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I. INT~x~DuCTION 

In this paper we illustrate by two reasonably simple problems how a certain 
concavity technique can be used to obtain nonexistence results for classes of 
nonlinear problems which arise in partial differential equations. The first 
problem treated is an initial boundary value problem for the heat equation- 
one in which the nonlinearity occurs in the boundary condition. This problem 
is symbolic of classes of parabolic and hyperbolic equations which may be 
dealt with by the same method. Some of these are indicated in the text. 
The second problem is a final value problem for the porous medium 
equation. For convenience of computation we have actually replaced t by --t 
and considered the equivalent initial value problem for the backward porous 
medium equation. 

We are interested then in the following nonlinear problems: 
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PROBLEM A. Let Q C RjT,’ be a bounded domain with a smooth boundary 
and let f : R1 + R1 be a given continuously differentiable function. Let 
n’ = (n, )...) n,) denote the outward directed normal to aQ. We suppose u to 
be a real-valued classical solution to 

au Au -1 
at in D X [0, T) 

g = f(u) on af2 x [O, T) 

where A is the 12 dimensional Laplacian, au/an s xi:, n, au/&, denotes the 
outward directed normal derivative of u on a&JR, and u,, is prescribed on 0, the 
closure of G. (Here x designates a point in R”). 

For this problem we shall give a wide fail to nonlinearities, f, corre- 
sponding to which global classical solutions will not exist for arbitrary 
u,, E C”(.@.t (By a global solution, we mean one which exists on 0 x [0, co).) 

Physically, problem A can be viewed as a heat conduction problem with 
a nonlinear radiation law prescribed on the boundary of the material body. 
If the radiation law is actually an absorbtion law, then if certain additional 
hypotheses are met the temperature must become unbounded in finite time. 

In a number of remarks following the demonstration of the principal result 
for problem A, we indicate how analogous results may be obtained for more 
general parabolic equations and for systems of such equations when nonlinear 
coupling of the system occurs in the boundary conditions. The method can 
also be applied to problems for which the governing equation of motion is the 
wave equation or a system of such (with the coupling again occurring in the 
boundary condition) and to certain types of weak solutions to such problems 
(Remark 2.5). 

PROBLEM B. Let u0 E C1(R1), and suppose u,, > 0 on RI. We wish to 
study the behavior of nonnegative solutions (in a sense to be made precise) to 

(x, t) E R1 x [0, TJ 

21(x, 0) = u&c); .x E RI, 

where in this problem m is a constant satisfying m > 1. 

+ Similar results for problems in which the nonlinearity occurs in the equation 
rather than in the boundav condition, have been obtained by Kaplan, S. (Comm. 
Pure Appl. Math., Vol. 16 (1963)), Friedman, A. (Proc. Amer. Math. Sot. Symp. 
Appl. Math., Vol. 13 (1965)) and Fujita, H. (J. Fat Sci., Univ. Tokyo, Vol. 13 (1966). 
See also [6J. 
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We shall show that whenever u:” E el(R1) and (zc~~~)~ E P(R1), then 
for some T, 0 < T < co, 

where ~1 is a weak solution in an appropriately defined sense. 
The equation zlb = (zP)~, is the so-called “porous medium” equation and 

has been studied by a number of authors. See, for esample, [l], [2], [3], and 
the references cited therein. Our result then says that the backward Cauchy 
problem for the porous medium equation wuw has global solutions, 

The proofs of our results rest upon the observation that if F is a concave 
function on [0, T) such that F(0) > 0, F’(0) < 0, and T 3 -F(O)/F’(O) then 
F has a zero in [0, T). This follows from the fact that for such F’s the graph 
of F lies below any tangent line. This implies that F(t) < F(0) + tF’(O), and 
hence that F has a zero in [0, -F(O)/F’(O)], say at T, . Thus if G(t) = I/F(t), 
then G is unbounded on [0, T,,]. 

II. THE NONLINEAR RADIATION PROBLEM 

We consider, in this section, problem A, i.e., 

au 
z-t= AU in Q X [0, T], 

We prove 

THEOREM 11.1. Let u : 8 x [0, T) ---f R1 be a classical solution to (2.1). 
Iff(z) is of the form f (z) = 1 x j2u+1h(z) f or some monotone increasing function 
h(z) and some positive constant 01, and if 

then there is a T,, , 0 < T,, < 00 such that ;f T = T,, thez 
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and consequently 

lim sup(max 
t-r,- XEIE 

I u(x, t)l) = +a. 

In other words, every classical solution to (2.1) with U(X, 0) = Z+,(X) breaks 
down by becoming unbounded in finite time. Weak solutions are discussed in 
Remark 2.5. 

Proof. Assume that u exists in the classical sense on 0 x [0, EJ). For any 
positive constants /I, r, T and all t E [0, T), define 

F(t) = lot s, u2(x, 7) dx dq + (T - t) s, uo2(x) dx + P(t + 7)” (2.2) 

where j?, T, and 7 are to be specified later. We note that (F-a)” < 0 for some 
(Y > 0 if and only ifFF” - (CY + 1)(F’)2 > 0. Now 

F’(t) = j-Q u2(x, t) dx - j, uo2(x) dx + 2/3(t + T) 

uu,, dx 4 + W(t + 7) 

= -2 lot j-, I 9721 I2 dx 4 + 2 j-St f, uf(4 ds 4 + 2P(t + 4, 
(2.3) 

from (2.1) and an integration by parts. Therefore 

Thus 

F”(t) = -2 1, I vu I” dx + 2 ji, uf(u) ds + 2p. (2.4) 

F”(t) = -4 Jot s, %, . vu dx dq - 2j) au, I2 dx + 2 j-pf(+s + 33 

= 4 Jot s, u,,~ dx dvj - 4 j-08 f,, u,f (u) ds dq - 2 s, I vu,, I2 dx 
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Combining this result with (2.2) and (2.3) we obtain 

FF” - (a + l)(F’)* 

> 4(cx + 1) S2 + 2F Ia $, ] vu I2 dx 

+ 2(a + 1) [f (j’“‘s’f(z) dz) ds - =$ j, i vu,, IB dx] 
as2 0 (2.5) 

+ s, ($,, WY4 - (201 + l)f(@l dz) ds - (2~ + I)$ 

where 

the non-negativity following from Schwarz’s inequality. 
From do, we note that if we choose 

then so > 0. At the same time it follows from the representation assumed for 
f that for all real w, sr [xf’(x) - (2a + l)f(z)] d.z > 0. Thus on 10, 2’1, 
with p = PO, we obtain 

FF” - (a + 1)(F’)2 2 0. G5f2 

From (2.6) and a quadrature, we then obtain, 

F-~(t) < F-a(O) - c&‘(O) F-‘~+~)(o). (2.7) 

It follows from (2.2), (2.3), and (2.7) that if F(O)/&‘(O) < T, then F+ must 
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vanish at some time 7’,, , in [0, T], where To <F(O)/&‘(O). One finds, after 
some algebra that T > F(O)/&‘(O) if and only if T and 7 are related by 

,Q2 < T [243,,7 - 1, (~,,(x))~ dx]. (*I 

This latter condition is clearly satisfied for sufficiently large T as soon as 
T > (24,-l so u,,” dx. Since To < T we see that the largest value for To 
cannot exceed the smallest value of T for which (*) holds, so that (optimizing 
with respect to T) 

Thus t 
lim Li u2(x, 77) dx d?j = +CQ, 
t-r,- 0 R 

and the theorem is proved. 

REMARK 2.1. The physical content of the preceding result is of course that 
if a “radiation law” like au/&z =f(u) is, in fact, an “absorption” law (at 
least for large 1 u I), then under certain additional hypotheses the temperature 
of the material body cannot remain bounded for all times. 

REMARK 2.2. The preceding theorem can be extended to more general 
second-order parabolic equations of the form 

where aij = aji and the aij E Cl@?). Moreover, the radiation law need only 
hold over a part r, x [0, T) of the lateral boundary &Q x [0, T) where 
r, C a!S has positive (n - 1) dimensional Lebesgue measure. When one 
requires that zl = 0 on F, x [0, T)( w h ere I’, = &Q - F,), d,, is replaced by 

and Theorem 11.1. remains true. 
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REMARK 2.3. Let us consider, instead of (2.1), the problem 

pu 
_ = Au 
%P 

in Q X [0, T), 

21(x, 0) = u&v), a40 E C2(Q), 

%(X, 0) = %(X)7 v. E C’(i2), (2.8) 

g =.f(u) on T2 X [O, T), 

u(x, 0) = 0 on rl X [O, T), 

where I’, u T2 = (?Q, I’, n I’, = ,G and the n - 1 dimensional Lebesgue 
measure of r, is positive. If we define, for /I, r > 0 but otherwise arbitrary, 

F(t) = j, uyx, t) dx + &t + T)8, (2.9) 

then one can prove that 

FF” - (Lx + l)(P)” 

~4(~+1)S2+2F12~SnI~~i2~~ 

i 
’ s [S 

u(d {f(z) - (401 + l)f(z)) dx] ds 
r2 0 

+ 2(201 + 1) [j (j”“‘“’ f(z) dz) ds - ; jQ (1 Gu, I2 + vo2) dx -;] 1~ 
r2 0 

(2.10) 

From (2.10) and the expressions for F(O), andF’(O), one sees that it is possible 
to choose ,8 and 7 so that both IV” - (a + 1)(P)” >, 0 and F’(0) > 0, 
provided f(z) has the form ) ,z j ~a+lIz(x) where h is monotone increasing 
(nondecreasing) and 

dI : jr2 (jouo(s) f(x) dz) ds > i JQ (1 Vu, je + vo2) dx. 

We have 

THEOREM 11.2. Under the preceding hypotheses on f, u. , o. and r2 (when 
r, # @ j, every solution to (2.8) satisJes 

lim 
s 

u2(x, t) dx = -+m 
t+.l- 8 

for some T, 0 < T < co and hence is point&se unbounded in J? x (0, T). 
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A remark analogous to Remark 2.2 for more general second-order wave 
equations is valid. 

REMARK 2.4. The preceding theorem can be extended to systems. We 
give a simple example. Let (u, V) be a solution of 

@ =Au at 
av in Q x [0, T) 

at= 
Av 

g (s, 0 = lx% 4 
2 (s, t) = fi(% v) 1 

in aQ X [0, T). (2.11) 

Then the following theorem can easily be proved in a manner similar to that of 
Theorem II. 1. 

THEOREM 11.3. Suppose that &/lb E a&J&, and let H(u, v) be the 
potential associated with p = (fi , fi), (i.e., VH = p) such that 
H(0, 0) = 0. Suppose further that there exists a constant a: > 0 such that 

?(a + 1) H(f, rl) < ffi(& 7) + d4k, 71) for all & 71 E I?. (In particular the 
equality sign holds if H is homogeneous of degree 2(a + l).) If 

f 
ai2 

f&,(4, v&v)) dx > B j- (I %, I2 + I f’v,, I”) dx, 
R 

then there e”vists a T, 0 < T < co, such that 

lim;p $, [z12(x, r) + v2(x, t)] dx = +a. 
f 

An analogous version of this result can be proved for the system utt = 
AU, vtt = AV in D x [0, T), au/an = fl(u, v), av/iSz =J2(a, V) on XJ x [0, T). 
Also, in each of these systems one could replace Au by 

and Av by 
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where (aJ and (6,J are continuously differentiable Hermitian matrices with 
(pointwise) nonnegative eigenvalues. Then one specifies 

a24 - s $, %dx) g nj = fit% v> 
av, 

and 

on asr x [O, T) (or r, x [0, T)). 

REMARK 2.5. One can prove analogous statements for weak solutions of 
(2.1), (2.8) and (2.11) and their various extensions. We illustrate this for the 
weak formulation of (2.8) in case rz = 82, I’, = D using the following 
definition of our weak solution. 

DEFINITION. We say that U(X, t) is a weak solution to (2.8)(rz = aQ) 
if it is continuously differentiable in both x and t and if, for all functions 
y(r, t) which are continuously differentiable’ in x and t in a neighborhood of 
J2, = !S x {t> for each t > 0 the following two relations hold for all t E [0, T): 

and 

Inequality (2.13) is just an energy inequality. 

T~OREM 11.4. Under the same hypotheses on f, u. , and v. , the conclu.&ns 
of Theorem II.2 holdfor solutions to (2.8) in the sense of (2.12) and (2.13). 

To prove this we set 

F(t) = s, u2 dx + P(t + T)” 

1 Clearly the assumption of pointwise continuity of &@x and au/at may be relaxed 
in the proof of the next theorem. 

505,W2-9 
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and choose, in the usual manner a sequence of admissible v’s tending to u 
in the norms required by (2.12). One finds that 

F’(t) = 2 1, % dx + V(t + 7) 

=2j 
.t 

U~VO dx + 2 
JJ 

un2dxdrl - 2 
R 0 52 SJ 

t JVu/2dxdq 
0 s2 

+ 2 jot f,, 4(4 ds drl + WP + 4 
Therefore, F” exists and 

(2.14) 

F”(t) = 2 f ut2 dx + 2 $ 
-0 aa 

uf(u) ds - 2 1 ( Vu je dx + 2p. (2.15) 
-0 

One finds, after a short calculation using (2.13), (2.14), and (2.15) that (2.10) 
is valid with I’, = aQ. The remainder of the argument is the same as for 
Theorem 11.2. 

REMARK 2.6. Results similar to those of Theorem II-l, 11-2, and II-3 have 
been obtained for certain “abstract” nonlinear evolutionary equations of the 
form Pu, = -Au + s(u), Pu,, = -Au + g(u), and 

Pu,, + i&, + Au == 5(24) 

where P, A, and A^ are positive linear operators, 3 is a gradient operator and 
u : [0, 2’) + H (a Hilbert space), is a solution in an appropriately defined 
sense. See [4]-[7] for details. 

III. THE POROUS MEDIUM EQUATION 

We now consider 

PROBLEM B. Let m > 1 and Rf = [0, co). Let zc : R1 x [0, T) -+ Rf 
satisfy 

au t+$g=O in RR1 x [O, T), 
(3.1) 

4% 0) = UOM xER1, 

where u. > 0 is at least Cl and duo/dx $ 0, in the sense of the following 
definition: 



NONEXISTENCE THEOREMS 329 

DEFINITION. Let Us = uA~+~)/~ and (u,,~)~ be in P(E). We say that 
u : R1 x [0, T) + R+ is a weak solution to (3.1) with initial data U, if u 
satisfies the regularity hypotheses (i), (ii), (iii) given below, and, for all 
v : R1 x [O, T] ---f Rf having compact support in x for each t E [0, T) and 
continuously differentiable in x and t, 

ss t b + 
0 R' 

-j- p&~)~] dx dq + s, 9)(x, 0) U&V) cz.v = 1, tp(x, t) z&q t) dx. 

(3.2) 

(i) For each t E [0, 2’) the function f(t), defined as JR1 @-bi(x, t) & 
is finite and Lebesgue measurable on [0, t), and 

fiW = s” 1 ZP+~(X, rl) dx d7 < cc, 
0 R' 

so that f:(t) = f(t) for all t E [0, T); 

(ii) for each t E [0, T) the function g(t) defined as JR1 (zPj2 dx is 
finite and Lebesgue measurable on [0, t), and gi(t) = sl JR1 (zP)~ dxd7 < co 
so that gi’(t) = g(t) for all t E [0, T); 

(iii) U 3 u(“+~)P possesses a t derivative for each x and almost all 
t E [0, T) and the inequality 

holds for all t E [0, T). 

Remark 3.1. For the forward equation, Aronson [2] has shown that for 
the class of weak solutions studied in [8], which is a larger class than the one 
considered here, if (u,,~~‘)~ is Lipschitz continuous, then (urn)% is likewise 
Lipschitz continuous. It was shown in [8] that if u. has compact support, 
then u(., t) has compact support. It follows that if u0 has compact support and 
is Ci then for the forward problem (i) and (ii) will hold. Moreover, the weak 
solution in the sense of [8] will exist globally. 

Therefore, the regularity restrictions (i) and (ii) are not unreasonable 
assumptions to impose on solutions to the backward problem. 

Remark 3.2. If one formally puts q~ = (zP)~ in (3.2) and integrates by 
parts with respect to t, one obtains (formally) (*) with equality replacing 
the inequality. The inequality (*) is then a weaker form of a so-called “energy” 
identity and is thus a reasonable hypothesis to make. 
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TI~OREM. III. 1. Let u : R1 x [0, T) --+ Rf be a solution to Problem B in 
the seme of the preceding dejnition. Then the time interval must necessarily 
be bounded. That is to say, there will be a value of T, 0 < T < CO such that 

and consequently, 

[* m+l(x, t) + ((zc”)~ (x, t)jJ] dx = +a. 

Proof. Assume the contrary, i.e., that u exists on R1 x [0, co) and that 
(i), (ii), and (iii) hold on every interval [0, T). For t E [0, TJ, let 

F(t) = s,t IRl zP+‘(x, q) dx dq + (Tl - t) s, uF+’ dx, (3.3) 

where Tl is an arbitrary but fixed positive number. We have that 

F(t) = 1” j- U2(x, 7) dx d7 + (Tl -. t) lRl U,,p dx. (3.4) 
0 RI 

We shall show thatF(t) must become unbounded on an interval [0, T) C [0, TX) 
for some Tl , thus violating (i). It is clear that at such a point we will have a 
breakdown of the assumed weak solution. It could of course happen that the 
weak solution breaks down in such a way that F(t) remains bounded at any 
finite t. We give an example to illustrate this fact after the proof of 
the theorem. 

A direct computation on (3.4) gives 

F’(t) = j-R1 ( U2 - Uo‘2) dx = 2 s” j- 
0 R1 

UlJ, dx dV. (3.5) 

We now choose in (3.2) an admissible sequence (~,}~zl such that 
au - p+l, ~zz + @% and wzt -+ Us in the norm required by (i), (ii), 
and (iii). ((u~)~ = 2m/(m + 1) U(m-l)/(nL+l) 77, , and lJ, exists a.e.) Then, 
passing to the limit in (3.2), we find that 

$+V) + j-” j” (urn): dx dq = F’(t), 
0 R1 

so that 

F’(t) = (m + 1) St I (u”): dx dq. 
0 RI 

(3.6) 
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Consequently, from (3.6), (ii), and (*), F’(t) is absolutely continuous, and thus 

almost everywhere, 

as we see from (iii) and (*). 
Therefore, 

and choosing 01 = (m - 1)&z + l), we are led to 

(F-0)” + (m - 1) (j 
R1 

(up): dx) F-(“fl) < 0. 

Note that from (3.7) and (3.6), F" 3 (m + 1) JR1 (uoiFb)“, dx and F'(t) > 0 
for t > 0. Thus, if we set G = F-*, then G is decreasing (G’ < 0 if t > 0). 
After multiplying (3.8) by G’ and a quadrature, we obtain (noting that 
G’(0) = 0) 

[G’(t)]” > K{[G(0)]t+l/Q - [G(t)]‘+l’“}, (3.9) 

where 

K = [(m - 1) 24201 + l)] jR1 @Lo”): L!x. 

It follows immediately from (3.9) that 

We see that G(O) = X(2’&” where X = SRI $+l A so that (3.10) reduces to 

(XT,)‘/” jol (1 - y”+ll”)--112 dy > W”T, , 
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which cannot hold unless 

P((m - 1)/(3m - 1)) 
T1 ’ 2(3mn- 1) P((@m - 3)/(3m - 1)) (I R1 

(3.11) 

as a routine calculation using the definitions of h, K, and Al shows. Therefore 
TI cannot be an arbitrary positive number and the theorem is proved. 

Remark 3.3. The preceding result can clearly be extended to ut = --A(@) 
where d is the n-dimensional Laplacian. 

Remark 3.4. As we indicated earlier the boundedness condition assumed 
on the space-time integral in (i) need not be the condition that fails. Consider, 
for example, Pattle’s [9] solution backward in time: 

A(t) 11 - (“2;. l) XW(q/1”7~-1’, 1 x I2 < 2m/(m - 1) X2(t), 

24(x, t) = 
o<t< 

@i-l) 

0, 1 x 12 > 2m/(m - 1) Xi(t), 0 < t < ; (112 1) 

\ 0, t 3 l/(m + 1) 
where here 

A(t) = [l - (nz + l)t]-li(m+l) 0 < t < l/(m + 1). 

One finds this espression by noting that if v(x, t) is a solution of z+ = 
-(~~,rn”>$ then U(X, t) E ZI,(X, t) satisfies ut + u,J.7. = 0. The solution above 
is derived from the similarity solution z’ which is of the form V(X, t) = v(t) 
where t = ~Ah(t). Clearly u is a classical solution of (3.1) on those points of 
R1 x [0, l/m + l] where u is positive as well as in the complement of the 
support of u. 

It is easily checked that U,,(X) = ZC(X, 0) satisfies 

u. E !Pzfl(R1), (zL,,~), E it2(R1) and that for 1 0 < t < ___ 
ml-1 

6’) s R' 
tP+yx, t) dx = J--$- [A(t)]” 

x 1, (1 - j,y+um--l) d?/ < 00, s 
t ss Elm++, 7)) dx dq = - [l - (m + l)t]l’cm+l)j 

0 RI 4 *{l 
X 

s 
1 (1 _ Y2)(wtl)lm--l) (1Ty < a, 

-1 
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and 

(ii)’ 

Also 

s 

1 
X y2(l _ 3,2)E/h-I) dy. 

-1 

(iii)’ U, z [rA”1+1/2)], t exists for all x’ and almost all t E [O, l/(m + l)] 
and, after a tedious but routine calculation one finds that 

x 
s 
:l (1 - (m + 1) y”/(m - 1)2 (1 - ya)(a-“II(+l) ($7 

It follows from all of this that u is a weak solution to (3.1) on [O, l/m + l), in 
the sense of our definition, We observe from (i) and (ii) that it is the first of 
the integrals in (i)’ and both of the integrals in (ii)’ that become unbounded 
as t -+ (m + 1)-l from below. Of course, in this case the solution itself 
becomes unbounded as (x, t) ---f (0, (VZ + 1)-l) from the interior of the support 
of u. The function F(t) actually remains bounded for t E [0, rr] with T1 finite 
but arbitrary. 
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