_d) = \sigma_{\text{joint}}(X_1, \ldots, X_d) \cup \sigma_{\text{joint}}(Y_1, \ldots, Y_d), \]

and therefore \(\lambda \) belongs to the right-hand side of (2.8). Now induction on the size \(n \) of matrices \(A_1, \ldots, A_d \) completes the proof in this case. It remains to consider the case when the spectrum of each \(A_j \) consists of only one point. Then it follows from (a) \(\iff \) (c) that \(\lambda \) is the only point in \(\sigma_{\text{joint}}(A_1, \ldots, A_d) \), and \(\lambda_j \) must be the eigenvalue of \(A_j \) \((j = 1, \ldots, d)\). As the commuting matrices \(A_1, \ldots, A_d \) must have a common eigenvector, the proof is complete in this case also. \(\square \)

Theorem 2.3. An \(n \)-dimensional subspace \(\mathcal{M} \) of \(\mathcal{H}^p(k) \) is \(M^{z_j}_j \)-invariant for \(j = 1, \ldots, d \) if and only if \(\mathcal{M} \) is spanned by the columns of a \(p \times n \) matrix valued function

\[F(z) = C(I_n - z_1 A_1 - \cdots - z_d A_d)^{-1}, \quad (2.9) \]

where \(C \in \mathbb{C}^{p \times n} \), \(A_1, \ldots, A_d \) are mutually commuting \(n \times n \) matrices whose joint spectrum is contained in \(\mathbb{B}^d \):

\[A_j A_\ell = A_\ell A_j \quad (j, \ell = 1, \ldots, d), \quad \sigma_{\text{joint}}(A_1, \ldots, A_d) \subset \mathbb{B}^d, \quad (2.10) \]

and

\[\bigcap_{(n_1, \ldots, n_d) \in \mathbb{N}^d} \text{Ker}(C A_1^{n_1} \cdots A_d^{n_d}) = \{0\}. \quad (2.11) \]

Moreover, if the columns of a matrix function \(F(z) \) span a finite dimensional \(M^{z_j}_j \)-invariant \((j = 1, \ldots, d)\) subspace of \(\mathcal{H}^p(k) \), then \(F(z) \) has the form (2.9) with the properties (2.10), but not necessarily (2.11); the property (2.11) holds if and only if the columns of \(F(z) \) form a basis of the subspace.

Some results concerning finite dimensional backward shift invariant subspaces of Arveson spaces were obtained in [2,3]. In particular, an example is given in [3] of two \(2 \times 2 \) noncommuting matrices \(A_1, A_2 \) such that the space spanned by the columns of \(C(I_2 - z_1 A_1 - z_2 A_2)^{-1} \) is not backward shift invariant.

We set for short

\[A = \begin{bmatrix} A_1 \\ \vdots \\ A_d \end{bmatrix} \quad \text{and} \quad Z(z) = \begin{bmatrix} z_1 I_n \ & \cdots \ & z_d I_n \end{bmatrix} \]

and taking advantage of commutativity of the \(A_j \)’s, we set also

\[A^n = A_1^{n_1} A_2^{n_2} \cdots A_d^{n_d} \]

for a multiindex \(n = (n_1, n_2, \ldots, n_d) \).

Remark 2.4. Let \(A \) be a block matrix of the form (2.12) with the \(n \times n \) blocks \(A_j \)’s subject to (2.10). Then the columns of the function
\[(I_n - Z(z)A)^{-1} = \left(I_n - \sum_{j=1}^{d} z_j A_j \right)^{-1} = \sum_{n \in \mathbb{N}} \frac{|n!|!}{n!} A^n z^n \tag{2.13} \]

are analytic on the closure of \(B^d \) and belong to \(\mathcal{H}^n(k) \).

Proof. Using the fact that commuting matrices can be triangularized by simultaneous similarity, we may assume that \(A_1, \ldots, A_d \) are upper triangular. Denoting by \(\lambda_j^{(1)}, \ldots, \lambda_j^{(n)} \) the diagonal of \(A_j \), \(j = 1, \ldots, d \), by Proposition 2.2

\[\sigma_{\text{joint}}(A_1, \ldots, A_d) = \left\{ \lambda^{(k)} = (\lambda_1^{(k)}, \ldots, \lambda_d^{(k)}) \mid k = 1, \ldots, n \right\}, \]

and by (2.10) we have \(\lambda^{(j)} \in B^d \). On the other hand, the diagonal entries of the matrix \(I_n - \sum_{j=1}^{d} z_j A_j \) are equal to \(1 - \langle z, \lambda^{(k)} \rangle \), which cannot be zero for \(z \) in the closure of \(B^d \). It follows that \(I_n - \sum_{j=1}^{d} z_j A_j \) is invertible for every such \(z \), and therefore the inverse of \(I_n - \sum_{j=1}^{d} z_j A_j \) is analytic on the closure of \(B^d \). \(\Box \)

Remark 2.5. If \(F(z) \) has the form \(F(z) = C(I_n - z_1 A_1 - \cdots - z_d A_d)^{-1} \), where \(A_1, \ldots, A_d \) are mutually commuting \(n \times n \) matrices, then the columns of \(F(z) \) are linearly independent (over \(\mathbb{C} \)) if and only if the system \((C; A_1, \ldots, A_d)\) is observable. This follows from an easily verifiable property that \(F(z) \equiv 0 \) for some vector \(x \) if and only if \(x \in \bigcap_{(n_1, \ldots, n_d) \in \mathbb{N}^d} \ker(C A_1^{n_1} \cdots A_d^{n_d}) \).

We now consider the questions of uniqueness of representations (2.9) and of inclusion of backward shift invariant subspaces.

Theorem 2.6. Let \(\mathcal{M} \) be an \(n \)-dimensional \(M^*_x \)-invariant subspace \((j = 1, \ldots, d)\) of \(\mathcal{H}^p(k) \), and let (2.9) and

\[\tilde{F}(z) = \tilde{C} \left(I_n - z_1 \tilde{A}_1 - \cdots - z_d \tilde{A}_d \right)^{-1}, \tag{2.14} \]

be two representations of \(\mathcal{M} \) as in Theorem 2.3. Then there exists a unique invertible matrix \(S \) such that

\[C = \tilde{C} S, \quad A_j = S^{-1} \tilde{A}_j S, \quad j = 1, 2, \ldots, d. \tag{2.15} \]

The statement of the next theorem is completely analogous to that of Proposition 1.2.

Theorem 2.7. Let \(\mathcal{M} \) and \(\mathcal{N} \) be two subspaces of \(\mathcal{H}^p(k) \) that are \(M^*_x \)-invariant \((j = 1, \ldots, d)\), and let

\[F_{\mathcal{M}}(z) = C_{\mathcal{M}} \left(I_n - z_1 A_{\mathcal{M},1} - \cdots - z_d A_{\mathcal{M},d} \right)^{-1}, \]
\[F_{\mathcal{N}}(z) = C_{\mathcal{N}} \left(I_n - z_1 A_{\mathcal{N},1} - \cdots - z_d A_{\mathcal{N},d} \right)^{-1} \]
be representations of \(\mathcal{M} \) and of \(\mathcal{N} \), respectively, with properties (2.10) and (2.11). Then \(\mathcal{M} \subseteq \mathcal{N} \) if and only if
\[
C_{\mathcal{M}} = C_{\mathcal{N}} Q, \quad QA_{\mathcal{M},j} = A_{\mathcal{N},j} Q, \quad j = 1, 2, \ldots, d
\]
for some matrix \(Q \), which necessarily has linearly independent columns.

We conclude the section with a remark that Theorems 2.3, 2.6, and 2.7 remain valid, with the corresponding proofs, for Arveson spaces whose elements are functions with values in an infinite dimensional Hilbert space; in other words, in place of \(\mathcal{H}^p_k \), we consider the Hilbert space
\[
\mathcal{H}^g_k = \left\{ F(z) = \sum_{n \in \mathbb{N}^d} F_n z^n \mid F_n \in \mathcal{G} \right\}
\]
where \(\mathcal{G} \) is a base Hilbert space.

3. Proofs

Lemma 3.1. Let \(A \) be the block matrix of the form (2.12) with the block satisfying conditions (2.10). Let \(x \in \mathbb{C}^n \) and let
\[
F(z) = (I_n - Z(z)A)^{-1} x.
\]
If \(F(z) \in \mathcal{H}^n_k \), then
\[
M^*_{z_j} F = A_j F, \quad j = 1, \ldots, d.
\]

Proof. Fix \(y \in \mathbb{C}^n \) and \(w \in \mathbb{B}^d \). Using the reproducing kernel property and taking advantage of (2.13), we get
\[
y^* (M^*_{z_j} F)(w) = \langle M^*_{z_j} F, k_{w,y} \rangle_{\mathcal{H}^n_k} = \langle F, M_{z_j} k_{w,y} \rangle_{\mathcal{H}^n_k} = \left(\sum_{n \in \mathbb{N}^d} \frac{|n|!}{n!} z^n A^n x, \frac{z_j y}{1 - \langle z, w \rangle} \right)_{\mathcal{H}^n_k}.
\]
Let \(e_j \) be the multiindex in \(\mathbb{N}^d \) with the \(j \)th component equals one and other components equal zero. Then
\[
\frac{z_j}{1 - \langle z, w \rangle} = \sum_{m \in \mathbb{N}^d} \frac{|m|!}{m!} z^{m+e_j} w^m \]
and taking into account (2.2) and (3.3), we get

\[y^*\left(M^*_{c, j} F(w)\right) = \left(\sum_{n \in \mathbb{N}^d} \frac{n!}{n!} z^n A^nx, \sum_{\ell \in \mathbb{N}^d} \frac{\ell!}{\ell!} z^\ell m+e_jy^m y\right)_{\mathbb{H}^n(k)} \]

\[= \sum_{m \in \mathbb{N}^d} \left(\frac{m!}{m!} z^m m+e_j y^m y, \sum_{n \in \mathbb{N}^d} \frac{n!}{n!} z^n n^m y^m y\right)_{\mathbb{H}^n(k)} \]

\[= \sum_{m \in \mathbb{N}^d} \frac{m!}{m!} y^m y^m A^m A_j x = y^* A_j F(w). \]

Since \(y \) and \(w \) are arbitrary, this proves (3.2). \(\square \)

Lemma 3.2. Let \(C \in \mathbb{C}^{p \times n} \) and \(B_1, \ldots, B_d \in \mathbb{C}^{n \times n} \) be such that

\[CW(B_1, \ldots, B_d)(B_j B_\ell - B_\ell B_j) = 0 \quad (3.4) \]

for every \(j, \ell = 1, \ldots, d \) and for every word \(W(x_1, \ldots, x_d) \) of \(d \) noncommuting variables \(x_1, \ldots, x_d \), including the empty word:

\[W(x_1, \ldots, x_d) = x_1^{n_1} \cdots x_d^{n_d}, \quad i_j \in \{1, \ldots, d\}, \quad n_j, r \in \mathbb{N}. \]

Then there exist mutually commuting matrices \(A_1, \ldots, A_d \in \mathbb{C}^{n \times n} \) such that

\[CW(A_1, \ldots, A_d) = CW(B_1, \ldots, B_d) \quad (3.5) \]

for every noncommutative word \(W(x_1, \ldots, x_d) \).

Proof. We use induction on the dimension \(n \) of the matrices \(B_j \)'s. The case when \(n = 1 \) is clear. Suppose the assertion of the lemma holds true for all dimensions less than \(n \) and let

\[\mathcal{K} = \bigcap_{W} \text{Ker}(CW(B_1, \ldots, B_d)), \quad (3.6) \]

where the intersection is taken over all noncommutative words \(W = W(x_1, \ldots, x_d) \). If \(\mathcal{K} = \{0\} \), then condition (3.4) implies that \(B_j B_\ell = B_\ell B_j \) for \(j, \ell = 1, \ldots, d \) and thus, one can choose \(A_j = B_j \).

Let \(\dim \mathcal{K} = \kappa > 0 \). It follows from definition (3.6) that \(\mathcal{K} \) is \(B_j \)-invariant for \(j = 1, \ldots, d \) and that \(\mathcal{K} \subseteq \text{Ker} C \). Write the matrices \(C \) and \(B_j \) (understood as linear transformations with respect to standard bases in \(\mathbb{C}^p \) and \(\mathbb{C}^n \)) relative to the standard basis in \(\mathbb{C}^p \) and a basis \(\mathcal{A} \) in \(\mathbb{C}^n \) the first \(\kappa \) vectors of which belong to \(\mathcal{K} \).

Thus, \(C \) and \(B_j \) take the following block matrix form:

\[C = \begin{bmatrix} 0 & C_1 \end{bmatrix} \quad \text{and} \quad B_j = \begin{bmatrix} B_{j1} & B_{j2} \\ 0 & B_{j3} \end{bmatrix} \quad (j = 1, \ldots, d). \quad (3.7) \]

It follows from (3.7) that

\[CW(B_1, \ldots, B_d) = \begin{bmatrix} 0 & C_1 W(B_{11}, \ldots, B_{d1}) \end{bmatrix} \quad (3.8) \]
and therefore, that
\[CW(B_1, \ldots, B_d)(B_j B_\ell - B_\ell B_j) = \begin{bmatrix} 0 & C_1 W(B_{11}, \ldots, B_{d1}) (B_{j1} B_{\ell1} - B_{\ell1} B_{j1}) \end{bmatrix}. \]
\((3.9)\)

Now we conclude from (3.4) and (3.9) that
\[C_1 W(B_{11}, \ldots, B_{d1})(B_{j1} B_{\ell1} - B_{\ell1} B_{j1}) = 0 \]
for every \(j, \ell = 1, \ldots, d\) and for every noncommutative word \(W\). In other words, matrices \(C_1\) and \(B_{j1}\)'s satisfy the assumptions of lemma. Since the dimension of \(B_{j1}\) is less than \(n\), it follows from the induction hypothesis that there exist mutually commuting matrices \(A_{11}, \ldots, A_{d1} \in \mathbb{C}^{(n-\kappa)\times(n-\kappa)}\) such that
\[CW(A_{11}, \ldots, A_{d1}) = CW(B_{11}, \ldots, B_{d1}). \]
\((3.10)\)

The matrices
\[A_j = \begin{bmatrix} 0 & 0 \\ 0 & A_{j1} \end{bmatrix} \quad (j = 1, \ldots, d) \]
commute and satisfy
\[CW(A_1, \ldots, A_d) = \begin{bmatrix} 0 & C_1 W(A_{11}, \ldots, A_{d1}) \end{bmatrix}, \]
which together with (3.8) and (3.10) implies (3.5). \(\Box\)

For future reference, we give an analytic reformulation of Lemma 3.2.

Lemma 3.3. Let \(C \in \mathbb{C}^{p\times n}\) and \(B_1, \ldots, B_d \in \mathbb{C}^{n\times n}\) be such that
\[C(I_n - z_1 B_1 - \cdots - z_d B_d)^{-1}(B_j B_\ell - B_\ell B_j) = 0 \]
\((3.11)\)
for every \(j, \ell = 1, \ldots, d\) and at every point \(z = (z_1, \ldots, z_d)\) at which the function
\[I_n - z_1 B_1 - \cdots - z_d B_d \]
is analytic. Then there exist mutually commuting matrices \(A_1, \ldots, A_d \in \mathbb{C}^{n\times n}\) such that
\[C(I_n - z_1 A_1 - \cdots - z_d A_d)^{-1} \equiv C(I_n - z_1 B_1 - \cdots - z_d B_d)^{-1}. \]

In fact, in Lemma 3.3 it suffices to require that (3.11) holds for every \(z\) in some open set in the domain of analyticity of (3.12).

Proof of Theorem 2.3. Necessity part. Let \(\mathcal{M} \in \mathcal{H}^p(\mathbb{k})\) be spanned by the columns of the function \(F\) defined in (2.9). Then a general element of \(\mathcal{M}\) is a function of the form
\[H_x(z) = C(I_n - Z(z) A)^{-1} x, \quad x \in \mathbb{C}^n. \]
\((3.13)\)
It follows from Lemma 3.1 that
\[\mathbf{M}^*_{z_j} H x = C \mathbf{M}^*_{z_j} (I_n - Z(z)A)^{-1} x = C (I_n - Z(z)A)^{-1} A_j x \in \mathcal{M} \] (3.14)
and thus, \(\mathcal{M} \) is \(\mathbf{M}^*_{z_j} \)-invariant for \(j = 1, \ldots, d \).

Sufficiency part. Let \(\mathcal{M} \) be an \(n \)-dimensional \(\mathbf{M}^*_{z_j} \)-invariant subspace of \(\mathcal{M}^P(k) \) for \(j = 1, \ldots, d \). Let \(f_1(z), \ldots, f_m(z) \) be a spanning set for \(\mathcal{M} \) (in particular, the case when \(m = n \) is not excluded), and let
\[
\mathbf{F}(z) = \begin{bmatrix}
 f_1(z) & \cdots & f_m(z)
\end{bmatrix}.
\] (3.15)
Since \(\mathcal{M} \) is \(\mathbf{M}^*_{z_j} \)-invariant, there exist matrices \(B_1, \ldots, B_d \in \mathbb{C}^{m \times m} \) such that
\[
\mathbf{M}^*_{z_j} \mathbf{F} = \mathbf{F}(z) B_j \quad (j = 1, \ldots, d).
\] (3.16)
Applying the operator equality (2.4) to the function \(f_\ell \), we get
\[
f_\ell(z) = f_\ell(0) + z_1 (\mathbf{M}^*_{z_1} f_\ell)(z) + \cdots + z_d (\mathbf{M}^*_{z_d} f_\ell)(z) \quad (\ell = 1, \ldots, m),
\]
which can be written in the matrix form as
\[
\mathbf{F}(z) = \mathbf{F}(0) + z_1 (\mathbf{M}^*_{z_1} \mathbf{F})(z) + \cdots + z_d (\mathbf{M}^*_{z_d} \mathbf{F})(z).
\]
Setting
\[
C = \mathbf{F}(0)
\]
and taking into account (3.16) we rewrite the last equality as
\[
\mathbf{F}(z) = C + z_1 \mathbf{F}(z) B_1 + \cdots + z_d \mathbf{F}(z) B_d,
\]
which is equivalent to
\[
\mathbf{F}(z)(I_m - z_1 B_1 - \cdots - z_d B_d) = C.
\]
Then we conclude that
\[
\mathbf{F}(z) = C (I_m - z_1 B_1 - \cdots - z_d B_d)^{-1}
\] (3.17)
first for every point \(z = (z_1, \ldots, z_d) \) in some neighborhood of the origin, and then at every point \(z = (z_1, \ldots, z_d) \in \mathbb{C}^d \) at which \(\mathbf{F} \) is analytic. Since the left-hand side of (3.17) is analytic in \(\mathbb{B}^d \), representation (3.17) holds for all \(z \in \mathbb{B}^d \).

Furthermore, it follows from (3.16) that
\[
\mathbf{M}^*_{z_j} \mathbf{M}^*_{z_\ell} \mathbf{F} = \mathbf{F}(z) B_j B_\ell \quad (j, \ell = 1, \ldots, d)
\]
and since \(\mathbf{M}^*_{z_j} \mathbf{M}^*_{z_\ell} = \mathbf{M}^*_{z_\ell} \mathbf{M}^*_{z_j} \), we obtain the equality
\[
\mathbf{F}(z) B_j B_\ell = \mathbf{F}(z) B_\ell B_j
\] (3.18)
for every \(j, \ell = 1, \ldots, d \) and every point \(z \) at which \(\mathbf{F} \) is analytic. On account of (3.17), equalities (3.18) are equivalent to (3.11), and thus, Lemma 3.3 guarantees existence of mutually commuting matrices \(A_1, \ldots, A_d \in \mathbb{C}^{m \times m} \) such that
\[
\mathbf{F}(z) = C (I_m - z_1 A_1 - \cdots - z_d A_d)^{-1}.
\]
Moreover, it follows from the proof of Lemma 3.2 that the system \((C; A_1, \ldots, A_d)\) is observable if \(f_1(z), \ldots, f_m(z)\) is a basis.

It remains to show that joint spectrum of \((A_1, \ldots, A_d)\) is in \(\mathbb{B}^d\). Without loss of generality, consider the case when the columns of \(F\) are linearly independent; otherwise, replace each \(A_j\) by \(PA_jP\), where \(P\) is the projection along \(\mathcal{N} = \bigcap_{n_j \in \mathbb{N}} \text{Ker } (CA_1^{n_1} \cdots A_d^{n_d})\) on some direct complement to \(\mathcal{N}\). Let us assume that there is a point \(w = (w_1, \ldots, w_d) \in \sigma_{\text{joint}} (A_1, \ldots, A_d) \setminus \mathbb{B}^d\). Since the \(A_j\)'s commute, we can assume without loss of generality that they are upper triangular. By Proposition 2.2(a) ⇔ (e), we can further assume that the top left corner entry of \(A_j\) equals \(w_j\) for \(j = 1, \ldots, d\). But then the first column of \(F\) is equal to

\[
f_1(z) = \frac{C_1}{1 - \langle z, w \rangle},
\]

where \(C_1\) here denotes the first column of \(C\). Since the columns of \(F\) are linearly independent, we have \(f_1 \neq 0\), and therefore \(C_1 \neq 0\). By Lemma 2.1,

\[
\|f_1(z)\|_{C^p} \leq \frac{\|f_1\|_{\mathcal{H}^p(k)}}{\sqrt{1 - \langle z, z \rangle}}, \quad z \in \mathbb{B}^d.
\]

Assume that \(\langle w, w \rangle = 1\), and take \(z = rw = (rw_1, \ldots, rw_d)\) with \(r < 1\). Then (3.20) takes the form

\[
\|f_1(rw)\|_{C^p} \leq \frac{\|f_1\|_{\mathcal{H}^p(k)}}{\sqrt{1 - r^2}},
\]

which is equivalent, by (3.19), to

\[
\frac{C_1^*C_1}{1 - r} \leq \frac{\|f_1\|_{\mathcal{H}^p(k)}}{\sqrt{1 - r^2}}.
\]

Since \(C_1 \neq 0\), the last inequality does not hold true for \(r\) sufficiently close to 1, and the obtained contradiction shows that \(\sigma_{\text{joint}} (A_1, \ldots, A_d)\) does not intersect the unit sphere of \(\mathbb{C}^d\).

If \(\langle w, w \rangle > 1\), then the set \(\{z \in \mathbb{B}^d: \langle z, w \rangle = 1\}\) is not empty and then \(f_1\) is not analytic on \(\mathbb{B}^d\) which contradicts the assumption that \(f_1 \in \mathcal{H}^p(k)\). Thus, \(\sigma_{\text{joint}} (A_1, \ldots, A_d)\) is contained inside \(\mathbb{B}^d\).

Finally, the last assertion of Theorem 2.3 follows from Remark 2.5.

Proof of Theorem 2.6. Since (2.9) and (2.14) represent the same subspace, we have

\[
\tilde{F}(z) = F(z)S
\]

for some matrix \(S\), which is necessarily invertible because the columns of each of \(F(z)\) and \(\tilde{F}(z)\) are linearly independent. Equalities (2.15) are now easily obtained from (3.21). If \(S\) and \(\tilde{S}\) are two matrices satisfying (2.15), then

\[
CV(A_1, \ldots, A_d)S = \tilde{C}V(\tilde{A}_1, \ldots, \tilde{A}_d) = CV(A_1, \ldots, A_d)\tilde{S}.
\]
and therefore
\[CV(A_1, \ldots, A_d)(S - \tilde{S}) = 0, \]
for every word \(V(x_1, \ldots, x_d) \) in commuting variables \(x_1, \ldots, x_d \). The observability of \((C; A_1, \ldots, A_d)\) now implies \(S = \tilde{S} \). \(\square \)

Proof of Theorem 2.7. Note that \(\mathcal{M} \subseteq \mathcal{N} \) is equivalent to \(F_{\mathcal{M}} = F_{\mathcal{N}} Q \) for some matrix \(Q \). Now argue analogously to the proof of Proposition 1.2. We omit further details. \(\square \)

4. Isometric containment of finite dimensional Hilbert spaces

Let us start with a finite dimensional Hilbert space \(\mathcal{H} \) with the inner product \(\langle \cdot, \cdot \rangle_{\mathcal{H}} \). We say that \(\mathcal{M} \) is isometrically contained in \(\mathcal{H}^p(k) \) if \(\mathcal{M} \subset \mathcal{H}^p(k) \) and the inclusion map is an isometry. We conclude the paper with the following characterization of backward shift invariant subspaces, isometrically contained in \(\mathcal{H}^p(k) \).

Theorem 4.1. Let \(\mathcal{M} \) be an \(n \)-dimensional vector space of functions that belong to \(\mathcal{H}^p(k) \), with its inner product \(\langle \cdot, \cdot \rangle_{\mathcal{H}} \), with respect to which \(\mathcal{M} \) is a Hilbert space. Then \(\mathcal{M} \) is \(M^*_z \)-invariant \((j = 1, \ldots, d)\) and isometrically contained in \(\mathcal{H}^p(k) \) if and only if \(\mathcal{M} \) is a reproducing kernel Hilbert space with reproducing kernel
\[
K(z, w) = C (I_n - Z(z)A)^{-1} P^{-1} (I_n - A^*Z(w)^*)^{-1} C^*,
\]
where \(C \in \mathbb{C}^{p \times n} \), \(A \) is of the form (2.12) with blocks \(A_j \)'s such that
\[
A_j A_\ell = A_\ell A_j \quad (j, \ell = 1, \ldots, d), \quad \sigma_{\text{point}}(A_1, \ldots, A_d) \subset \mathbb{B}^d,
\]
and the system \((C; A_1, \ldots, A_d)\) is observable, and where \(P \in \mathbb{C}^{n \times n} \) is a positive definite matrix satisfying the equality
\[
P - \sum_{j=1}^d A_j^* P A_j = C^* C.
\]

It will be convenient to formulate a lemma (which is a particular case of much more general results concerning spectra of elementary operators; see [12], where the joint spectrum is understood in the sense of Proposition 2.2(f)).

Lemma 4.2. Let \((S_1, \ldots, S_d)\) and \((T_1, \ldots, T_d)\) be two commuting \(d\)-tuples of \(n \times n \) matrices. Then the spectrum of the operator
\[
K : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}, \quad K(X) = X - \sum_{j=1}^d S_j X T_j
\]
is the set of complex numbers
\[
\left\{ \sum_{j=1}^{d} \alpha_j \beta_j : (\alpha_1, \ldots, \alpha_d) \in \sigma_{\text{joint}} (S_1, \ldots, S_d),
(\beta_1, \ldots, \beta_d) \in \sigma_{\text{joint}} (T_1, \ldots, T_d) \right\}.
\]

Proof of Theorem 4.1. *Only if.* Let \(f_1(z), \ldots, f_n(z) \) be a basis for \(\mathcal{M} \). Then the Gram matrix

\[
P = ((f_j, f_i)_{\mathcal{M}})_{i,j=1}^{n}
\]

is positive definite and \(\mathcal{M} \) is the reproducing kernel Hilbert space with reproducing kernel

\[
K(z, w) = F(z) P^{-1} F(w)^*,
\]

where \(F = [f_1(z) \cdots f_n(z)] \) (see [10, Example 2]). By Theorem 2.3, \(F \) admits representation (2.9) and thus the reproducing kernel \(K(z, w) \) is of the form (4.1) with matrices \(A_j \)'s satisfying (4.2) and observable system \((C; A_1, \ldots, A_d)\). Next, \(\mathcal{M} \) consists of functions \(H_x(z) \) of the form (3.13) and

\[
\|H_x\|_{\mathcal{M}}^2 = x^* P x.
\]

(4.4)

It remains to show that \(P \) satisfies (4.3). Making use of (3.14) and replacing in (4.4) \(x \) by \(A_j x \) we get

\[
\|M^*_{z_j} H_x\|_{\mathcal{M}}^2 = x^* A_j^* P A_j x \quad (j = 1, \ldots, d)
\]

(4.5)

and it follows directly from (3.13) that

\[
\|H_x(0)\|_{C^p}^2 = x^* C^* C x.
\]

(4.6)

Next, applying the operator identity (2.4) to the function \(H_x \) and taking the inner product of both parts of the obtained equality (in the metric of \(\mathcal{H}^p(k) \)) with \(H_x \), we get

\[
\langle H_x(0), H_x \rangle_{\mathcal{H}^p(k)} + \sum_{j=1}^{d} \langle M_{z_j} H_x, H_x \rangle_{\mathcal{H}^p(k)} = \|H_x\|_{\mathcal{H}^p(k)}^2,
\]

which is equivalent to

\[
\|H_x(0)\|_{C^p}^2 + \sum_{j=1}^{d} \|M_{z_j}^* H_x\|_{\mathcal{H}^p(k)}^2 = \|H_x\|_{\mathcal{H}^p(k)}^2.
\]

(4.7)
Taking into account that \(\| H_x \|_\mathcal{M} = \| H_x \|_{\mathcal{H}^P(k)} \) for every element \(H_x \) of \(\mathcal{M} \) and substituting (4.4)–(4.6) into (4.7) we come to

\[
x^* C^* C x + \sum_{j=1}^{d} x^* A_j^* P A_j x = x^* P x,
\]

which is equivalent to (4.3), since \(x \) is arbitrary.

If \(\mathcal{M} \) is the reproducing kernel Hilbert space with a reproducing kernel \(K \) of the form (4.1), it consists of functions \(H_x \) of the form (3.13) with norm given by (4.4); see [10, Example 2]. Making use of (2.13) and (2.2), one can compute the \(\mathcal{H}^P(k) \) norm of \(H_x \):

\[
\| H_x \|_{\mathcal{H}^P(k)}^2 = \left\langle \left(C(I_n - Z(z)A)^{-1} x, C(I_n - Z(z)A)^{-1} x \right) \right\rangle_{\mathcal{H}^P(k)}
\]

\[
= \left\langle \sum_{n \in \mathbb{N}^d} \frac{|n|!}{n!} z^n C A^n x, \sum_{n \in \mathbb{N}^d} \frac{|n|!}{n!} z^n C A^n x \right\rangle_{\mathcal{H}^P(k)}
\]

\[
= \sum_{n \in \mathbb{N}^d} \frac{|n|!}{n!} x^* (A^n)^* C^* C A^n x.
\]

Thus, for every \(x \in \mathbb{C}^d \),

\[
\| H_x \|_{\mathcal{H}^P(k)}^2 = x^* \tilde{P} x,
\]

where

\[
\tilde{P} = \sum_{n \in \mathbb{N}^d} \frac{|n|!}{n!} (A^n)^* C^* C A^n.
\]

(4.9)

It is readily seen that \(\tilde{P} \) satisfies the generalized Stein equation

\[
\tilde{P} - \sum_{j=1}^{d} A_j^* \tilde{P} A_j = C^* C.
\]

By (4.2) and Lemma 4.2, this equation has a unique solution and therefore, \(P = \tilde{P} \).

Now it follows from (4.4) and (4.8) that \(\| H_x \|_\mathcal{M} = \| H_x \|_{\mathcal{H}^P(k)}^2 \) which means (since \(H_x \) is a general element of \(\mathcal{M} \)) that \(\mathcal{M} \) is isometrically contained in \(\mathcal{H}^P(k) \). Finally, the \(M_{z_j}^* \)-invariance of \(\mathcal{M} \) (for \(j = 1, \ldots, d \)) follows from Theorem 2.3.

References