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Systematic sampling is more precise than simple random sampling when spatial autocorrelation is
present and the sampling effort is equal, but there is no unbiased method to estimate the variance from a
systematic sample. The objective of this paper is to assess selected variance estimation methods and
evaluate the influence of spatial structure on the results. These methods are treated as models and a
complete enumeration of Norway was used as the modeling environment. The paper demonstrates that
the advantage of systematic sampling is closely related to autocorrelation in the material, but also that
the improvement is influenced by periodicity and drift in the variables. Variance estimation by strati-
fication with the smallest possible strata gave the best overall results but may underestimate the vari-
ance when spatial autocorrelation is absent. Treating the sample as a simple random sample is a safe and
conservative alternative when spatial autocorrelation is absent or unknown.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Spatial sampling surveys fill an important gap between the
traditional, labor-intensive wall-to-wall field survey and the effi-
cient, but in many cases rather inaccurate mapping by remote
sensing (Wyatt, 2000; Verburg et al., 2011). The approach is used
from the global down to the sub-national level. The Food and
Agriculture Organization of the United Nations used systematic
sampling together with satellite remote sensing for their Global
Forest Resources Assessment 2010 (FAO, 2010). This approach
reduced the amount of image processing and allowed FAO to
involve national experts who revised the sample areas. The com-
bination of field inventories and systematic sampling was also
chosen when the European statistical agency (Eurostat) developed
the LUCAS (Land use/cover area frame survey) program, carried out
in the EU countries (Eurostat, 2003; Martino and Fritz, 2008). The
Norwegian (Dramstad et al., 2002) and Swedish (Stahl et al., 2011)
landscape monitoring programmes both rely on area frame surveys
where aerial photo interpretation is supplemented with observa-
tions from field inventories. Norway has also implemented a na-
tional area frame survey of land cover and outfield land resources
(Strand, 2013). Spatial sampling methods are furthermore used in
the Norwegian (Tomter et al., 2010), Swedish (Axelsson et al., 2010)
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and Finnish (Tomppo and Tuomainen, 2010) National Forest In-
ventories. The sampling approach allows these surveys to employ
field observations and interpretation of high resolution imagery for
large areas within acceptable budgets.

Spatial sampling surveys can be implemented following a
number of different sampling strategies (Wang et al., 2012).
Two of the most common are simple random sampling and
systematic random sampling. Systematic random sampling is
known from statistical theory to produce more precise estimates,
in the spatial context and under certain conditions, than simple
random sampling because the sampling units are distributed
more evenly across the sampled area (Bellhouse and Sutradhar,
1988; Dunn and Harrison, 1993; D'Orazio, 2003; Ambrosio
et al.,, 2004). This is an advantage when nearby sampling units
show a high degree of positive correlation (Cochran, 1977; Flores
et al., 2003), as often is the case with land use/land cover data
(Legendre, 1993).

Systematic samples do have their limitations in situations with
systematic variation in the landscape itself, appearing e.g. as wave
or chessboard like structures (Fattorini et al., 2006). Systematic
sampling also makes it more difficult to adapt to budget changes
during a survey (Stehman, 2009). The overall notion is, however,
that systematic sampling more often than not is found to be an
efficient sampling strategy for land cover and other land resource
surveys (Thompson, 2002; Stehman, 2009).
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The advantage of systematic sampling does, however, come
with a hitch. This sampling method can produce more precise es-
timates than simple random sampling, but there is no unbiased
estimation method for calculation of the uncertainty and docu-
mentation of the higher precision in these surveys. The reason is
that the systematic sampling design is using a single random
starting point where only one unit is drawn randomly. The other
units are spaced from each other at a fixed distance (Madow and
Madow, 1944). This design can be described as drawing a single
“cluster” of regularly spaced individuals. The sampling unit is the
cluster and the sample size is n = 1 (Thompson, 2002). As a
consequence, it is not possible to use ordinary variance estimation
methods since they require a denominator of n — 1.

There have been attempts to provide unbiased estimation of
variance in systematic samples by combining repeated systematic
samples with several starting points (Koop, 1971). The approach
suggested by Koop with a few replicates (for example two or three
starting points chosen at random) is unbiased but unstable (the
variance of the estimated variance is large). Other attempts use
stratification (Gautschi, 1957) or a mixture of systematic and simple
random sampling (Zinger, 1980; Wu, 1984). All these methods rely
on drawing more than one single systematic sample, which is fine
in an experimental situation but rarely possible in applied large-
scale surveys in forestry, land use/land cover studies or ecology.

The normal approach for handling a systematic sample is to
disregard the fact that the systematic sample is a cluster sample
and compute the variance using the estimators intended for simple
random sampling (Milne, 1959; Cochran, 1977; Wolter, 1984, 2007).
This approach results in a biased and in many cases significantly
overestimated result (Matern, 1960; Dunn and Harrison, 1993;
Sarndal et al., 2003), and the benefit from lower variance in sys-
tematic samples is therefore hidden (Fewster et al., 2009).

Alternative approaches using traditional variance estimation
combined with a local indicator are demonstrated by e.g. Matern
(1947), Wolter (2007) and Gallego and Delincé (2010). The princi-
ple of the local variance estimation methods is to treat neighboring
observations as a pseudo-stratum. The strata can be overlapping or
non-overlapping. The variation within these strata replaces the
usual deviation from the overall mean in the traditional simple
random sampling variance estimation method, resulting in a least
biased estimate of the variance (Matern, 1960; Wolter, 2007). The
advantage of the local variance estimation method is that it takes
the spatial ordering into account and thus also the autocorrelation.

A local variance estimation method is currently used for esti-
mation of the variance of the mean in the Finish National Forest
inventory (Tomppo and Heikkinen, 1999). Likewise, Gallego and
Delincé (2010) used a local estimator based on the eight nearest
neighbors to each sampling point for variance estimation of the
LUCAS surveys. These methods reportedly demonstrate promising
results for variance estimation in applied systematic random
sampling surveys. Tests involving completely enumerated popula-
tion have been carried out in ecology (Aubry and Debouzie, 2000)
but were limited to simple processes and small areas. Rigorous
testing on real land use/land cover data is rarely reported. Only a
few studies (Dunn and Harrison, 1993; D'Orazio, 2003; Opsomer
et al., 2012) use real land use/land cover or forestry data and a
complete enumeration of a landscape (although of restricted size)
for validation. There is also a lack of examples showing how
different variance estimation methods behave in situations with
different spatial structure and over a range of different land use and
land cover types. Finally, the literature is remarkably vague with
respect to precisely how the proposed methods are implemented.
The programmer is therefore left with a number of open questions
when trying to implement the methods discussed in the literature
in an operative environment.

The challenge described here can be approached as a need for
model evaluation. At the basic level, a statistical sample — with its
sampling units and selected features — is a model of an environ-
ment. The assessment of how well the sample reflects the popu-
lation is a question of model performance and the choice between a
simple random sample and a systematic sample is, in this context, a
choice between two different models. Furthermore, a situation
arises when systematic sampling has been chosen where the un-
certainty of the resulting statistical estimators has no (known)
mathematical solution. It is therefore necessary to develop and
apply indicators to describe the uncertainty. These indicators are
also models and the evaluation of alternative indicators is a study
and assessment of model performance.

The purpose of this study is clearly not to break new ground
in the field of spatial statistics. The relevant theory is well
established. Our purpose is instead to examine estimation
methods for variance calculation on different land use/land cover
types in a survey by applying methods proposed for the more
general characterization of the performance of environmental
models (Bennett et al., 2013). The justification is partly a need for
an empirical demonstration in order to explain the advantage of
systematic sampling to the wider land monitoring community,
partly to arrive at an applicable method for local variance esti-
mation, which can be implemented in the setting of an opera-
tional land monitoring program. We use a complete enumeration
of an extended (in our case national) dataset, which acts as a
pseudo-truth. This dataset includes a combination of land use/
land cover types with heterogeneous spatial structure covering a
credible range of real-world situations.

The research questions examined in this study are: (1) Is the
simple random sampling variance estimation method always a
conservative estimate of the variance for two-dimensional sys-
tematic random samples?; (2) Does local variance estimation
methods form a more precise estimate of the variance than the
simple random sampling method?; (3) How do the different local
estimation methods compare?; and (4) How are the results influ-
enced by the spatial structure and distribution of the different land
use/land cover types?

2. Material and methods
2.1. Material

The material used in the study consist of a digital land use/land cover map of
Norway (AR50; cartographic scale 1:50,000) with seven land use/land cover
classes listed in Table 1. The spatial units of AR50 are polygons and the minimum
mapping unit is 1.5 ha with a geometric accuracy of 20 m. AR50 is available on
Internet for viewing and downloading (http://kilden.skogoglandskap.no, last
accessed June 25th 2014). The study area used in the analysis was the entire
Norwegian mainland, totally 324,099 km?.

The coverage of the different land use/land cover types is far from uniform, as
shown in Fig. 1. Built-up and agricultural land are both marginal land use/land cover
types in Norway. Built-up land covers only 0.5% of the total area and is highly
dispersed. Agriculture covers 3.4% of the area but the pattern is clustered with some
areas having a much higher percentage of agriculture, close to 50% around the Oslo
fiord. Forest and open land are the two dominant land use/land cover types in

Table 1

Descriptive statistics (sum, population mean and population variance) for the seven
land use/land cover types in the gridded version of the national land use/land cover
map AR50. N = 350,514 grid cells.

Land cover class N Sum (km?)  Mean u (km?)  Variance ¢2
1 Built-up land 350,514 1859.25 0.00530 0.002105
2 Agriculture 350,514 12,658.59 0.03611 0.013735
3 Forest 350,514 126,113.46 0.35980 0.134033
4 Open land 350,514 140,148.26 0.39984 0.171475
5 Mire 350,514 21,722.85 0.06197 0.016112
6 Snow/ice 350,514 3038.19 0.00867 0.005934
7 Water 350,514 18,559.31 0.05295 0.020069
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Norway, covering 35.6% (forest) and 40.4% (open land) of the total area. The “open
land” is predominantly heath and does in our study include both coastal and
mountain heath. Both forest and open land are found in abundance, exhibiting
complementary large scale pattern were areas are covered with either forest or open
land. Mire shows a slightly clustered pattern resembling agriculture, but covering a
larger area (6.2% of total). Snow/ice is again a small land use/land cover type (0.9% of
total) but exhibits a highly clustered pattern (due to the presence of large glaciers) as
opposed to the more dispersed built-up land. Water differs from the other land use/
land cover types with an allover more even distribution of mixed size lakes covering
altogether 5.3% of the area.

The AR50 map was partitioned into quadratic 1 square kilometer tiles based on
the standardized statistical grid for Norway published by Statistics Norway (Strand
and Bloch, 2009), resulting in a population consisting of N = 350,514 regular tiles. By
using a GIS overlay function, the acreage of the seven land use/land cover classes was
calculated for each tile (grid cell). The result was an N x 7 matrix of georeferenced
land use/land cover observations representing the entire population of tiles.

The population of tiles was subdivided into K = 100 clusters by randomly
choosing a block of 10 by 10 tiles to initiate the partition. Each of the 100 tiles in this
block was used as the starting point for one cluster, by including every 10th grid cell
in each cardinal direction from the initial tile. Each cluster represents a possible
systematic random sample from the population, and the 100 clusters defined by the
exercise include all the possible clusters in the population (based on the standard-
ized grid and a sampling intensity using 10 km intervals). In order to facilitate
computation, column number (c¢) and row number (r) within the cluster was also
assigned to each grid cell.

Since the entire population was known, statistics representing true values could
be computed for each of the seven land use/land cover variables (Table 1). The table
includes the total area, population mean () and variance (¢2) for each class.

2.2. Method

The study was conducted in three steps: The first step aimed to demonstrate the
efficiency of systematic random sampling compared to simple random sampling;
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the second step compared different methods for estimation of the variance of the
systematic random sample; and the final step examined the influence of spatial
structure and distribution on the variance of the different land use/land cover types.
The entire population was available in the material for this study, and so was the
pseudo-truth consisting of all the 100 clusters representing the possible systematic
random samples given the chosen partition. The research questions could therefore
be addressed as a model performance characterization exercise (Bennett et al., 2013)
with the sampling methods and variance estimation algorithms treated as models
and by using the entire population and a complete set of clusters as the modeling
environment.

2.2.1. Efficiency of systematic random sampling

Simple and systematic random sampling was examined by comparing the
uncertainty resulting from different sampling strategies under otherwise similar
conditions and with the same sampling effort. The uncertainty measure selected
for the comparison was the variance of the estimated X from samples with equal
sample size, thus representing the same sampling effort, but obtained with the
two different sampling strategies. Due to the irregular shape of the country, the
number of tiles in each of the 100 clusters varied between 3474 and 3538. The
mean number of tiles was 3505.14 which was truncated to 3505 and a simple
random sample size of n = 3505 was used as the basis for comparison.

The variance of the estimator X computed from a simple random sample of size n
is
_d*(N-n)

VAR(X), = N=T) (1)

The expected variance of land cover estimates based on simple random sam-
pling VAR(X),, can thus be found by using ¢? from Table 1 and setting N = 350,514
and n = 3505. The corresponding (exact) variance based on systematic random
sampling (VAR(X)SYS) was found by using all the 100 clusters available in the study
to determine empirically the distribution of the 100 estimated mean values (X).

Percent of LULC type
in 10 km by 10 km grid
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Fig. 1. Spatial distribution of the seven land use/land cover types in Norway shown as proportions in 10 km x 10 km grid cells.
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where K is the number of potential clusters and n; is the number of tiles in cluster j.
The variance VAR(x)SYS was compared to VAR(X) by applying an F test where

s2 VAR®),

F= 53 VAR(X)SYS

3)

with the expected larger variance placed as the numerator and the degrees of
freedom set to 3504 (n — 1) and 99 (K — 1). The test is one-sided, because a sys-
tematic random sample is expected to have less variance than the equivalent
simple random sample. The null-hypothesis (no difference) is rejected if the F value
is larger than a selected critical F value (here Fy 5350499 = 1.29). The result is
obviously closely linked to the unit size (tiles) and cluster size (distance between
samples), but examination of this variability is not within the scope of the paper.
Here, the test is only intended as an indicator of the efficiency of the systematic
sampling strategy when the sampling effort is fixed. In our case, the units are 1 km?
grid cells and the sampling effort is approximately 3500 sample units.

2.2.2. Variance estimation methods for systematic random samples

The second research question was concerned with finding the most appropriate
way to estimate the variance from a systematic random sample in the normal sit-
uation, when only a single sample is available. Several methods (algorithms) were
compared. The algorithms were selected due to the relative ease of implementation
and are all applicable in an operational environment. Each method was applied for
every land use/land cover class and used for all the 100 clusters in the material,
resulting in an empirical approximation of the variation to be expected by that
particular method.

The common, but reportedly biased approach is to estimate the variance in a
systematic random sample by using the traditional simple random sampling vari-
ance estimation method. The grid cells in the cluster are treated as independently
and randomly sampled individuals giving a sample size of n. Notice that the result,
VAR(X)SRS, is basically different from VAR(X),, which was used above. While VAR(X),,
is the variance expected in a true simple random sample, VAR(X)SRS is the estimate
of the variance obtained when a systematic random sample is handled as a simple
random sample.

The estimate obtained by applying the methodology from simple random
sampling is:

n
1 =2

VARR)SRS = (X —X)

P @)
where x; is the amount of a land use/land cover type in tile i and n is the number of
grid cells in the cluster and X is the sample mean.

Several variance estimators based on local differences were evaluated. These
estimators use the concept of a “neighborhood” around each sampling unit. This
neighborhood is a “sample neighborhood”, not a “population neighborhood”. It
consists of a set of 3 x 3 units located geographically next to each other in the sample.

The first local estimator VAR(X)LO9 was computed using the average local
variance for overlapping neighborhoods of 3 by 3 sample tiles:

n
VAR(X)LO9 = ;117 > ot (5)
i=1

where n is the total number of tiles in the cluster and giz is the variance in the sample
neighborhood around tile i:

2 _
o =

1k

m

(x5 —x)° (6)
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where X; is the local mean in the neighborhood around tile i and m is the number of
valid data values in the sample neighborhood. This is usually nine in a 3 by 3 tile
neighborhood, but may be less if some of the neighbors are missing in the sample
(which may be the case along the coastline and the national border).

The second local estimator VAR(x)LO5 resembled VAR(X)LO9 but was computed
excluding the four corner tiles of the 3 x 3 sample neighborhood. The five remaining
tiles were the tile at the center of the neighborhood and the four sample tiles
directly east, west, north and south of this tile. The effect of this limited neighbor-
hood is that the distance between the tiles in the computation is shorter and the
effect of autocorrelation increases.

The third local estimator VAR(x)ST9 was calculated using non-overlapping strata
where each stratum is a 3 by 3 tile sample neighborhood. The estimation methods
from stratified random sampling were then applied to the sample
o?(N; — ny)

k
VAR(X)ST9 = > w7? (N 1) (7)
i=1 i

where k is the number of strata, n; is the sample size in stratum i (valid cases, mostly
nine in our case), 01_2 is the variance in stratum i, N; is the population size in stratum i
(in our case always set to 100 x n; since each tile in the sample “represents”
10 x 10 = 100 tiles) and:

w N (8)

where N;j is the population size in stratum i as explained above and N is the total
number of tiles in the population.

The fourth local estimator VAR(X)ST4 was similar to VAR(X)ST9 but the size of the
stratum was limited to four tiles (2 by 2).

The last local estimator VAR(X)SEM used the geostatistical concept of semi-
variance. Each pair of observations in the dataset is separated by a certain dis-
tance and can be grouped into a range of distance intervals, known as lags. The semi-
variance for a lag h is calculated from the pairs of observations falling into that
particular lag as
1) = 5 3 (i) (©)

om 2 i i+h
where m is the number of pairs in lag h and each pair i consist of the observations x;
and x; 4 p.

VAR(R)SEM = v(hmin)/n (10)

where hnip is the distance between the closest observations in the sample (10 km in
our case) and n is the number of observations in the sample.

This collection of variance estimation methods for the systematic random
sample was compared with the exact variance among the 100 clusters: VAR(X)SYS.
The variance estimates were also drawn as box-plots in order to allow visual in-
spection assisting the interpretation of the results (Fig. 2).

2.2.3. Spatial structure and distribution of different land use/land cover types

The fourth research question was concerned with the impact of spatial structure
and distribution of the different land use/land cover types on the variance. Spatial
structure is here mainly a question about the influence of spatial autocorrelation and
was first approached by calculating Global Moran's I (Moran, 1950) for distances up
to and including the separation between the systematic sampling units (10 km).
Computation was carried out following Legendre and Legendre (1998, p. 715)

_WE Wi = %) (¥ - X)
I - %)

where wj;is 1 for all pairs included in the computation, W is the total number of pairs
included and X is the sample mean. Moran's I reportedly outperforms other tests in
simulation experiments (Anselin, 2001) but may, as all global measurements of
spatial autocorrelation, be less useful when the basic assumption of stationarity is
violated (Anselin, 1995). It should be pointed out that we did not attempt to use GMI
as a precise measurement of spatial autocorrelation by e.g. calculating statistical
significance. GMI is in this context only used as an indicator.

The assumption, based on existing theory (Cochran, 1977), is that the advantage
of systematic sampling is linked to the presence of spatial autocorrelation. The F-
ratio for the land use/land cover classes (described above) was used as an indicator
of the advantage of systematic sampling over simple random sampling. The F-ratio is
used here as an index, not a statistic. There is no test of the significance of the F-ratio
involved. The purpose is to investigate the assumed relationship between autocor-
relation and the advantage of systematic sampling. According to this assumption,
the F-ratio will increase as GMI is increasing.

The assumption can be described as an expected presence of a (possibly linear)
relationship between the F-ratio and GMI

GMI (11)

F=1.0+c-GMI (12)

where F is the F-ratio, GMI is the autocorrelation and c is the impact of autocorre-
lation on the F-ratio. The constant (1.0) is the expected F-ratio when spatial auto-
correlation is absent. The relationship was explored graphically using a scattergram.

In order to further investigate and be able to discuss the results, we also ob-
tained a variogram for each of the land cover classes. The variogram is a curve
describing the semi-variance (Equation (9) above) as a function of the lag distance
(h). The variogram also illustrates the autocorrelation in the material and shows how
the spatial structure is related to distance. A variogram representing a stationary
process (where variation depends on distance alone, independent of location)
usually shows a smooth curve first increasing with distance but then flattening at a
certain level (called the sill) at a particular distance (called the range). The sill
represents the population variance and the range can be interpreted as the extent of
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Fig. 2. Results from the variance estimation methods (SRS, LO9, LO5, STR9, STR4 and SEM) calculated from a population divided into 100 clusters by systematic sampling on a 10 by
10 km frame. Dashed (upper) line shows the variance expected from a simple random sample of the same size. The exact variance for the mean of the 100 systematic samples
(VAR(X)SYS) is shown as the dotted (lower) line. Three land use/land cover classes are included, representing the typical patterns.

the autocorrelation effect. A variogram that does not become flat but continues to
rise or assumes other shapes is a sign of “drift” in the material. Variation is in this
case not only an effect of distance, but also of location.

3. Results
3.1. Proficiency of systematic random sampling

The expected variance of the estimator X for the seven land use/
land cover types, computed from a simple random sample of size
3505 and a systematic random sample of approximately the same
size are listed in Table 2. The results of the F test comparing the two
variance estimates are also listed in Table 2.

The calculated Fvalue is larger than the critical F value (1.29) and
p is therefore smaller than 0.05 for all land cover classes except

built-up land. The variance of the estimator for built-up land is also
smaller when systematic random sampling is employed, but the
difference is negligible and not statistically significant. The results
indicate that systematic random sampling, as expected, is more
efficient than simple random sampling for all seven land use/land
cover classes but the improvement is only statistically significant
for six of the seven classes.

3.2. Variance estimation methods for systematic random samples

The empirically determined exact variance of the estimated x
from systematic random sampling VAR(X)SYS is compared with
each of the proposed estimations of the same variance in Table 3.

Comparison of Tables 2 and 3 shows that VAR(X)SRS returns a
result slightly higher than, but close to, the variance from a real
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Table 2

Expected variance from a simple random sample of n = 3505 (VAR(X),) and the
empirically determined (exact) variance in a systematic random sample of
approximately the same size (VAR(X)SYS). Both are transformed from km? (used in
Table 1) to % for increased readability. The two variance measurements are
compared using an F test. Global Moran's I (GMI) is a measure of the spatial auto-
correlation in the material.

Land cover class VAR(X) VAR(X)SYS F p GMI

1 Built-up land 0.0061 0.0050 1.19 0.14 0.049
2 Agriculture 0.0392 0.0213 1.84** 0.01 0.231
3 Forest 0.3824 0.1219 3.14** <0.01 0.357
4 Open land 0.4892 0.1440 3.40™ <0.01 0.401
5 Mire 0.0460 0.0186 247 <0.01 0.504
6 Snow/ice 0.0169 0.0062 2.75** <0.01 0.340
7 Water 0.0573 0.0341 1.68** <0.01 0.132

simple random sample of the same size (VAR(X)3505). This method
also clearly overestimates the variance when systematic random
sampling is employed.

All the remaining methods are better alternatives
thanVAR(X)SRS, but none manage to give a correct estimate of the
variance. The results obtained by three of the methods (LOx and
ST9) are fairly similar, and all three are better than SEM. Among
these, LO5 was consistently better than the other two. ST4 does in
most cases produce results closest to the true variance, but does in
some also situations underestimate the variance.

The results can be inspected in Fig. 2 where the variance es-
timates are shown as box plots. Each plot represents one of the
seven land use/land cover types. For each land use/land cover
type, the plot shows the empirically determined exact variance for
systematic random sampling with the selected sample size as the
lower dotted line. The variance expected from a simple random
sample of approximately the same size is shown as the upper
dashed line. Each of the boxes represents one of the variance
estimation methods in the study. The box representing the vari-
ance estimated when the sample is treated as a simple random
sample (SRS) is generally the least preferable method (furthest
from the lower dotted line) and (as expected) always close to the
variance expected from a true simple random sample (upper
dashed line). None of the methods give results systematically
close to the lower dotted line, but ST4 is in general returning the
best results. ST4 is also the method with the least scattered results.
The disadvantage regarding ST4 is the fact that it falls below the
dotted line for built-up land, showing that the variance in this case
is underestimated.

3.3. Spatial structure and distribution of different land use/land
cover types

Global Moran's I (GMI) was used to calculate a spatial autocor-
relation index for all of the seven different land use/land cover
types. All variables exhibit some degree of spatial autocorrelation
(Table 2). The spatial autocorrelation was particularly high for mire

Table 3

(0.504) and open land 0.401). The land use/land cover types Forest
(0.357), snow/ice (0.340) and agriculture (0.231) revealed a more
intermediate spatial autocorrelation, while build-up land (0.050)
and water (0.132) returned index values showing relatively small
spatial autocorrelation.

The F-ratio (Table 2) was used as an indicator of the advantage of
systematic sampling over simple random sampling. The relation-
ship between the F-ratio and the spatial autocorrelation is illus-
trated in Fig. 3. There is an apparent linear relationship between the
F-ratio and the spatial autocorrelation. We fitted a reference line
(the dashed line in Fig. 3) at

F=1.0+5.0-GMI

where F is the F-ratio (as in Table 2)and GMI is the autocorrelation
(Global Moran's I). This reference line is indicative of the relation-
ship. The positive effect of systematic sampling, indicated by F, is
increasing steadily as the autocorrelation increases. Fig. 3 does,
however, also show marked deviation from the general rule, in
particular with respect to the category mire where the F-ratio (here
interpreted as the advantage of applying systematic sampling) is
considerably less than expected from observation of the spatial
autocorrelation.

4. Discussion

In our experiment, two-dimensional systematic sampling per-
formed better than simple random sampling for all seven land use/
land cover types. The improvement was statistically significant for
six of the types. This is as expected and only confirms frequently
reported results from other studies (see Introduction). The
improvement is closely related to spatial autocorrelation in the
material, with highest improvement for the land use/land cover
types exhibiting the strongest autocorrelation, which is in agree-
ment with e.g. Payandeh (1970), Dunn and Harrison (1993) and
D'Orazio (2003). The exception is mire where only moderate
improvement with systematic sampling notwithstanding the
presence of relatively high spatial autocorrelation.

The enhanced accuracy was hidden when the variance was
estimated by treating the systematic sample as a simple random
sample and neither of the alternative variance estimation methods
examined here were able to fully account for the improvement.
VAR(x)ST4, where small local neighborhoods consisting of groups of
four tiles each were treated as non-overlapping strata did in most
cases give the best results, but underestimated the variance for
built-up land, where spatial autocorrelation is particularly weak.
ST4 is not unique in this respect. All the methods, including SRS
occasionally underestimate the variance for built-up land.

The analysis of the impact of spatial autocorrelation on the F-
ratio, which was used as an indicator of the advantage of systematic
random sampling, showed a detectable and fairly linear relation-
ship between the two variables (Fig. 3). The advantage of system-
atic sampling is increasing with increasing autocorrelation. Mire

The empirically determined variance of the estimate from systematic random sampling (SYS) compared to the average value obtained by the proposed estimation methods
(SRS, LO9, LO5, ST9, ST4 and SEM). The measurements are transformed from km? (used in Table 1) to % for increased readability. See text for further explanation of each method.

Land cover class VAR(R)SYS VAR(R)SRS VAR(X)LO9 VAR(X)LO5 VAR(X)ST9 VAR(R)ST4 VAR(R)SEM
1 Built-up land 0.0050 0.0066 0.0052 0.0046 0.0057 0.0041 0.0056
2 Agriculture 0.0213 0.0433 0.0301 0.0261 0.0304 0.0235 0.0328
3 Forest 0.1219 0.4054 0.2253 0.1954 0.2213 0.1655 0.2428
4 Open land 0.1440 0.5157 0.2761 0.2390 0.2783 0.2031 0.2944
5 Mire 0.0186 0.0479 0.0334 0.0293 0.0330 0.0251 0.0368
6 Snow/ice 0.0062 0.0185 0.0136 0.0118 0.0127 0.0094 0.0156
7 Water 0.0341 0.0621 0.0524 0.0466 0.0498 0.0394 0.0608




L. Aune-Lundberg, G.-H. Strand / Environmental Modelling & Software 61 (2014) 87—97 93

4
3,509 Open land pd
. - &
,
,
,
Forest 7
[ ] - s
3,00 e
e
e
Snow/ite
[ 24
'
L’
s Mire

2,50 L °
=
=
5
'S g

e
2,00 #
2 Agriculture
s [ ]
Watér
,9
L4
1,50 .
d
’ d
'
§uiﬁ~up
L J
7
7
4
1004 7
7
T T T T T T T
00 01 02 03 04 05 06

Global Moran's | for lag 0 - 10 kilometers

Fig. 3. Relationship between the improved accuracy obtained by systematic sampling (F-ratio) and spatial autocorrelation (Global Moran's I). The reference line is drawn at
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represents and anomaly, since the benefit of systematic sampling is
substantially less than expected from the observed autocorrelation.

4.1. Individual land cover classes

Built-up land was the land use/land cover class where the
advantage of systematic sampling was smallest (and not statisti-
cally significant). Built-up land is a marginal land use/land cover
class in Norway and also the class with the lowest spatial auto-
correlation. Norwegian settlements are small and the unit of
observation in our study is a 1 km? tile. The extent of built-up land
in a tile therefore has only weak predictive strength with respect to
the amount of built-up land in the adjacent sample tiles at 10 km
intervals. The variogram (Fig. 4) shows a curve reaching the sill
(representing the population variance and shown as a dotted hor-
izontal line in the graph) after approximately 12 km only. The
examined variance estimation methods for systematic random
sampling (including treating the sample as a simple random sam-
ple) all produced fairly identical results for built-up areas, indi-
cating that there is little or no advantage from applying systematic
sampling in this situation, but also no disadvantage either. There is,
however, a risk of underestimating the variance when local esti-
mators are used for this class.

Agriculture covers 3.4% of the land in Norway. This land use/
land cover type exhibits stronger autocorrelation than built-up
land, probably because agricultural use is closely linked to
climate, soil conditions and arability and therefore more predict-
able. As a result, systematic random sampling give significantly
better results than simple random sampling for this class. The
semivariogram (Fig. 4) shows pronounced periodicity. The func-
tion does not stabilize at the sill (dotted line representing the
population variance) but climbs to a peak at around 400 km before
it falls back below the sill. There is a hint of drift as well, with a
small but steady rise in semivariance over increasing distance.
Agriculture deviates from the overall trend in Fig. 3, showing that
the effect of applying systematic sampling is less than expected

from the observed spatial autocorrelation. Agriculture does in this
sense resemble mire.

The two land use/land cover classes’ forest and open land
exhibit the most evident spatial autocorrelation in the material,
shown by a noticeable “range” (distance) where the function is
flattening. These are also the two classes where the positive effect
of systematic sampling is highest. We notice that both classes are
associated with smooth variograms showing minor periodicity and
a slight, probably negligible drift.

Mire has the strongest autocorrelation among the land use/land
cover classes studied here, but stand out as markedly different from
the other classes in Fig. 3. The variogram (Fig. 4) also show strong
periodicity and does not stabilize at the sill but climbs to a peak at
around 500 km before it falls back to the sill. A second peak is found
around 1000 km and a pronounced negative drift is observed
beyond this distance. This is linked to the regional patterns also
visible in Fig. 1 where large occurrences of mire are seen in south-
eastern, central and northern Norway. Within these regions,
another pattern is visible where Mire frequency change between
valleys and mountains. Mire is mainly found on flat areas found as
valley bottoms, moors and old glacial moraines, but rarely on the
steeper slopes separating these locations. The result is a spatial
mosaic, although without clearly discernible patterns.

Snow/Ice also has a complex variogram, temporarily reaching
the sill after approximately 25 km but showing marked periodicity
over longer distance. There is also negative drift in the variogram,
similar to the drift exhibited by mire. Permanent snow and ice is a
marginal land cover type mainly found as glaciers in mountain
areas with high precipitation but the occurrence is massive when
the type is present. The advantage of systematic sampling is still
pronounced, and higher than for mire.

The final land use/land cover type, water (actually fresh water)
exhibits weak but visible spatial autocorrelation. The advantage of
systematic random sampling over simple random sampling is still
clearly present and also statistically significant. Water is found
allover Norway, the spatial pattern is scattered and the spatial
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distribution is fairly random. There are, however, three important
differences between built-up land and water: there is more land
covered with water than built-up areas (5.3% against 0.5%), water is
found more frequently (the class is present in 42% of the tiles) than
built-up land (only present in 4% of the tiles) and water is a natural
land cover class, clearly different form the artificial class built-up
land.

Payandeh (1970) found that systematic random sampling per-
formed poorly when applied to uniformly spaced forest pop-
ulations. This is to some extent contradictory to our result with
respect to water. Water is a uniformly spread land use/land cover
type in Norway, but we found that systematic random sampling
still was a more efficient sampling method than simple random
sampling (although not necessarily the most efficient). Dunn and
Harrison (1993) found that natural vegetation with complex and
varied spatial pattern was related to poor performance of system-
atic sampling. This effect was also to some extent observed in our
study. Systematic sampling performed best when autocorrelation
was present and the process fairly stationary, without periodicity
and drift. Examples are in our case forest and open land, but also
water where the variogram was smooth and systematic sampling
performed well notwithstanding a lesser autocorrelation.

Three classes stand out in our study: Built-up land because
systematic sampling had no detectable positive effect due to very
small spatial autocorrelation, and agriculture and mire where the
benefit from applying systematic sampling were pronouncedly
lower than expected from the spatial autocorrelation. The latter
results may possibly be linked to non-stationarity or periodicity in
the material. This could possibly be controlled for by de-trending,
e.g. by applying median polish (Cressie, 1991; Strand, 1998) or by
using a local (instead of a global) autocorrelation statistic (Anselin,
1995).

Among the variance estimation methods tested here, the
methods based on local variation all gave more correct variance
estimates than when the sample was treated as a simple random
sample. The local estimation methods still largely overestimated
the variance except for built-up land. This is not necessarily a
problem. In applied use with real systematic random samples and
no pseudo-truth, it has been argued that variance estimation
methods should slightly overestimate the variance to be sure that
the variance is not underestimated (Tomppo and Heikkinen, 1999;
Heikkinen, 2006). The method that gave the best overall results,
VAR(X)ST4, systematically underestimated the variance for the least
autocorrelated land type and must therefore be used with great
caution.

4.2. Autocorrelation

While our approach to estimation of the variance under sys-
tematic sampling is design-based, other studies follow an alter-
native geostatistical model-based approach that accounts for
spatial autocorrelation. Aubry and Debouzie (2000) obtained good
results with this approach, but also reported that their method
was highly sensitive to the approximation used in the calculation.
The experimental variograms for the seven land cover/land use
classes (Fig. 4) show the autocorrelation structure in the material.
Periodicity is present in all seven variograms and some vario-
grams also exhibit pronounced drift in the material (seen as a
systematic rise or fall toward the right end of the curve). Clearly,
none of the land use/land cover classes studied here are associ-
ated with simple and smooth variograms with predictable
behavior. It is therefore difficult to use methods relying on an
exact mathematical description of the curves represented by the
variograms as required by model-based geostatistical approaches
to uncertainty.

Systematic sampling is a design where the entire population is
divided into groups (clusters) and one of these clusters is randomly
selected as the sample. The total variation in the population has two
components: The variation within the clusters and the variation
between the clusters. The variance of the mean is the variation
between the clusters. Local variation between the adjacent sample
units is a coarse measurement of the variation between samples
caused by the differences between the origin of each cluster sam-
ple. The local variance estimators work because they emphasize
this short-distance variation.

The absence of a positive effect from systematic sampling for
built-up land and the low effect for agriculture and mire must be
caused by a relatively high variation between the clusters. This is
normal when spatial autocorrelation is absent and there is little or
no difference in variation between and within the clusters. The
explanation in the presence of spatial autocorrelation could be
linked to systematic patterns on a scale that interfere with the
combination of observation units and distance between observa-
tions in the selected area frame.

Our study used a sampling scheme with fixed distance of 10 km
between the center of the tiles in the sample and a fixed tile size of
1 by 1 km. These choices necessarily influence the effect of peri-
odicity and autocorrelation. This is in agreement with Dunn and
Harrison (1993) who found that the gain using systematic
random sampling for different land use/land cover types varied
with the sampling intensity. We have, in this study, concentrated
on comparing methods under controlled settings but acknowledge
the need for further studies of the effect of variable sampling
intensities.

5. Conclusion
5.1. Characterizing model performance

A five step procedure for performance evaluation of models is
suggested by Bennett et al. (2013). The key elements are 1) reas-
sessment of the aim, scale and scope; 2) characterization of the data
for calibration and testing; 3) visual analysis to gain overview of
overall performance; 4) selection of basic performance criteria; and
5) consideration of more advanced methods to handle problems.
This is also the procedure followed by our paper, which in this
respect is an example of a study of model performance.

The aim, scale and scope of systematic sampling and the related
variance indicators is to improve the accuracy of environmental
information (relative to simple random sampling) within a
reasonable budget and provide variance estimates that reveal the
benefit of the systematic approach. The study demonstrate that
systematic sampling in most cases represent an improvement, and
that at least some of the variance indicators provide reasonable
information about the uncertainty.

There was no calibration involved and therefore no concern
about dependency between the models and the data used for
testing. Our test bed was a complete enumeration based on a
dataset with national coverage and included seven different land
cover classes with variable characteristics, magnitude and spatial
distribution. The setting ensures that many aspects of data vari-
ability are covered. The shortcoming is that the study was limited to
observation units of a fixed size (1 km?) and with a fixed sampling
frequency (every 10 unit in both directions). The study could be
improved by introducing other sampling unit (grid cell sizes) and
sampling frequencies.

Visual analysis was an important tool to gain overview of the
overall performance of the models. The main instrument was the
box plots that clearly demonstrated the differences between
alternative models and for different land cover classes. The box
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plots showed the difference between simple random sampling and
systematic sampling and simultaneously visualized how the vari-
ance indicators behaved in relation to the two sampling methods.
We found that the visual analysis was an excellent tool that allowed
us to compare and assess models without determining strict formal
criteria in advance.

The basic performance criteria for comparing the two sampling
methods was the negative (rejection of a null-hypothesis) result of
an F-test of the empirically determined mean variance expected
from each sampling method. The test is easily interpretable and
the result clear. Formally, the test could instead have been carried
out as a Monte-Carlo simulation using repeated pairs of randomly
selected samples (one simple random and one systematic). This
would defuse the possible criticism of an F-test comparing fixed
numbers. The advantage of systematic sampling is, however,
already an accepted fact and this part of the performance test can
be view as added value rather than as a main objective of the
study.

The basic performance criteria for comparing the variance in-
dicators were linked to the visual interpretation of the box plots. An
acceptable indicator should not underestimate the variance in a
systematic sample, i.e. the entire box representing the variation in
the outcome of the indicator should be placed above the line rep-
resenting the empirically determined variance among the sys-
tematic samples. Furthermore, the desirable indicator would be the
indicator returning the lowest variance estimate among those in-
dicators acceptable according to the first criterion. Finally, if several
indicators performed equally according to the first two criteria, the
indicator with the smallest internal variation (most compact box in
the box plot) would be preferable.

Finally, alternative methods using geostatistical approaches are
acknowledged and referenced in the Introduction as well as in the
Discussion. The models tested by us are simple and have the
advantage that they easily can be used in operational surveys and
monitoring. Alternatives based on geostatistical (Aubry and
Debouzie, 2000) and non-parametric approaches (Opsomer et al.,
2012) may give more precise results, especially when auxiliary
variables are available.

5.2. Next step

Many factors may affect the results found in this study. As
pointed out by Wang et al. (2010) the performance of a spatial
sampling scheme is controlled by the trinity relationship of the
target domain, the geographical distribution of the sample and the
statistical method that is applied. It is expected that the use of more
detailed land use/land cover types can include more rare and scarce
classes exhibiting weaker autocorrelation or being more suscepti-
ble to periodicity. This could reduce the advantage of employing
systematic random samples, and the benefit of using local variance
estimation method will be smaller. Furthermore, although sys-
tematic sampling in most cases is shown to be more efficient than
simple random sampling, it is not necessarily the most efficient
sampling strategy. Other approaches, including different forms of
stratification, could be as efficient and also carry the benefit of an
unbiased variance estimation method. The methods and software
described by Wang et al. (2013) could be used to examine these
questions in depth.

Our study examined a selection of variance estimation methods
for two-dimensional systematic samples. The list is not exhaustive
and alternative methods may give an estimate closer to the pseudo-
truth. We also notice that local estimation methods work well in
most circumstances but underestimate the variance in certain sit-
uations. The modeling environment with a complete enumeration
allows us to describe these situations. Better methods to assess the

appropriateness of local estimators in a real situation when only a
single sample is known will be needed. These questions all warrant
further studies.

Our study has demonstrated an advantage of systematic
random sampling over simple random sampling and linked the
improvement to spatial autocorrelation. The study has also shown
that local estimators of variance are superior to variance estimated
as if the sample was a simple random sample when systematic
random sampling is employed and spatial autocorrelation is pre-
sent. Between the local estimators of variance, stratification into
non-overlapping neighborhoods using the smallest possible strata
(2 by 2 tiles) was in most cases the best method, although prone to
underestimate the variance when the autocorrelation was small.
Until contrary results or better estimators are available, we
therefore recommend the use of systematic random sampling
coupled with the local estimator of variance using 2 by 2 tile
stratification when spatial autocorrelation is present. The SRS
estimator is a safe alternative in the absence of spatial autocor-
relation, or when the order of magnitude of the spatial autocor-
relation is unknown.

References

Ambrosio, L., Iglesias, L., Marin, C., Del Monte, ].P., 2004. Evaluation of sampling
methods and assessment of the sample size to estimate the weed seedbank in
soil, taking into account spatial variability. Weed Research 44, 224—236.

Anselin, L., 2001. Spatial econometrics. In: Baltagi, B.H. (Ed.), A Companion to
Theoretical Econometrics. Blackwell Publishing, Malden, pp. 310—330.

Anselin, L., 1995. Local indicators of spatial association — LISA. Geographical Anal-
ysis 27, 93—155.

Aubry, P., Debouzie, D., 2000. Geostatistical estimation variance for the spatial mean
in two-dimensional systematic sampling. Ecology 81, 543—553.

Axelsson, A.-L., Stahl, G., Senderberg, U., Petersson, H., Fridman, J., Lundbstrem, A.,
2010. Sweden. In: Tomppo, E., Gschwanter, T., Lawrence, M., McRoberts, R.
(Eds.), National Forest Inventories, Pathways for Common Reporting. Springer,
pp. 541-554.

Bellhouse, D.R., Sutradhar, B.C., 1988. Variance estimation for systematic sampling
when autocorrelation is present. The Statistician 37, 327—332.

Bennett, N.D., Barry, EW.C., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
Jakeman, A.J., Marsili-Libelli, S., Newham, LTH. Norton, J.P, Perrin, C.,
Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassioan, V.,
2013. Characterising performance of environmental models. Environmental
Modelling & Software 40, 1-20.

Cochran, W.G., 1977. Sampling Techniques, third ed. John Wiley & Sons, New York.

Cressie, N.A.C., 1991. Statistics for Spatial Data. John Wiley & Sons, New York.

D'Orazio, M., 2003. Estimating the variance of the sample mean in two-dimensional
systematic sampling. Journal of Agricultural, Biological, and Environmental
Statistics 8, 280—295.

Dramstad, W.E., Fjellstad, W.J., Strand, G.H., Mathiesen, H.F., Engan, G., Stokland, J.N.,
2002. Development and implementation of the Norwegian monitoring pro-
gramme for agricultural landscapes. Journal of Environmental Management 64,
49—-63.

Dunn, R., Harrison, A.R., 1993. Two-dimensional systematic sampling of land use.
Applied statistics 42, 585—601.

Eurostat, 2003. The Lucas Survey. European Statisticians Monitor Territory. Office
for Official Publications of the European Communities, Eurostat, Luxembourg.

FAO, 2010. Global Forest Resources Assessment 2010, Main report, Food and Agri-
culture Organization of the United Nations, Rome.

Fattorini, L., Marcheselli, M., Pisani, C., 2006. A three-phase sampling strategy for
large-scale multiresource forest inventories. Journal of Agricultural, Biological,
and Environmental Statistics 11, 296—316.

Fewster, R.M., Buckland, S.T., Burnham, K.P., Borchers, D.L.,, Jupp, PE., Laake, ].L.,
Thomas, L., 2009. Estimating the encounter rate variance in distance sampling.
Biometrics 65, 225—236.

Flores, L.A., Martinez, L., Ferrerm, C.M., 2003. Systematic sample design for the
estimation of spatial means. Econometrics 14, 45—61.

Gallego, J., Delincé, J., 2010. The European land use and cover area-frame statistical
survey. In: Benedetti, R., Bee, M., Espa, G., Piersimoni, F. (Eds.), Agricultural
Survey Methods. John Wiley & Sons, Chichester, pp. 149—168.

Gautschi, W., 1957. Some remarks on systematic sampling. Annals of Mathematical
Statistics 28, 385—394.

Heikkinen, J., 2006. Assessment of uncertainty in spatially systematic sampling. In:
Kangas, A., Maltamo, M. (Eds.), Forest Inventory. Methodology and Applications,
10. Springer, Dordrecht, pp. 155—-176.

Koop, J.C., 1971. On splitting a systematic sample for variance estimation. Annals of
Mathematical Statistics 42, 1084—1087.

Legendre, P., 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74,
1659-1673.


http://refhub.elsevier.com/S1364-8152(14)00201-1/sref1
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref1
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref1
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref1
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref2
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref2
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref2
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref3
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref3
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref3
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref3
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref4
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref4
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref4
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref5
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref5
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref5
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref5
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref5
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref5
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref5
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref6
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref6
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref6
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref7
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref7
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref7
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref7
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref7
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref7
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref7
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref8
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref8
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref9
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref9
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref10
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref10
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref10
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref10
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref11
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref11
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref11
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref11
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref11
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref12
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref12
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref12
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref13
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref13
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref14
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref14
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref15
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref15
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref15
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref15
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref16
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref16
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref16
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref16
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref17
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref17
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref17
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref18
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref18
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref18
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref18
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref18
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref18
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref19
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref19
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref19
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref20
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref20
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref20
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref20
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref21
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref21
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref21
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref22
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref22
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref22

L. Aune-Lundberg, G.-H. Strand / Environmental Modelling & Software 61 (2014) 87—97 97

Legendre, P., Legendre, L., 1998. Numerical Ecology, second English edition. Elsevier,
Amsterdam.

Madow, W.G., Madow, LH., 1944. On the theory of systematic sampling, I. The
Annals of Mathematical Statistics 15, 1-24.

Martino, L., Fritz, M., 2008. New Insight into Land Cover and Land Use in Europe.
Land Use/cover Area Frame Statistical Survey: Methodology and Tools. Statistics
in focus 33. Eurostat, Luxemburg.

Matern, B., 1947. Methods of Estimation the Accuracy of Line and Sample Plot
Surveys. Meddelanden fran Statens Skogforskningsinstitutt 36.

Matern, B., 1960. Spatial variation. Stochastic models and their application to some
problems in forest surveys and other sampling investigations. Meddelanden
fran Statens Skogs- forskningsinstitut 49, 1—155.

Milne, A., 1959. The centric systematic area-sample treated as a random sample.
Biometrics 15, 270—297.

Moran, P.A.P,, 1950. Notes on continuous stochastic phenomena. Biometrika 37, 17—23.

Opsomer, ].D., Francisco-Fernandez, M., Li, X., 2012. Model-based non-parametric
variance estimation for systematic sampling. Scandinavian Journal of Statis-
tics 39, 528—542.

Payandeh, B., 1970. Relative efficiency of two-dimensional systematic sampling.
Forest Science 16, 271—-276.

Stehman, S.V., 2009. Sampling designs for accuracy assessment of land cover. In-
ternational Journal of Remote Sensing 30, 5243—-5272.

Strand, G.-H., 1998. Large-scale variations in radial tree growth in Norway: an
application of median polish for spatial trend detection. Applied Geography 18,
153—-168.

Strand, G.-H., 2013. The Norwegian area frame survey of land cover and outfield
land resources. Norsk Geografisk Tidsskrift — Norwegian Journal of Geography
67, 24—35.

Strand, G.-H., Bloch, V.V.H., 2009. Statistical Grids for Norway. Documentation of
National Grids for Analysis and Visualization of Spatial Data in Norway. Sta-
tistics Norway, Oslo.

Stahl, G., Allard, A., Esseen, P.-A., Glimskar, A., Ringvall, A., Svensson, J., Sundquist, S.,
Christensen, P., Torell, A., Hogstrom, M., Lagerqvist, K., Marklund, L., Nilsson, B.,
Inghe, O., 2011. National inventory of landscapes in Sweden (NILS) — scope,
design, and experiences from establishing a multiscale biodiversity monitoring
system. Environmental Monitoring and Assessment 173, 579—-595.

Sarndal, C.E., Swensson, B., Wretman, J., 2003. Model Assisted Survey Sampling.
Springer, New York.

Thompson, S.K., 2002. Sampling, second ed. John Wiley & Sons, New York.

Tomppo, E., Heikkinen, J., 1999. National forest inventory of Finland — past, present
and future. In: Alho, ]. (Ed.), Statistics, Registries, and Science. Experiences from
Finland. Statistics Finland, Helsinki, pp. 89—108.

Tomppo, E. Tuomainen, T, 2010. Finland. In: Tomppo, E. Gschwanter, T,
Lawrence, M., McRoberts, R. (Eds.), National Forest Inventories, Pathways for
Common Reporting. Springer, pp. 185—206.

Tomter, S.M., Hylen, G., Nilsen, J.E., 2010. Norway. In: Tomppo, E., Gschwanter, T.,
Lawrence, M., McRoberts, R. (Eds.), National Forest Inventories, Pathways for
Common Reporting. Springer, pp. 411—424.

Verburg, P.H., Neumann, K., Nol, L., 2011. Challenges in using land use and land
cover data for global change studies. Global Change Biology 17, 974—989.
Wang, J.-F,, Haining, R., Cao, Z.D., 2010. Sample surveying to estimate the mean of a
heterogeneous surface: reducing the error variance through zoning. Interna-

tional Journal of Geographic Information Science 24, 523—543.

Wang, J.-F, Stein, A., Gao, B.-B., Ge, Y., 2012. A review of spatial sampling. Spatial
Statistics 2, 1-14.

Wang, ].-F, Jiang, C.-S., Hu, M.-G,, Cao, Z.-D., Guo, Y.-S., Li, L.-F, Liu, T.-]., Meng, B.,
2013. Design-based spatial sampling: theory and implementation. Environ-
mental Modelling & Software 40, 280—288.

Wolter, K.M., 1984. An investigation of some estimators of variance for systematic
sampling. Journal of American Statistical Association 79, 781—790.

Wolter, K.M., 2007. Introduction to Variance Estimation, second ed. Springer, New
York.

Wu, C.FJ., 1984. Estimation in systematic sampling with supplementary observa-
tions. Sankhya: The Indian Journal of Statistics, Series B (1960—2002) 46,
306—315.

Whyatt, B.K., 2000. Vegetation mapping from ground, air and space — competitive
or complementary techniques? In: Alexander, R., Millington, A.C. (Eds.),
Vegetation Mapping: from Patch to Planet. John Wiley & Sons, Chichester,
pp. 3—15.

Zinger, A., 1980. Variance estimation in partially systematic sampling. Journal of the
American Statistical Association 75, 206—211.


http://refhub.elsevier.com/S1364-8152(14)00201-1/sref23
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref23
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref24
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref24
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref24
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref25
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref25
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref25
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref26
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref26
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref26
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref27
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref27
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref27
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref27
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref27
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref28
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref28
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref28
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref29
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref29
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref30
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref30
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref30
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref30
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref30
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref31
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref31
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref31
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref32
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref32
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref32
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref33
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref33
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref33
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref33
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref34
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref34
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref34
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref34
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref34
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref35
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref35
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref35
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref36
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref37
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref37
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref37
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref38
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref38
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref39
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref39
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref39
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref39
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref39
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref40
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref40
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref40
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref40
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref41
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref41
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref41
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref41
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref42
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref42
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref42
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref43
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref43
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref43
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref43
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref44
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref44
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref44
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref45
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref45
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref45
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref45
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref45
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref46
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref46
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref46
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref47
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref47
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref48
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref48
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref48
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref48
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref48
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref48
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref49
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref49
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref49
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref49
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref49
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref49
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref49
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref50
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref50
http://refhub.elsevier.com/S1364-8152(14)00201-1/sref50

	Comparison of variance estimation methods for use with two-dimensional systematic sampling of land use/land cover data
	1 Introduction
	2 Material and methods
	2.1 Material
	2.2 Method
	2.2.1 Efficiency of systematic random sampling
	2.2.2 Variance estimation methods for systematic random samples
	2.2.3 Spatial structure and distribution of different land use/land cover types


	3 Results
	3.1 Proficiency of systematic random sampling
	3.2 Variance estimation methods for systematic random samples
	3.3 Spatial structure and distribution of different land use/land cover types

	4 Discussion
	4.1 Individual land cover classes
	4.2 Autocorrelation

	5 Conclusion
	5.1 Characterizing model performance
	5.2 Next step

	References


