
On Power Means of Positive Quadratic Forms 

Erwin Lutwak 

Department of  Mathematics 
Polytechnic Institute of  New York 
333 ]ay Street 
Brooklyn, New York 11201 

Submitted by Richard A. Brualdi 

ABSTRACT 

Some power means of positive definite quadratic forms are closely related to the 
hmdamental scalar functions of the matrix associated with the quadratic form. This 
relation can (among other things) be used to give new proofs of some of the classical 
matrix inequalities. 

Associated with a real n × n symmetric matrix A = (ai/) is the quadratic 
form 

QA(X)= ~ aijxixj, 
i , ] = l  

where x denotes the vector (x 1 . . . . .  x ,) .  The matrix is called positive definite if 
the associated quadratic form is positive for all nonzero vectors x. We shall be 
concerned with the restriction of QA to the unit sphere, S " - I .  

QA: S"-* --, (0, o¢), 

where (0, ~ )  denotes the set d positive reals. 
We shall investigate some of the properties of the power means of the 

ftmction QA. Some of the power means of QA are closely related to some of 
the fundamental  scalar functions (such as the determinant and trace) of A. 
Among other things, this relation leads to new proofs of some of the classical 
matrix inequalities. 

For reference regarding matrices, quadratic forms, and matrix inequalities, 
the reader is referred to [1]. Chapter  6 of [1] contains some material in a spirit 
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similar to that of this note. For material concerning power means and analytic 
inequalities, the reader is referred to [2]. 

Given a continuous function 

f : s  n 1 -~ (o, oo), 

and a real munber p 4: 0, the p-mean of f ,  Mp [ f ] ,  is defined by 

1 f P u  

where ~0, denotes the volume of the unit ball in Euclidean n-space, R", and 
dS(u) denotes the area element of S n ~ at u. For p = - o o ,  0, or oo, the 
p-mean of f is defined by 

M , [ f ]  = lim Mr[f] .  
r ~ p  

For a positive definite matrix A (or the quadratic form associated with A), 
we define the p-mean of A, ~p[A], by 

• [ A ]  =Mo/z[QA ]. 

Hence, for a real p :~ 0, we have: 

%[A]= ,, ,(u, Au)P/2aS(u) , ( , )  

where ( . , . )  denotes the usual inner product in R n. 
We list some of the consequences of our definition. (All matrices A, B are 

assumed to be positive definite. All scalars ~ are also assumed to be positive.) 

1. For all p and all positive scalars ~, 

% [ X A ]  = ~ , % [ a ]  

and 

%[x] =1, 

where I denotes the unit matrix. 
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2. For a f ixed matrix A,  (I)p[A]/s continuous in p. 

Proof. This follows directly from the continuity (in p)  of the power 
means Mp (see [2, p. 143]). • 

3. I f  - oo <~ p < q <~ oo, then 

(I)p[A] ~< @q[A], 

with  equality i f  and only i r a  = hi .  

Proof. This follows from the observation that unless f i s  constant, Mn[ f ]  
is strictly increasing in 19 (see [2, p. 144]) and that for symmetric A, we have 
QA c o n s t a n t  if and only if A = ~I. • 

4. I f  - oo < p < q < r < oo, then 

%[a]o('-"~ .< %[ a 1""-"~,. [ a 1"" "', 

with  equality i f  and onlg i r a  = hi .  

Proof. If one of the indices (p, q, or r) is 0, the inequality reduces to the 
inequality in statement 3. If none of the indices is equal to 0, then the result is 
obtained by a direct application of the H~lder integral inequality [2, p. 140]. 

5. I f  A <., B, and - oo < p < oo, then 

(I)n [ A ] ~ (I)n [ B ] , 

with  equality i f  and only i f  A = B. 

Proof. The inequality follows easily from the representation given in ( * ). 
The conditions for equality follow from the observation that, for symmetric A 
and B, we have Qa = QB ff and only if A = B. • 

6. I f  p > 2, then 

%[a + B] ~ %[A]+%[B], 
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with equality i f  and only i r A  = XB. I f  p < 2, then 

qbv[A + B] >/di~p [A] + di~p [B],  

with equality i f  and only i r A  = 2t B. For p = 2, 

*2[A + B] = qb2[A ] + * 2 [ B ] .  

ERWlN LUTWAK 

Proof. The inequalities are simple consequences of the Minkowski in- 
tegral inequality [2, p. 146] (see also [2, p. 138]). The conditions for equahty 
follow from the observation that, for symmetric matrices A and B, we have 
QA = XQB if and only if A = X B. • 

7. I r A  and B are orthogonally equivalent, then 

* , [ A ]  =¢I~p[B] 

for all 19. 

Proof. The proof is straightforward. For orthogonally equivalent matrices 
A and B, there is an orthogonal matrix P such that A = P'BP (where P'  
denotes the transpose of P). For real p =~ 0 

1 -~ p ,BPu)P/zds (u)]  2/p %[a]= (u, 

1 ]2/p =  (Pu,'Pu)PJ2as(u) l 

We make the change of variables v = Pu and note that since P is orthogonal, 
the transformation maps S"-1  bijectively onto S"-1  and has a Jacobian of 
absolute value 1. Hence, we have 

1 )P/2dS(v)] zip 

=%[8]. 

For p = - ~ ,  0, or ~ ,  a limit argument now yields the desired result. • 
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. 

1 t r ( A ) ,  q~2[A] = n 

where tr( A ) denotes the trace of A. 

Proof. Since every positive definite matrix is orthogonally equivalent to a 
positive definite diagonal matrix, by the previously established result we need 
prove this only for diagonal matrices. For a positive definite diagonal matrix 
D with diagonal entries A 1 . . . . .  A m we have 

dP~[ D ] = n-~, fs,_l ( u, Du) dS( u ) 

where u = (u 1 . . . . .  un). Since 

12 
1 ~ y,.Xiu~idS(u) ' 

nO9 n n - l i =  1 

l f s n _ l U / ~  d S ( u )  = 1, 

the result follows. 

9. 

~oo [A] = ~I(A)  

while 

M _ o o [ f ] = m i n  ( f ( u ) l u ~ S  n - l ) ,  

and =X.(A), 

where hi(A ) and An(A ) denote the largest and smallest of  the eigenvalues of 
A, respectively. 

Proof. This follows from the observations (see [2, p. 144]) that 

Moo[f]  = max{ f ( u ) l n E S  n-1 }, 
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and (see [1, p. 113]) that 

2h(A) = max { (u, Au)lu~S "-~ }, 

while 

)~, , (A)=min(  (u, A u ) l u ~ S  "-1}.  
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10. 

~ .[A]=PAI 1/", 

where IAI denotes the determinant of  A. 

Proof. To prove this we first observe that a positive definite matrix A 
determines an ellipsoid, e(A), defined by 

e ( A ) =  { xl(x, Ax)~l} .  

It is trivial to verify that the polar coordinate equation of the surface of this 
ellipsoid is given by 

r ( u ) = ( u ,  Au) 1/2 [ u ~ S , _ l ] .  

Thus, if we use the formula for the (n-dimensional) volume in polar coor- 
dinates, we have 

V o l [ e ( A ) ] = l ~ , _ •  ,(u, Au) -" / zdS(u) .  

On the other hand, the linear transformation g = v/Ax, where 7~- denotes 
the positive square root of A, magnifies (n-dimensional) volume by a factor of 
[v~-[ = ]A[ 1/2. Since this transformation maps e(A) into the unit ball (which 
has volume w,), it follows that 

IAll/ZVol[ e( A ) ] = o9 n. 
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Hence, we have 

I A 1 - 1 / 2 - -  . . Au )-"/2 aS( u ). (**) 

from which the result follows. • 

Several of the classical matrix inequalities are immediate consequences of 
the results developed above. For example, by combining statements 3, 8, and 
10, we obtain 

iAIX/, <, 1 t r (A),  
n 

with equality i f  and only i f  A = ~ I. 

If we combine 6 and 10, we obtain the Minkowski determinant inequality: 

I A + BI~/" >1 IAla/" + IBI ~/~, 

with equality i f  and only i r a  = XB. 

Thus, the Minkowski determinant inequality can be viewed as a special case 
of the Minkowski integral inequality. 

Relations between the power means of a matrix and the fundamental 
scalar functions of A (other than the ones obtained above) can be obtained by 
using 10 [or its equivalent (* *)], substituting A + }~I for A, expanding, and 
equating coefficients. 
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