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ABSTRACT 
The purpose of this note is to show that, under mild assumptions, obstacles 

to holomorphic continuation of vector-valued mappings are the same as in the 
case of scalar-valued functions. 

We denote by E and F two separated complex locally convex spaces; 
by P a completion of F containing it; by H( U; F) the vector space of 
all mappings defined on the non-void open subset U of E with values 
in F which are holomorphic when considered as having its values in 3 ; 
by wF the vector space F endowed with the weak topology a(F, F’) 

defined on F by its topological dual space F’ ; by &%’ the algebraic dual 

space of F’, where the natural vector space isomorphism i: F --f &8’ is 
a completion mapping when the two spaces in question are respectively 

endowed with the weak topologies a(F, F’) and o(&@, F’). 
Once E is fixed, we say that weak holomorphy plus slight holomorphy 

imply holomorphy on E if, for every F, we have that f E H( V; F) when- 
ever V and W are connected non-void open subsets of E with W C J’, 
fEH(V;wF) and f ~WEH(W;F). 

Once F is fixed, we say that it is confined if, for every E, we have that 
f-l(F) = U whenever U is a connected non-void open subset of E, 
f E H(U; P) and f-l(F) h as a non-void interior. To check this requirement, 
it suffices to take U as the open disc of center 0 and radius 1 in E = C, 
to assume that f E H( U; 9) and that 0 is interior to f-l(F), and to conclude 
that f-l(F) = U. 

LEE. wF is ?onfined if and only if F is confined. 

PROOB. Necessity being trivial, let us prove sufficiency. Denote by U 

the open disc in C of center 0 and radius 1, and take f E H( U ; 3). Assume 
that we have f(V) C i(F), where V is the open disc in C of center 0 and 
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some radius r, 0 <r < 1. For every v E F’, we have f, E H( U; C), where 
we define f,(z)=f(x)(g~) f or any XE U. Set g=i-1 o(f]V). Then vog= 
=~,~VEH(V;C) for every REP’. Hence gEH(V;P). Set 

am= --$ g(m)(O) EP 

for every m E N. Then 

for all p E F’, m E N, g E R and 0 <e < 1, where 6 is the continuous ex- 
tension of v to 9. Hence the sequence (ante”), m E N, is bounded in p 
for every such Q. Thus g may be holomorphically extended to U be defining 

g(x) = yJum xm 
m=o 

for every x E U, so that g E H(U, P). We conclude that g(U) C F because 
g(V) C F. For every pl E F’ we have f,= q~ o g since both functions agree 
on V. Thus f(U)=i[g(U)] C i(F). QED 

Let U, V and W be connected non-void open subsets of E, with 
W C U n V. If F ~0, we say that V is a holomorphic F-valued con- 
tinuation of U via W if, for every f E H( U; F), there exists g E H( 8; F) 
such that f =g on W. 

PROPOSITION. Assume that weak holomorphy plus slight holomorphy 
imply holomorphy on E, that F is confined and F ~0. Then V is a 
holomorphic F-valued continuation of U via W if and only if V is a 
holomorphic C-valued continuation of U via W. 

PROOF. Necessity being easy, let us prove sufficiency. Let f E H( U; F) 
be given. For every v E F’ we have that ~1 o f E H( U ; C). There is a unique 

gV E H( V; C) such that v o f =g, on W. For every x E V, consider g(x) E &%’ 

defined by g(x)(q)=g,(x) for all v E F’. Thus we get g E H( V; w^F) such 
that g( W)=i[f(W)] C i(F). The lemma implies that g(V) C i(F). We then 
obtain i-l o g E H( V; F) for which f = i-l o g on W. QED 

I want to thank Richard Aron for the conversation which led me to 
the above proposition when E and F are Banach spaces [l]. Henri Hogbe- 
Nlend and Martin Schottenloher called my attention to the idea of 
dropping an additional assumption that I had included in the statement 
of the proposition; the proof remained unchanged. SCHOTTENLOHER [4] 
has found another approach to the question treated here via the a-product 
of Laurent Schwartz. For further sources on holomorphic continuation, 
we quote [2] and [3]. 
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