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Abstract The voltammetric (CV and DPV) behavior of multi-walled carbon nanotube/Nafion

composite coupled with a glassy carbon electrode was investigated for the determination of 2,4-

dichlorophenol. The structural and morphological evaluation by XRD and FESEM revealed that

the acid treated MWCNT retained their morphology without any structural change. The existence

of the possible functional groups was investigated by FTIR and Raman spectroscopy. Compared to

bare GCE, a significantly reduced interfacial charge transfer resistance was noticed for MWCNT/

Nafion/GCE by electrochemical impedance spectroscopy (EIS). The use of Nafion not only con-

tributed to the non-covalent functionalization of MWCNT, but also protected the electrode surface

against the polymerization of phenoxy radicals forming a passivating film. For MWCNT/Nafion/

GCE, the combination of anti-passivating ability and excellent catalytic properties resulted in

the rapid and direct electrochemical determination of 2,4-DCP. Under optimal experimental
eposited
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Figure 1 FESEM images of MWCN

MWCNT/Nafion composite film at 6
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conditions, the DPV responses for MWCNT/Nafion/GCE is linear over the 1–150 lmol/L range

with a detection limit (S/N = 3) of 0.01 lmol/L. The presence of many interfering species had

no influence on the signals of 2,4-DCP. The proposed sensor was successfully tested for the deter-

mination of 2,4-DCP in tap water samples and the recovery was in the range of 99.0–102.5%.

� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The presence of toxic organic pollutants is ubiquitous in
domestic and industrial effluent. Over the last few decades,
there has been a growing interest regarding the detection and

removal of these chemicals (Aslam et al., 2014, 2015a,b,
2016; Bashami et al., 2015; Tasic et al., 2014; Yu et al.,
2015). 2,4-Dichlorophenol (2,4-DCP) regarded as priority pol-

lutant is a highly carcinogenic and acutely/chronically toxic
compound to humans (Jantra et al., 2005; Sherly et al.,
2014). The major sources of release of this compound in the

environment are likely to be the production of 2,4-DCP and
its use as intermediates in the production of higher chlorinated
phenols and other key compounds (Ureta-Zañartu et al., 2002;
Pirvu et al., 2010; Ho et al., 2012). The chemical stability as

well as resistance to biodegradation of 2,4-DCP, the detection
of 2,4-DCP becomes one of the important tasks for public
safety. Therefore, it is of great significance to develop a simple,

sensitive, and reliable analytical approach for the rapid and
direct detection of 2,4-DCP.

Although the instrumental methods including gas–liquid or

liquid chromatography and optical spectroscopy offer high
T at (a) 60,000� (b) 120,000 whi

0,000�.

i, N. et al., An enhanced electrocatalyt
tube/Nafion composite film electro
sensitivity for determination of, 2,4-DCP, the associated disad-

vantages in terms of cost, complexity, time consumption, and
lack of portability are unavoidable (Tong et al., 2013; Li et al.,
2013; Fan et al., 2015a,b; Kolliopoulos et al., 2015; Lu et al.,

2015; Feng et al., 2011; Li et al., 2008a; Wei et al., 2015). In
recent years, electrochemical methods have become an alterna-
tive to conventional instrumental methods for direct determi-

nation of 2,4-DCP due to their compatibility for on-site
measurements (Zhang et al., 2013a; Sun and Zhang, 2006;
Arribas et al., 2011; Safavi et al., 2014; Ozsoz et al., 2003;
Tonle et al., 2015; Ozkan et al., 2002; Shi et al., 2015; Wang

et al., 2000; Xu et al., 2012; Yang et al., 2012). These methods
are inexpensive, fast, and simple in operation. Electrochemical
detections based on pulse techniques showed great promise

because of their high sensitivity, superior efficiency, and low
detection profile (Amin et al., 2014; Chen and Shah, 2013)
and therefore, can be used for vast analyte spectrum.

When 2,4-DCP is oxidized at positive potentials, the phe-
noxy radicals produced can undergo polymerization reaction
resulting in the formation of polymeric adherent film on the
electrode surface. This poisoning of the electrode surface due

to passivating films prevents electron transfer processes at
le (c) and (d) are the FESEM images of acid treated MWCNT and
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Figure 2 EIS Nyquist plot of bare GCE and MWCNT/Nafion/

GCE in 2 mmol/L [Fe(CN)6]
3� and 0.1 mol/L pH 6.0 phosphate

buffer. The inset shows the Nyquist plot of the EIS of bare GCE

and MWCNT/Nafion/GCE in 100 lmol/L 2,4-DCP and 0.1 mol/

L pH 6.0 phosphate buffer.

Figure 3 (a) The CV comparison of bare GCE, Nafion/GCE,

MWCNT/GCE, and MWCNT/Nafion/GCE in 0.1 mol/L pH 6.0

phosphate buffer containing 100 lmol/L of 2,4-DCP. (b) Multi-

CV scans of bare GCE (curves a, first and last scan) and

MWCNT/Nafion/GCE (curves b, first, second, fifth and tenth

scans, respectively).
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the electrode/electrolyte interface and therefore, no further
oxidation of 2,4-DCP is possible (Safavi et al., 2014; Ureta-

Zañartu et al., 2001; Ezerskis and Jusys, 2001; Ežerskis and
Jusys, 2001; Biniak et al., 2015). Studies have shown that the
prevention of electrode passivation is still a challenge, which

can be achieved by using the new electrode material (Biniak
et al., 2015). Since their discovery, the multi-walled carbon
nanotubes have been demonstrated to be a very efficient

sensing material, especially for electroanalytical detection
(Wang et al., 2003; Pontié et al., 2011; Lü et al., 2013;
Barsan et al., 2015; Li et al., 2008b; Trojanowicz, 2006) due
to their high specific surface area, excellent catalytic activity,

adsorption capability, superior electric and mechanical proper-
ties (Barsan et al., 2015; Li et al., 2008b; Trojanowicz, 2006).
Moreover, functionalization of multi-walled carbon nanotubes

imparts higher solubility and processability, enabling their use
as catalytically active material for electrochemical applica-
tions. Nafion is a perfluorinated cation exchange membrane

with ideal properties of electrochemical inactivity, chemical
stability, anti-passivating properties and owing to its
hydrophilicity, a well-dispersed MWCNT/Nafion composite
can be prepared (Yang et al., 2010; Lee et al., 2011; Ijeri

et al., 2010; Zhang et al., 2013b). This functionalized compos-
ite can be easily coated on a glassy carbon electrode (GCE)
surface to prepare MWCNT/Nafion/GCE. To the best of

our knowledge, the proposed electrochemical method is
promising for on-site detecting of 2,4-DCP residue due to its
better detection limit.

This study demonstrated that MWCNT/Nafion composite
coupled with a glassy carbon electrode had an excellent
electrocatalytic activity toward oxidation of 2,4-DCP.

Well-shaped and remarkably improved oxidation peak for
2,4-DCP was due to porosity, the increase of the superficial
area of modified electrode, and diffusion of 2,4-DCP molecules
from the surface to the inner layers of the modified electrode.

The exhibited higher catalytic activity, reproducibility, and
sensitivity of functionalized MWCNT are attributed to the
synergic effect, the composite of MWCNT and Nafion.
Please cite this article in press as: Al-Qasmi, N. et al., An enhanced electrocatalyt
functionalized multi-walled carbon nanotube/Nafion composite film electro
arabjc.2015.08.032
2. Experimental

2.1. Reagents and solutions

All the solutions were prepared in deionized water from a
Milli-Q� Gradient water purification system (Millipore SAS,
Molsheim, France). The stock solution (1 mmol/L) of

2,4-DCP (Sigma Aldrich, 99%) was prepared with 0.1 mol/L
pH 6.0 phosphate buffer. The test solutions of desired concen-
trations were prepared on day-to-day by diluting the stock

solution by phosphate buffer. Phosphate buffer in the pH
range of 4–8 was prepared by mixing the appropriate amount
of 0.5 mol/L NaOH and 0.5 mol/L H3PO4. The 1% solution of

Nafion� perfluorinated resin was prepared by diluting the 5%
solution (Sigma Aldrich) in deionized water. MWCNT with
average diameters of 20–50 nm was purchased from Adneno
Technologies, India.

2.2. Preparation of MWCNT/Nafion composite film electrode

The MWCNT/Nafion composite film was casted by a simple

drop coating method onto the surface of the polished glassy
ic oxidation and determination of 2,4-dichlorophenol on multilayer deposited
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Figure 5 DPV curves of bare GCE and MWCNT/Nafion/GCE

in 0.1 mol/L pH 6.0 phosphate buffer containing 100 lmol/L 2,4-

DCP.

Figure 4 (a) CVs of MWCNT/Nafion/GCE in 0.1 mol/L pH 6.0 phosphate buffer, acetate buffer, and citrate buffer containing

100 lmol/L of 2,4-DCP. (b) CVs of MWCNT/Nafion/GCE with different film thickness of MWCNT/Nafion composite. (c) Effect of N2

gas purging. (d) Effect of stirring.
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carbon electrode (GCE). Prior to composite formation,
MWCNT with high porosity and open end hydrophilic sur-

faces was obtained by boiling in concentrated HNO3 for 4 h
followed by rinsing with deionized water. The MWCNT/
Nafion composite was prepared by dispersing 0.5 mg of

MWCNT in 1 mL of 1% Nafion solution under sonication.
For preparation of MWCNT/Nafion/GCE, 5 lL of
MWCNT/Nafion composite was dripped onto the tip of the

GCE and allowed to dry under N2. The uniformity of the
Please cite this article in press as: Al-Qasmi, N. et al., An enhanced electrocatalyt
functionalized multi-walled carbon nanotube/Nafion composite film electro
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MWCNT/Nafion composite film coated on GCE was
examined optically.

2.3. Instrumentation

Electrochemical measurements were performed with a VSP
multi-channel potentiostat (Bio-logic Science, USA) equipped

with ECLab software for data analysis. The MWCNT/Nafion
composite supported on glassy carbon electrode (electrode
size, OD = 6 mm, ID = 3 mm) was used as working electrode
whereas Ag/AgCl/saturated KCl and platinum wire were used

reference and auxiliary electrodes, respectively. All the
measurements were performed at 25 �C. The electrochemical
impedance spectroscopic (EIS) measurements were recorded

at open circuit voltage (OCV) in 0.1 mol/L pH 6.0 phosphate
buffer containing 100 lmol/L 2,4-DCP, and at a biased poten-
tial of +0.233 V in 0.1 mol/L KCl containing 2 mmol/L [Fe

(CN)6]
3�. The EIS frequencies were scanned from 105 Hz

down to 1 Hz, whereas analysis of EIS data was carried out
using Z-fit (ECLab Software). The FT-IR spectra were

acquired in the range of 400–4000 cm�1 using a Shimadzu
IRAffinity-1. The XRD pattern was recorded by Ultima-IV
X-ray diffractometer (Rigaku, Tokyo, Japan) equipped with
a Cu Ka radiation source. The surface analysis of the

MWCNT and MWCNT/Nafion composite was performed
by field emission scanning electron microscope (FESEM)
JEOL (Tokyo, Japan) JSM 7600F on a silicon wafer substrate.

Raman shifts were measured by using a DXR Raman
Microscope (Thermo Scientific, USA) using a 532 nm laser
as the excitation source at 6 mW power.
ic oxidation and determination of 2,4-dichlorophenol on multilayer deposited
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Figure 6 (a) Effect of varying pulse width on oxidation current. (b) Corresponding DPV curves. (c) Effect of varying pulse amplitude on

oxidation current with corresponding DPV curves in the inset. (d) Effect of varying step potential on oxidation current with corresponding

DPV curves in the inset.
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2.4. Electrochemical detection

For electrochemical analysis, a 10 mL solution of 0.1 mol/L
pH 6.0 phosphate buffer containing 100 lmol/L of 2,4-DCP
was introduced into the electrochemical cell. Before measure-
ments, the test solution was purged with N2 gas for the

removal of dissolved oxygen. The CV behavior was recorded
by sweeping the potential between �0.5 V and +1.0 V with
a scan rate of 100 mV/s. DPV with initial potential (Ein) =

+0.2 V, final potential (Efin) =+1.0 V, equilibrium time of
10 s, pulse width of 50 ms, pulse height of 50 mV, scan rate
of 20 mV/s was employed. Blank measurements were per-

formed in 0.1 mol/L pH 6.0 phosphate buffer.

2.5. Preparation and analysis of tap water samples

The tap water samples collected from Jeddah, Saudi Arabia,
were stored at 4 �C. Before analysis, the samples were filtered
with a 0.45 lm membrane filter, and transferred into
volumetric flasks that were filled with deionized water. For

electrochemical measurements a required amount of tap water
samples was diluted with 0.1 mol/L pH 6.0 phosphate buffer
up to 10 mL. After deaeration with N2 gas, the DPV signals

were registered under optimal conditions.

3. Results and discussion

3.1. Spectral characterization of functionalized MWCNT

The structural investigation of MWCNT, performed by X-ray
diffraction analysis is shown in Supplementary Fig. S1. In the
Please cite this article in press as: Al-Qasmi, N. et al., An enhanced electrocatalyt
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XRD pattern, an intense reflection at 2h = 26.1� and a weak
reflection at 2h = 42.8� arising from the (002) and (100) face
were in good agreement with the previous literature values

(Zhang et al., 2011; Chen and Oh, 2011; Berhanu et al.,
2009). Being the measure of the crystallinity and crystallite
size, the intensity of the reflection at 2h = 26.1� depicted the

highly crystalline nature and large crystallite size. No signifi-
cant change in the XRD pattern due to the acid treatment of
MWCNT was apparent that elaborated the suitability of the

purification process without any significant damage to
crystalline structure of MWCNT.

Raman spectroscopic analysis is regarded as an appropriate
tool for the recognition of sp2 hybridized carbon systems as

well as the local defects in the MWCNT (Datsyuk et al.,
2008; Stancu et al., 2011). As presented in Supplementary
Fig. S2, two distinct bands are evident in the Raman spectra

of MWCNT, before and after acid treatment. The G-band at
1570 cm�1 represents the sp2 carbon system, whereas D-band
at 1330 cm�1 reflects the disordered carbons in the MWCNT

structure. The appearance of the mirror image after acid treat-
ment revealed no significant effects occurred to the lattice of
MWCNT. However, the decrease intensity of D-band and
the slight increase in the intensity of G-band signified the likely

removal of amorphous carbon impurities and metal particles
from the surface of the MWCNT (Stancu et al., 2011). The
relative intensity ratio of D/G bands (ID/IG) is a measure of

the purity and the defect density of MWCNT (Grassi et al.,
2012). In the current case, the estimated ratio of 1.059 for
untreated MWCNT and 0.90 for acid treated MWCNT

depicted the decreased extent of defects in purified MWCNT.
The typical FTIR spectra of as received and acid treated

MWCNT are presented in Supplementary Fig. S3. As can be
ic oxidation and determination of 2,4-dichlorophenol on multilayer deposited
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Figure 7 (a) pH dependent DPV curves of MWCNT/Nafion/

GCE in 0.1 mol/L pH 6.0 phosphate buffer containing 100 lmol/L

2,4-DCP. (b) Variation of oxidation peak current and oxidation

peak potential with pH.

Figure 8 (a) DPV curves of MWCNT/Nafion/GCE with differ-

ent concentrations of 2,4-DCP. (b) Corresponding calibration

plot.
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seen, there is not much difference in the intensities of the

stretching vibrations of carbonyl, carboxyl, and hydroxyl
groups at 1655 cm�1, 1721 cm�1, and 3440 cm�1 before and
after acid treatment process, which indicates that the boiling

of MWCNT in concentrated nitric acid for 4 h led to the
removal of the impurities with least detrimental effect on the
lattice of MWCNT. Apart from this observation, no

additional information was extractable from the spectrum of
acid treated MWCNT in comparison with that of untreated.
Additionally the sharp peak observed at 2368 cm�1 in both
represented the CO2 coating of IR optics (Saleh, 2013;

Gupta and Saleh, 2001).
The FESEM images of as received MWCNT at 60,000�

and 120,000� are shown in Fig. 1a and b whereas that of acid

treated and MWCNT/Nafion composite film are presented in
Fig. 1c and d. The comparison of the FESEM images revealed
no obvious change in the morphology of the MWCNT after

acid purification process. The MWCNT retained its fibrous
structure without any significant variation. The FESEM
results were in complete agreement with XRD, Raman and

FT-IR results. Moreover, the FESEM image of MWCNT/
Nafion composite as presented in Fig. 1d implied that the dis-
persion of MWCNT leads to the formation of a homogeneous
multilayer film without any apparent irregularities.
Please cite this article in press as: Al-Qasmi, N. et al., An enhanced electrocatalyt
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3.2. Impedance measurement

The electrochemical impedance spectroscopy (EIS) is an
effective approach for correlating the charge transfer resistance
and electrocatalytic activity of the electrode as a result of the
surface modification (Bashami et al., 2015; Amin et al., 2014;

Zheng et al., 2012). The comparison of the resulting EIS
Nyquist plot of bare GCE and MWCNT/Nafion/GCE in
2 mmol/L [Fe(CN)6]

3� solution is shown in Fig. 2. The absence

of the semicircle for MWCNT/Nafion/GCE at high frequency,
in comparison with that of bare GCE, depicted an enhanced
ionic conductivity at the electrode–electrolyte interface. It is

obvious that the lowest charge transfer resistance of
MWCNT/Nafion/GCE would result in improving the catalytic
activity of the modified electrode and facilitate the highly sen-
sitive detection of 2,4-DCP. The EIS Nyquist behavior of bare

GCE and MWCNT/Nafion/GCE was evaluated in 100 lmol/
L 2,4-DCP and 0.1 mol/L pH 6.0 phosphate buffer are
presented in the inset of Fig. 2. The MWCNT/Nafion/GCE

possessed low resistance of the charge transfer and, therefore,
better analytical detection. The result is in accordance with the
EIS analysis of MWCNT/Nafion/GCE in [Fe(CN)6]

3�.
ic oxidation and determination of 2,4-dichlorophenol on multilayer deposited
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Table 1 Comparison of the analytical performance of the

proposed method with some reported methods.

Detection methods LODa

(lmol/L)

DLRb

(lmol/L)

R Ref.

DPV 0.01 1–150 0.991 This work

DPV 1.6 5–100 0.9951 Zhang et al.

(2013)

FIA 0.037 0.1–100 0.9997 Arribas

et al. (2011)

Chemiluminescence 0.085 0.614–

122.7

0.9990 Feng et al.

(2011)

Amperometry 0.38 1–100 0.9995 Barsan

et al. (2015)

Amperometry 20 10–300 0.9937 Pirvu et al.

(2010)

UV–Vis 0.23 1–9.0 0.976 Tong et al.

(2013)

HPLC 0.001 0.0092–

1.84

0.9995 Li et al.

(2013)

HPLC 0.0047 0.3–12.3 0.9999 Feng et al.

(2009)

GC/MS 0.00008 0.0006–6 0.9990 Ho et al.

(2012)

a Limit of detection.
B Dynamic linear range.

Table 2 Interferences of some organic and inorganic com-

pounds on the determination of 2,4-DCP.

Interferences Tolerance level

(lmol/L)

RSD (%)

2-CP, 3-CP, 4-CP 20 5.1

2-NP, 3-NP, 4-NP, 2,4-DNP 400 3.4

Zn2+, Cu2+, Co2+, Pb2+, SO4
2� 500 2.2

NH4
+, Na+, K+, Cl� 500 2.2

Figure 9 DPV curves of MWCNT/Nafion/GCE in (a) 100 lmol/

L 2,4-DCP only and (b–d) 100 lmol/L 2,4-DCP with 20, 50, and

100 lmol/L 3-CP.
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3.3. Electrochemical behavior of 2,4-DCP at MWCNT/Nafion/
GCE

The electrochemical behavior of bare and modified GCE elec-
trodes (Nafion/GCE, MWCNT/GCE, and MWCNT/Nafion/

GCE) by sweeping the cyclic voltammetric (CV) potential
between �0.5 V and +1.0 V in 0.1 mol/L pH 6.0 phosphate
buffer containing 100 lmol/L 2,4-DCP at a scan rate of

50 mV/s was studied. The typical CV curves were recorded
are shown in Fig. 3a. As can be seen, at bare GCE the
oxidation and reduction peaks associated with 2,4-DCP were

weak. However, upon sweeping the same potential window
with Nafion/GCE, MWCNT/GCE, and particularly with
MWCNT/Nafion/GCE the gradual increase in the redox peak

currents was observed. The CV results mean that the
MWCNT/Nafion composite had higher electrocatalytic
activity than both MWCNT and Nafion. The high porosity
and non-covalent functionalization of sulfonate contents on

the surface of MWCNT by integration of Nafion would enable
the formation of multilayer film on the surface of GCE. Thus,
the synergic effect of MWCNT and Nafion as a co-catalyst
Please cite this article in press as: Al-Qasmi, N. et al., An enhanced electrocatalyt
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with highly improved electrocatalytic activity made
MWCNT/Nafion a good electrode material for the sensitive

detection of 2,4-DCP.
The electrochemical behavior of 2,4-DCP at MWCNT/

Nafion/GCE was analyzed. The first scan of MWCNT/

Nafion/GCE showed a well-defined irreversible oxidation peak
‘‘O1” for 2,4-DCP at �+0.70 V, and two weak reduction
peaks ‘‘R1”, ‘‘R2” at �+0.23 V and �+0.06 V, respectively.

Related to R1 and R2, their corresponding oxidation peaks
‘‘O2” and ‘‘O3” unveiled during the second scan of multi-CV
analysis of MWCNT/Nafion/GCE (Fig. 3b) at �+0.15 V
and �+0.26 V. However, with the increase in the number of

scans, the two weak redox peak pairs (O2/R2 and O3/R1) were
combined and appeared as a single redox pair rather than two.
Here, based on experimental evidences, it is interpreted that

the origin of these quasi-reversible CV redox pairs (O2/R2

and O3/R1) is the formation of soluble quinone-like products.
The passivation of bare and modified GCE, typically

related to the oxidation of 2,4-DCP, was estimated by per-
forming multi-CV analysis. The comparison of the multi-CV
scans of bare GCE (curves a) and of MWCNT/Nafion/GCE
(curves b) is presented in Fig. 3b. The oxidation peak ‘‘O1”

as well as barely detected reduction peak revealed during the
first CV scan at bare GCE were gradually decreased in their
intensities to the point where no peak appeared at all that

depicted the complete coverage of the electrode surface by
the polymeric passivating film and resulted in the loss of
electrode activity. Such type of deactivation of the electrode

surface was not observable with MWCNT/Nafion/GCE that
reflected the resistance of the MWCNT/Nafion composite
layer against electrode passivation. The stable and repro-

ducible response with MWCNT/Nafion/GCE in multi-CV
analysis, from the first scan to tenth scan, was attributed to
the porous structure of MWCNT and proton exchange prop-
erties of Nafion that supported the free passage of 2,4-DCP

molecules from the outer surface of the electrode to the inner
layers.

3.4. Experimental conditions

Since the sensitivity of the proposed method is based on the
electrochemical signal, the 2,4-DCP measurements related
ic oxidation and determination of 2,4-dichlorophenol on multilayer deposited
de. Arabian Journal of Chemistry (2015), http://dx.doi.org/10.1016/j.
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Scheme 1 Possible electrochemical reaction mechanism of oxidation of 2,4-DCP at MWCNT/Nafion/GCE.

Table 3 Determination results of 2,4-DCP in tap water

samples.

Added (lmol/L) Found (lmol/L) Recovery (%) RSD (%)

20 19.8 99.0 2.3

50 51.25 102.5 1.9

70 69.86 99.8 2.0
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factors were optimized. Fig. 4a shows the comparison of the
CV behavior of 2,4-DCP at MWCNT/Nafion/GCE evaluated

in different electrolytes such as phosphate buffer (PB), acetate
buffer (AcB), and citrate buffer (CB). Although the CV pattern
of 2,4-DCP in all the three electrolytes is identical, an

enhanced and well-resolved oxidation peak ‘‘O1” was
recognized in phosphate buffer. More importantly, the low
overpotential for oxidation of 2,4-DCP realized in phosphate

buffer obviously in favor of its selection as an optimal
electrolyte, therefore, subsequent measurements were carried
out in phosphate buffer.

The variation in the CV behavior of 2,4-DCP with the

changing density of MWCNT/Nafion composite layer on
GCE surface is shown in Fig. 4b. It was inferred that by
increasing the thickness of MWCNT/Nafion composite film,

the oxidation as well as the reduction peak currents gradually
decreases in addition to a positive shift in oxidation peak ‘‘O1”.
Pure MWCNT being porous and hydrophobic in nature
Please cite this article in press as: Al-Qasmi, N. et al., An enhanced electrocatalyt
functionalized multi-walled carbon nanotube/Nafion composite film electro
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(Govindhan et al., 2015), forms a loose and porous film on
GCE due to poor dispersity. The same is evident from the

FESEM images. The application of Nafion as a co-modifier
with MWCNT, besides the preconcentration of 2,4-DCP mole-
cules at the modified electrode surface, helps to eliminate the

lackness of the film that results in highly conductive and por-
ous multi-layer film of MWCNT/Nafion composite. The pores
support the diffusion of 2,4-DCP molecules from the surface

of the electrode to the inner layers of the modified electrode,
however, with the increased density of MWCNT/Nafion
composite the porosity of the film is decreased, which retards
the electron transfer and mass transportation of 2,4-DCP.

Based on the measurement with the films of varying thickness,
a 5 lL of 0.5 mg/ml MWCNT/Nafion suspension was
recognized as the optimal volume for the preparation of

MWCNT/Nafion/GCE.
The diffusion behavior of 2,4-DCP at MWCNT/Nafion/

GCE was researched. The N2 gas was purged for 5–30 min

with the interval of 5 min between two repeated measurements.
The variation in oxidation peak current of 2,4-DCP versus N2

gas purging time is shown in Fig. 4c whereas in Fig. 4d the oxi-
dation current of 2,4-DCP measured in a continuous stirred

solution with different time intervals, is presented. No obvious
change occurred in the oxidation current, therefore, the deter-
mination of 2,4-DCP is purely a diffusion controlled process

that can be performed in quiescent solution without nitrogen
purging.
ic oxidation and determination of 2,4-dichlorophenol on multilayer deposited
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3.5. DPV detection of 2,4-DCP

Under optimized experimental conditions, differential pulse
voltammetric (DPV) responses of 2,4-DCP at bare GCE and
MWCNT/Nafion/GCE are shown in Fig. 5. As expected, 2,4-

DCP yields a significantly enhanced oxidation peak at
MWCNT/Nafion/GCE (at �+0.70 V) compared with that of
bare GCE. The effects of initial potential, pulse width, pulse
amplitude, and scan rate on the detection of 2,4-DCP were

optimized. The initial potential was in the range of �0.3 V to
+0.3 V afforded a better reproducible peak with Ein =
+0.3 V. The variation in oxidation peak current with a variable

pulse width from 20 ms to 120 ms is depicted in Fig. 6a and b. A
linear decrease in the peak current with increasing the pulse
width was observed. The optimum pulse amplitude was

obtained by varying the pulse amplitude from 20 to 120 mV
(Fig. 6c). Conversely, with respect to pulse width, the peak cur-
rent increased linearly with the increase of pulse amplitude,

however, above 100 mV slight broadening of the peak was
noticed. The step height or pulse increment was examined in
the range of 5–25 mV (Fig. 6d). The peak current increased lin-
early with the increasing pulse increment. At an increment

higher than 20 mV, the peak shape lost its feature, sharpness,
and smoothness. Similar to variations in pulse amplitude and
pulse increment, an increase in pulse width greater than

100 ms resulted in the broadness of peak shape. To summarize
the optimization of parameters, the optimum DPV signal for
2,4-DCP was witnessed at a pulse width of 50 ms, pulse ampli-

tude of 50 mV, and pulse increment of 10 mV (or scan rate of
20 mV/s). Therefore, the subsequent DPV measurements were
at the optimized parameters mentioned above.

The DPV coupled with anodic stripping step was

performed in 100 lmol/L 2,4-DCP and 0.1 mol/L pH 6.0
phosphate buffer. The DPV signals at an accumulation potential
of +0.2 V as well as under open circuit potential with an

accumulation time ranging from 0 to 60 s showed almost no
influence on the oxidation peak current and the peak potential
of 2,4-DCP. The oxidation peak shape more or less remained

unchanged. This observation led to the inference that the
detection of 2,4-DCP can be realized without stripping mode.

3.6. pH study and reaction mechanism of 2,4-DCP

The pH of the electrolyte is an essential parameter and greatly
affects the oxidation mechanism of 2,4-DCP. To evaluate the
effect of pH using MWCNT/Nafion/GCE, the DPV analysis

in a pH range of 4.0–8.0 was explored (Fig. 7a). The variation
in the oxidation peak current and oxidation peak potential as a
function of pH is presented in Fig. 7b. An increase in the peak

current was noted with the increase of the pH till 6.0 followed
by a sharp decrease whereas the shift in the peak potential
toward less positive potential signifies the participation of pro-

tons in the reaction mechanism as well as the likely decrease of
the overpotential for 2,4-DCP oxidation. At higher pH (>7.0),
2,4-DCP is ionized which led to the repulsion between nega-

tively charged 2,4-DCP and sulfonate ions of Nafion present
on the functionalized MWCNT surface that results in the
absence of the oxidation peak in alkaline media. As the
maximum current for oxidation of 2,4-DCP occurred in pH

6.0 phosphate buffer, therefore, the pH 6.0 was selected as
the optimal pH for subsequent study.
Please cite this article in press as: Al-Qasmi, N. et al., An enhanced electrocatalyt
functionalized multi-walled carbon nanotube/Nafion composite film electro
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On the basis of the results in Fig. 7b, a slope of 30 mV was
obtained indicating the one proton two electron oxidation of
2,4-DCP. In the first step, 2,4-DCP is oxidized to phenoxy rad-

ical along with one electron and one proton transfer. Then, the
phenoxy radical would lose one electron and oxidize to
phenoxonium ion. The irreversible oxidation peak ‘‘O1” for

2,4-DCP at �+0.70 was derived from this stage. Analyzed
from the previous literature on phenol oxidation (Chaplin,
2014; Grimshaw, 2000), it can be speculated that the oxidation

of the hydroxyl group of 2,4-DCP occurs at more positive
potential than the corresponding phenoxy radical, which oxi-
dizes at less positive potential, therefore, eventually these two
processes combine to give rise to a single two electron one pro-

ton transfer oxidation peak in 2,4-DCP. In other words, the
phenoxy radical cannot be diamerized at MWCNT/Nafion/
GCE and instead converted to catechol and hydroquinone in

the presence of water.
The formation of these products was verified by analyzing

multi-CVs of MWCNT/Nafion/GCE on the basis of the fact

that the oxidation peak ‘‘O1” is associated with the hydroxyl
group of 2,4-DCP whereas the redox pairs (O2/R2 and O3/R1)
represent the intermediate products of 2,4-DCP formed as

a result of oxidation of phenoxy radicals. No oxidation or
reduction peaks were found when potential scanned from
�0.5 V to +0.5 V indicating that 2,4-DCP cannot be oxidized
in this potential range. However, upon scanning the potential

range from �0.5 V to +1.0 V an irreversible oxidation peak
‘‘O1” at �+0.70 V was due to the formation of phenoxy rad-
ical with the loss of one electron. The resulting phenoxy radi-

cals were captured by the well-defined pores of MWCNT and
oxidized at the catalytic active site in the vicinity to other off-
shoots such as catechol and hydroquinone. Being oxidized at

considerably less positive potential, the hydroquinone and cat-
echol therefore, immediately further oxidized to chlorinated
benzoquinone. The formation of chlorinated benzoquinone

from catechol and hydroquinone is a reversible process with
two electrons and two protons transfer and this is the origin
of a redox peak pairs of ‘‘O2/R2” and ‘‘O3/R1”. As shown in
Fig 3b (curves b), the reduction peaks ‘‘R1” and ‘‘R2” occurred

at �+0.23 V and �+0.06 V on the reverse cathodic scan
attributed to reduction of catechol and hydroquinone. Differ-
ent from the first scan, in the second CV scan, two very weak

oxidation peaks ‘‘O2” and ‘‘O3” appeared as a result of drop of
oxidation peak ‘‘O1”. This behavior, the appearance of reduc-
tion and oxidation peaks (‘‘R1”, R2, ‘‘O2”, and ‘‘O3”) at the

expense of peak ‘‘O1”, clearly shows that the redox peak pairs
(O2/R2 and O3/R1) are derived from the intermediate products
of 2,4-DCP. On the subsequent cycles the oxidation peak ‘‘O1”

was recovered along with the growth in the peak currents of

redox pairs (O2/R2 and O3/R1). However, after the fifth scan,
the merge of the redox pairs was started and in tenth scan, they
appeared almost as one pair of large peaks. The proposed

mechanism based on above discussion is shown in Scheme 1.

3.7. Reproducibility, linear rang, and detection limit

The DPV analysis of MWCNT/Nafion/GCE at different times
of day on different days showed better reproducibility and
stability of the modified electrode. The oxidation peak current

of 2,4-DCP retained over 95% of its initial current without any
change in peak potential. However, after two weeks the
ic oxidation and determination of 2,4-dichlorophenol on multilayer deposited
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dramatic decrease in the oxidation peak was apparent. The rel-
ative standard deviation as a measure of the reliability of the
electrode performance was well below 3%, which indicates

its high reproducibility. The DPV curves of MWCNT/
Nafion/GCE proportional to the different concentrations of
2,4-DCP and the corresponding calibration plot are shown

in Fig. 8a and b, respectively. There is a well-behaved linear
relationship between oxidation peak current and the concen-
trations of 2,4-DCP which covers the range of 1–150 lmol/L.

The dynamic linear equation I (lA) = 0.0912 C (lmol/L)
+ 6.5818 with a correlation coefficient of 0.991 and a detec-
tion limit of 0.01 lmol/L [3(standard error in blank/slope)]
was achieved using signal-to-noise ratio of 3, whereas standard

error in blank was estimated by replicate measurements in
0.1 mol/L pH 6.0 phosphate buffer. The detection limit for
determination of 2,4-DCP at MWCNT/Nafion/GCE is well

matched with the maximum limit set by the European Union
(0.5 lg/L) and U.S. EPA (1 lg/L) for eleven common phenols
in drinking water (Igbinosa et al., 2013; Silva et al., 2009).

Upon comparison the performance of the proposed method
with other reported methods for the determination of
2,4-DCP, Table 1, it shows that the detection limit of

MWCNT/Nafion/GCE is lower than the other electrochemical
and optical methods. Moreover, the flow injection analysis
with amperometric detection for 2,4-DCP using carbon nan-
otube has been proposed previously (Arribas et al., 2011) but

presents some drawbacks that are similar to chromatographic
methods, and due to complicated handling procedure the
portability of the methods is not easily ensured. Therefore,

with shorter analysis time and low detection limit, the
proposed method is an excellent and simple alternative for
the electrochemical determination of 2,4-DCP in water.

3.8. Interferences

Table 2 lists the tolerance level and % RSD of some of the

substances that possibly disturb the determination of
2,4-DCP in water. The presence of chloro derivatives
such as 2-chlorophenol (2-CP), 3-chlorophenol (3-CP), and
4-chlorophenol (4-CP) in the same test solution showed signif-

icant influence on the oxidation peak current and the oxidation
peak potential of 2,4-DCP, because of the oxidation of the
same hydroxyl group at or near the same oxidation potential

of 2,4-DCP. However, at very low concentration no effects
were observed. Fig. 9 shows the DPV curves of 2,4-DCP with
different added concentrations of 3-CP. It was found that the

oxidation peak of 2,4-DCP at �+0.70 V remained unaffected
up to 10 lmol/L 3-CP however, above this a new peak
appeared at �+0.77 V, identified as the oxidation peak of
3-CP, which on further increasing the concentration of 3-CP

continues to increase. In other words, the increase in the
oxidation peak current of 2,4-DCP in the presence of
20–100 lmol/L 3-CP means that the interference of 3-CP to

2,4-DCP. The nitrophenol derivatives and most of the other
inorganic ions had an ignorable influence on the determination
of 2,4-DCP.

3.9. Application tap water samples

The DPV detection of 2,4-DCP in tap water samples, under

optimized conditions, showed no signal for any oxidation or
Please cite this article in press as: Al-Qasmi, N. et al., An enhanced electrocatalyt
functionalized multi-walled carbon nanotube/Nafion composite film electro
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reductions peaks, therefore, the standard addition method
was adopted for the determination of 2,4-DCP. The results
of different concentrations of 2,4-DCP detected 3 times by

DPV method are shown in Table 3. It can be seen that the
results obtained by DPV are in good agreement with the actual
addition and the recovery is in the range of 99.0–102.5%. The

less than 3% RSD and excellent recovery suggests that the
proposed method is practical and reliable for determination
of 2,4-DCP in real water samples.

4. Conclusion

A feasible electrochemical sensing platform using functional-

ized MWCNT modified on GCE, with superior electrocat-
alytic activity and better detection limit, for the
determination of 2,4-DCP was developed. The fabrication

MWCNT/Nafion/GCE is facile and rapid which reduces the
analysis time. At MWCNT/Nafion/GCE, a remarkably sensi-
tive and reproducible oxidation peak for 2,4-DCP, shifted
toward less positive potential compared with bare GCE, was

detected. The excellent analytical features of the proposed
modified electrode are thus expected for its application in mon-
itoring of 2,4-DCP and other phenols in real water samples.
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