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In this paper we give a covariant expression for Aharonov–Casher phase. This expression is a combination 
of the canonical electric field, Aharonov–Casher phase plus a magnetic field phase shift. We use this 
covariant expression for the Aharonov–Casher phase to investigate the case of a neutral particle with 
a non-zero magnetic moment moving in the time dependent electric and magnetic fields of a plane 
electromagnetic wave background. We focus on the case where the magnetic moment of the particle 
is oriented so that both the electric and magnetic fields lead to non-zero phases, and we look at the 
interplay between these electric and magnetic phases.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The Aharonov–Bohm (AB) effect [1,2] and its experimental con-
firmation [3,4] are an important consequence of combining quan-
tum mechanics with gauge theories. The basic AB set-up is the 
quantum mechanical two-slit experiment for charged particles but 
with a magnetic-flux-carrying infinite solenoid placed between 
the two slits. Even though there is no magnetic field outside the 
solenoid, there is a non-vanishing vector potential, which leads to 
a shift in the interference pattern formed by the charged particles 
going through the slits. However, this shift in the interference pat-
tern depends only on the magnetic flux carried inside the solenoid. 
This gives the AB effect a non-local character since the phase of 
the particle is influenced by the magnetic field, which is zero at 
the location of the particle.

The closely related Aharonov–Casher (AC) effect [5,6] is also a 
modified version of the quantum mechanical two-slit experiment, 
but using neutral particles with a non-vanishing magnetic moment 
traveling through the slits with a line of charge placed between the 
slits. One again finds a quantum phase shift due to the presence of 
the electric field coming from the line of charge. This phase shift 
leads to an observable shift in the interference pattern [7].1
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1 However, in the experiment carried out in [7] the observed phase shift was 50% 

larger than the theoretical prediction.
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SCOAP3.
The AC effect can be seen as the dual of the AB effect in the 
following sense: in the AB set-up one has a magnetic flux carrying 
solenoid, which can be pictured as a line of magnetic dipoles laid 
end-to-end, with electrically charged particles moving around the 
solenoid. A duality transformation exchanges the magnetic dipoles 
with the electric charge so that for the AC set-up one has a line 
of charges with neutral, magnetic dipoles moving around this line 
of charge. In both cases the particles pick up an additional quan-
tum phase which manifests itself as a shift in the usual two-slit 
interference pattern.

Both the AB and AC effects are topological since they depend 
on the non-simply connected nature of each set-up. The infinite 
solenoid or the infinite line of charge exclude some region of 
the space–time so that the space is not simply connected (for 
more discussion on this point see [8]). Further the AB effect has 
been connected to Berry Phases [9] which are general “geometric” 
phases that arise in certain quantum systems.

While the time-independent AB and AC effects have been ex-
tensively studied both theoretically and experimentally, the same 
does not hold for the time-dependent cases when the magnetic 
flux in the solenoid or the electric charge on the wire are time-
dependent. The theoretical predictions as to the outcome of a 
time-dependent AB experiment have been studied in [10–12]. 
There is some disagreement, theoretically, as to the outcome of 
the time-dependent AB effect. The authors of [10] predict that the 
interference pattern should shift with time according to the time 
dependence of the magnetic flux, whereas the authors of [11,12]
find a cancellation between the usual magnetic AB phase shift and 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the additional phase shift that arises due to the electric field that 
exists in the time-dependent case. The one experiment performed 
to date on the time dependent AB effect [14,15] did find no shift-
ing of the interference pattern, but the parameters used in the 
set-up did not allow one to definitely conclude which prediction 
– a time dependent shifting of the interference pattern or little/no 
time dependent shifting of the interference pattern – is correct. 
Thus additional experiments are called for in the case of the time-
dependent AB effect.

In this paper we write down a covariant version of the AC 
phase shift, and then use this expression to study the time-
dependent AC effect. The covariant expression which we find for 
the Aharonov–Casher phase has some relationship to the geomet-
rical phases obtained in [16] from Lorentz-violating terms from 
fermion interaction from certain Standard Model extensions.

2. Covariant expression for Aharonov–Casher phase

In this section we begin by reviewing the derivation of the 
time-independent Aharonov–Casher phase [5] and also the deriva-
tion of the Bernstein phase [17] which is also known as the scalar 
Aharonov–Bohm phase.2 We use these two time-independent 
phases to give a motivation for our proposed expression for the co-
variant Aharonov–Casher phase, and then we give a more rigorous 
derivation of this covariant expression for the Aharonov–Casher 
phase.

In the original AC proposal [5] (see also [6] for an earlier, 
closely related study) a neutral, spin- 1

2 particle was taken to move 
through an electric field. In Ref. [5] the neutral, spin- 1

2 particle was 
taken to be a neutron and the electric field was taken to be that of 
an infinite line of charge. The non-relativistic Hamiltonian for this 
system is

HNR = 1

2m

(
�p − �E × �μ

)2 − μ2 E2

m
, (1)

where �p = −i∇ is the momentum operator and we have set h̄ = 1. 
Also the vector magnetic moment is given as �μ = μ�s (where the 
spin of the particle is �s = 1

2 �σ with �σ the standard Pauli matri-

ces) and E = |�E|. The last term, μ2 E2

m , is negligible if μE � mv . 
The main point to note about (1) is that one can define an ef-
fective momentum operator �p → �p − �E × �μ analogously to the 
minimal coupling definition of the momentum operator for a par-
ticle with non-zero electric charge e i.e. �p → �p − e �A with �A being 
the 3-vector potential. This operator, �p − e �A, results in the addi-
tional AB phase for a charged particle moving along a path L of 
the form

�αAB = −e

∫
L

�A · d�r . (2)

In the same way the operator, �p − �E × �μ, from (1) results in an 
additional AC phase for neutral particle with a magnetic moment 
moving along a path L

�αAC = −
∫
L

(�E × �μ) · d�r = −μ

∫
L

(�E × �s) · d�r . (3)

Next we move on to the Bernstein phase [17] or the scalar AB 
effect. When a neutral particle with a magnetic momentum passes 

2 The scalar AB effect can refer to two things: (i) A phase shift due to the electric 
scalar potential, eφ , which is also called the electric AB effect, (ii) or a phase shift 
due to the scalar potential �μ · �B . In this paper the scalar AB effect means version (ii).
through a magnetic field the non-relativistic Hamiltonian for such 
a system is

HNR = 1

2m
�p2 − �μ · �B . (4)

It was shown by Bernstein [17] that this Hamiltonian also re-
sults in a quantum phase shift if the magnetic moment, �μ, moves 
through a magnetic field, �B . The additional phase picked up due to 
the �μ · �B term in (4) can be written as

�αB =
∫
L

( �μ · �B)dt = μ

∫
L

(�s · �B)
dx

v
, (5)

where in the second integral the time integration has been turned 
into a space integration via v = dx

dt where v is the velocity of the 
particle. This is done to make the connection with the form of 
the Bernstein phase as given in the original paper [17]. However, 
the main thing to note is that �αAC involves a spatial integration 
while �αB involves a time integration. This previews the eventual 
combination of these two phase shifts into a covariant space–time 
integral. The magnetic moment in (5) has again been split as �μ =
μ�s. This phase shift given in (5) was experimentally observed by 
Werner et al. [18].

The phase shifts due to the electric field (the Aharonov–Casher 
effect) and magnetic field (the Bernstein effect) as written in equa-
tions (3) and (5) are in non-covariant, 3-vector notation. Here we 
suggest a 4-vector, covariant expression for the AC effect (which 
also therefore includes the Bernstein effect). The phase shifts in 
(3) and (5) can be combined and written covariantly via the ex-
pression

�αAC−B = μ

∫
Fμν Sνdxμ , (6)

where μ is the magnitude of the magnetic moment defined pre-
viously. The term Fμν is the dual Faraday field strength tensor 
Fμν = 1

2 εμναβ F αβ with εμναβ being the 4D anti-symmetric Levi–
Civita symbol and F αβ = ∂α Aβ −∂β Aα is the Faraday field strength 
tensor. The term Sν is the axial spin 4-vector (see the discussion 
in [13]) which is given as

Sμ =
(
γ �β · �s , �s + γ 2

1 + γ
( �β · �s) �β

)
= (S0, �S) , (7)

with �s = 1
2 �σ the standard 3-vector spin and γ , �β the usual rel-

ativistic gamma and beta factors. In the low velocity limit Sν →
(0, �s), one can show that �αAC−B from (6) reduces to the sum of 
�αAC and �αB from (3) and (5). Using Sν → (0, �s) one can split 
(6) into spatial and time integrals as

�αAC−B = μ

∫ (
Fi j s

jdxi +F0 j s
jdx0

)
. (8)

Where in the low velocity limit the 4-vector spin has become 
just the ordinary 3-vector spin. Combining this with the dual field 
strength tensor time–space component – F0 j = B j – one finds 
that in the low velocity limit the integrand of the second term 
in (8) becomes μF0 j s j → �μ · �B where �μ = μ�s. Next for the dual 
field strength tensor the space–space components are Fi j = εi jk Ek . 
Combining this with low velocity limit for Sν the integrand of the 
first term in (8) becomes μFi j s j → μεi jks j Ek → μ�s× �E → −�E × �μ, 
which is just the integrand of the Aharonov–Casher phase in (3).

The above development is a motivation that the expression 
given in (6) is the covariant generalization of the Aharonov–Casher 
phase (3) and the Bernstein phase (5). It is possible to obtain 
this covariant phase more rigorously. As in the original work of 
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Aharonov and Casher we start with the Dirac equation for a neu-
tral particle non-minimally coupled to via its magnetic moment to 
the electromagnetic field, Fμν

L = �̄
(

iγ μ∂μ − μ

2
Fμνσ

μν − m
)

� , (9)

where m is the mass of the particle, μ is the magnitude of its 
magnetic moment, γ μ are Dirac matrices and σμν = i

2 [γ μ, γ ν ]. 
Next we define the spin projection operators

�±(�S) = 1

2

(
1 ± γ 5γ μSμ

)
. (10)

This operator projects out the +�S and −�S components of the 
spinor � along the direction �S via the expressions

�± = �±� ; �̄± = �±�̄ . (11)

Thus the spinor � can be decomposed as � = �+ + �− . The La-
grangian in (9) can now be written as

L = (
�̄+ + �̄−

)(
iγ μ∂μ − μ

2
Fμνσ

μν − m
)

(�+ + �−)

L± = �̄±
(

iγ μ∂μ − μ

2
Fμνσ

μν − m
)

�± . (12)

In the last line we note that the Lagrangian has split into two 
forms – L+ or L− – depending on if one has �̄+ (· · · ) �̄+ or
�̄− (· · · ) �̄− . This split occurs since for the canonical Aharonov–
Casher set-up the particle beam is polarized so that one has �+
or �− . This is the reason that in the Lagrangians in (12) does not 
have mixed terms like �̄+ (· · · ) �̄− since the beam is either �+ or 
�− . Thus the Lagrangian in (12) has been split into two separate 
Lagrangians – one for �+ (i.e. �̄+

(
iγ μ∂μ − μ

2 Fμνσ
μν − m

)
�+) 

and one for �− (i.e. �̄−
(
iγ μ∂μ − μ

2 Fμνσ
μν − m

)
�−).

We now want to work on the terms from (12) of the form 
�̄±

(μ
2 Fμνσ

μν
)
�± . First, we use the standard properties of 

Dirac matrices and the antisymmetry of Fμν and σμν to write 
Fμνσ

μν = i Fμνγ
μγ ν . Next we note that

γ μγ ν = {
�±, γ μγ ν

} ∓ ημνγ 5γ α Sα ± iεαβμνγβ Sα . (13)

Since we are interested in the term �̄±
(μ

2 Fμνσ
μν

)
�± →

�̄±
(
i μ

2 Fμνγ
μγ ν

)
�± we can drop ημνγ 5γ α Sα from (13) since 

Fμν is antisymmetric and ημν is symmetric. For the remaining 
terms, remembering �± = �±� , we apply �± to the left and 
right of γ μγ ν above to get

�±γ μγ ν�± = �±
{
�±, γ μγ ν

}
�± ± i�±εαβμνγβ Sα�±

= 2�±γ μγ ν�± ± i�±εαβμνγβ Sα�±
= ∓i�±εαβμνγβ Sα�± , (14)

where in the second line we have used the fact that �± is a pro-
jection operator i.e. �±�± = �± . Putting all this together we can 
write the Lagrangians in (12) as

L± = �̄±
(
γ μ[i∂μ − μFμν Sν ] − m

)
�± . (15)

The Lagrangian of the usual minimally coupled Dirac particle with 
charge e has the form LDirac = �̄

(
γ μ[i∂μ − e Aμ] − m

)
� with Aμ

being the 4-vector potential. Comparing this Dirac Lagrangian with 
those in (15) we find the correspondence e Aμ ↔ μFμν Sν (this 
correspondence was also noted in [19]). Then using the fact that 
the minimal coupling i∂μ − e Aμ gives the covariant Aharonov–
Bohm phase as e 

∮
Aμdxμ we conclude that the coupling in (15), 

i∂μ − μFμν Sν gives the covariant Aharonov–Casher phase

�αAC−B = μ

∫
Fμν Sνdxμ . (16)
This agrees with the previously given form in (6). However here we 
have derived the covariant Aharonov–Casher phase starting from 
the Lagrangian in (9), whereas previously we only gave a motiva-
tion for the covariant form of the AC phase via heuristic arguments 
starting from the 3-vector form of the Aharonov–Casher phase (i.e.
– μ 

∫
L(

�E × �s) · d�r) and the 3-vector form of the Bernstein/scalar 
Aharonov–Bohm phase (i.e.

∫
L( �μ · �B)dt).

We now use the expression in (8) to make two comments about 
the combined Aharonov–Casher and Bernstein effect.

First, from the (8) we can write the integrand as a total differ-
ential

d(�αAC−B) = ∂i(�αAC−B)dxi + ∂0(�αAC−B)dx0

= μ
(
Fi j s

jdxi +F0 j s
jdx0

)
,

which gives the identities ∂i(�αAC−B) = μFi j s j and ∂0(�αAC−B) =
μF0 j s j . Now by the equality of mixed partial derivatives
∂0∂i(�αAC−B) = ∂i∂0(�αAC−B) we have

∂0(μFi j s
j) = ∂i(μF0 j s

j) . (17)

Using Fi j s j = εi jk Eks j = −�E × �s and μF0 j s j = �B · �s. Plugging this 
into (17) yields

1

c

d

dt
(�E × �s) = −∇(�B · �s) . (18)

In (18) we were able to replace the partial time derivative by the 
full time derivative since

d

dt
(�E × �s) = dx

dt
·
[
∇(�E × �s)

]
+ ∂

∂t
(�E × �s) ≈ ∂

∂t
(�E × �s) ,

since in the low velocity limit dx
dt ≈ 0. The result in (18) implies 

that the force on the neutral magnetic moment, �μ = μ�s, moving in 
the combined electric and magnetic field is zero in the low velocity 
limit.3 The vanishing of the classical force on the particle is one of 
the conditions of the AB and AC effects.

Second, the canonical Aharonov–Casher effect as given by the 
phase in (3) is non-dispersive i.e. the phase shift is independent 
of the velocity of the particle. This same non-dispersive feature 
holds for the Aharonov–Bohm effect as well. This is a crucial as-
pect of the Aharonov–Bohm effect since if a charged particle in-
teracts directly with a magnetic field, �B , one will also in general 
get phase shifts due to the �v × �B forces on the particle. How-
ever the phase shifts associated with the �v × �B forces are explicitly 
velocity dependent and thus dispersive. Now for the covariant ex-
pression of the AC phase given in (6) or (8) we see that, if we 
do not make the low velocity limit, that the AC phase shift will 
depend on the velocity �β , and will in general be dispersive. Thus 
the non-dispersive nature of the Aharonov–Casher effect is a re-
sult of taking the low velocity limit. For the non-covariant forms 
of the Aharonov–Bohm phase of (2) or the Aharonov–Casher phase 
of (3), the non-dispersive character of these phases is one of their 
fundamental features. From the covariant expression of the phase 
in equation (6) one finds that there will in general be a velocity 
dependence due to the form of the 4-spin in (7). Thus in gen-
eral the AC effect is dispersive. In contrast the covariant AB phase 
given by e 

∮
Aμdxμ is still independent of the particle velocity and 

is non-dispersive even if one relaxes the low velocity limit.
In the next section we will examine the case where a neutral 

particle with a magnetic moment moves in the background field 

3 From Ref. [20] the 3-vector expression for the force on a magnetic dipole �μ
moving in a combined electric and magnetic field is given by �F = ∇( �μ · �B) −
1
c

d( �μ×�E)
dt so that (18) implies �F = 0 in this low velocity limit.
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of a plane electromagnetic wave. The plane wave has both electric 
and magnetic fields, and both fields lead to non-zero phases which 
have an interesting interplay with one another.

3. Aharonov–Casher–Bernstein effect in a plane electromagnetic 
wave background

We now want to use the results of the previous section to 
study a specific example of the time-dependent Aharonov–Casher–
Bernstein effect. In the original Aharonov–Casher paper and in 
the original Bernstein paper the electric and magnetic fields were 
static. For example, the original Aharonov–Casher setup was for 
the static electric field of an infinite line charge. If this line charge 
were allowed to varying in time then one would generate magnetic 
fields which would lead to additional phase shifts and therefore 
the simple 3-vector expression for the Aharonov–Casher phase, 
equation (3), would not be correct; one would need a covariant 
expression, such as our proposal in equation (8), in order to han-
dle the additional phase shift coming from the time dependence 
of the fields.

The particular time varying electric and magnetic background 
we consider is a plane electromagnetic wave traveling in the +z
direction and polarized along the x direction. The fields for this 
are

�E = f (ωt − kz)x̂ ; �B = f (ωt − kz)ŷ (19)

We have written the electric and magnetic fields in terms of ar-
bitrary wave forms, but for concreteness one can take them to be 
sinusoidal e.g. f (ωt − kz) = E0 sin(ωt − kz). We now use the co-
variant phase shift expression given in (8) to investigate the phase 
shift on a neutron moving in the background of the linearly polar-
ized plane wave of (19). There are three choices for the direction of 
�s (and therefore the direction of �μ): x̂, ŷ, or ẑ. Choosing �s ∼ x̂ gives 
�E × �s = 0 and �B · �s = 0 so we would get no additional phase shift 
for this case. If �s ∼ ẑ then �B · �s = 0 while �E × �s ∼ ŷ. In this case, 
if the particle follows a path along the y direction with d�r ∼ ŷ, 
one gets a time varying AC phase shift from the electric field, but 
no Bernstein phase shift. The details of this time varying AC phase 
shift will depend on the details of the velocity of the particle and 
the frequency of the wave, ω. The case �s ∼ ŷ is the most inter-
esting and most general since now both the Aharonov–Casher and 
Bernstein phase shifts are non-zero since �E × �s �= 0 and �B · �s �= 0. 
In this case one finds an interesting interplay between the two ef-
fects.

For the electromagnetic fields given by (19) and the spin in the 
direction �s ∼ ŷ, the combined Aharonov–Casher–Bernstein phase 
shift according to (3), (5) and (8) for the particle traveling with 
velocity v in the ±z-direction is (we restore a factor of 1

c )

�αAC−B = μ

c

∫
Fμν Sνdxμ

= μ

c

∫
L

(�s · �B)c dt − μ

c

∫
L

(�E × �s) · d�r

= μ

2v

∫
L

[ f (ωt − kz)]dz − μ

2c

∫
L

[ f (ωt − kz)]ẑ · (±dzẑ)

= μ

2c

L∫
0

[ f (ωt − kz)]
( c

v
∓ 1

)
dz . (20)

In the second line we have used dt = dz/|v| and the ± in the elec-
tric field contribution indicates if the particle is going along ±ẑ. 
The factor of 1 comes from the spin half of the particle. Note that 
2
Fig. 1. The closed space–time loop in the t–z plane.

when the particle moves with the wave (i.e. for particles moving 
in the +ẑ direction) the magnetic and electric effects tend to can-
cel. This can be seen from the factor of c

v − 1 in (20) which goes 
to zero as the particle velocity approaches c i.e. v ∼ c. (However in 
this ultra-relativistic limit we would need to take into account the 
full 4-vector spin, Sμ , rather than simply the 3-vector spin, �s, as 
we did in (20).) When the particle moves against the direction of 
the wave (i.e. for particles moving in the – ẑ direction) the mag-
netic and electric effects tend to add. This can be seen from the 
factor of c

v + 1 in (20) which goes to 2 as the particle velocity ap-
proaches c i.e. v ∼ c. This cancellation or adding, depending on the 
direction of travel of the particle in comparison to that of the wave, 
was also found in the case of the time-dependent Aharonov–Bohm 
for plane waves [21].

We now use (20) to calculate the total Aharonov–Casher–
Bernstein phase shift for two particles starting at z = 0 and t = 0
going out to z = ±�z in time t = �t , then turning around and 
returning to z = 0 at time t = 2�t . The magnitude of the ve-
locity of the particles is |v| = �z

�t . The closed space–time path of 
the particles is shown in Fig. 1. One particle moves along paths 
1 + 2 and the other particle moves along the paths 3 + 4. To get 
a closed space–time path we reverse the direction of the particle 
going along paths 3 + 4 by multiplying the line integrals for these 
paths by a minus sign and then adding them to the line integrals 
from paths 1 + 2. This is indicated in the figure by the reversal of 
the arrows along paths 3 + 4.

Path 1: For path 1 we have z = vt and �z = v�t so that the ar-
gument of the function f becomes ωt −kz = ω

v z −kz = k 
( c

v − 1
)

z, 
where we have used ω

k = c. Now defining k− = k 
( c

v − 1
)

the line 
integral for path 1 from (20) is

μ

c

∫
1

Fμν Sνdxμ = μ

2c

( c

v
− 1

) �z∫
0

f (k−z)dz . (21)

Now defining F (ζ ) = ∫
f (ζ )dζ (e.g. if f (ζ ) = E0 sin(ζ ) then F (ζ ) =

−E0 cos(ζ ) + K ) (21) integrates to
μ

c

∫
1

Fμν Sνdxμ = μ

2k−c

( c

v
− 1

)
[F (k−�z) − F (0)]

= μ

2ω
[F (k−�z) − F (0)] , (22)

where we have used k− = k 
( c

v − 1
)

and kc = ω.
Path 2: For path 2 we have z = −vt + 2�z and �t < t < 2�t

so that z goes from z = �z to z = 0. The argument of the func-
tion f becomes ωt − kz = 2�k c

v − k 
( c

v + 1
)

z. Now defining k+ =
k 
( c + 1

)
the line integral for path 3 from (20) is
v
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μ

c

∫
2

Fμν Sνdxμ = μ

2c

( c

v
+ 1

) 0∫
�z

f
(

2�k
c

v
− k+z

)
dz . (23)

Integration of (23) leads to

μ

c

∫
2

Fμν Sνdxμ = − μ

2ω

[
F

(
2k�z

c

v

)
− F (k−�z)

]
. (24)

Note that while the integral in (23) begins with k+ the final result 
has k− .

Path 3: For path 3 we have z = vt − 2�z and �t < t < 2�t so 
that z goes from z = −�z to z = 0. The argument of the function 
f becomes ωt − kz = 2�k c

v + k 
( c

v − 1
)

z. Recalling the definition 
k− = k 

( c
v − 1

)
the line integral for path 3 from (20) is

μ

c

∫
3

Fμν Sνdxμ = μ

2c

( c

v
− 1

) 0∫
−�z

f
(

2�k
c

v
+ k−z

)
dz . (25)

Integration of (25) leads to

μ

c

∫
3

Fμν Sνdxμ = μ

2ω

[
F

(
2k�z

c

v

)
− F (k+�z)

]
. (26)

The integral in (25) begins with k− the final result has k+ . A simi-
lar thing happened in the integration of path 2.

Path 4: Finally, for path 4 we have z = −vt and �z = −v�t so 
that the argument of the function f becomes ωt − kz = ω

c z − kz =
k 
( c

v + 1
)

z, where we have used ω
k = c. Recalling k+ = k 

( c
v + 1

)
the line integral for path 4 from (20) is

μ

c

∫
4

Fμν Sνdxμ = μ

2c

( c

v
+ 1

) −�z∫
0

f (−k+z)dz . (27)

Integration of (27) leads to

μ

c

∫
4

Fμν Sνdxμ = − μ

2k+c

( c

v
+ 1

)
[F (k+�z) − F (0)]

= μ

2ω
[F (k+�z) − F (0)] , (28)

where we have used k+ = k 
( c

v − 1
)

and kc = ω.
We now combine the results from (22), (24), (26), (28) (remem-

bering to put a minus sign in front of the results from path 3 and 
path 4 so that we get a closed space–time path) to get

μ

c

∮
Fμν Sνdxμ

= μ

c

⎛
⎝∫

1

Fμν Sνdxμ +
∫
2

Fμν Sνdxμ

+
∫
3

Fμν Sνdxμ +
∫
4

Fμν Sνdxμ

⎞
⎠

= μ

ω

[
−F (0) − F

(
2k�z

c

v

)
+ F (k+�z) + F (k−�z)

]
, (29)

where k± = (
1 ± c

v

)
. Expanding the integration functions to second 

order F (η) = F (0) + ηF ′(0) + 1
2 η2 F ′′(0) + . . . gives for the loop 

integral in (29)

μ
∮

Fμν Sνdxμ ≈ μ
[

F ′′(0)k2�z2
(

1 − c2

2

)]
. (30)
c ω v
The zero and first order terms cancel so that one finds that 
μ
c

∮
Fμν Sνdxμ is non-zero only starting at second order. A simi-

lar result was found in the case of the Aharonov–Bohm phase for 
a plane wave background [21]. This result can be attributed to the 
interplay and partial cancellation between the electric and mag-
netic field contribution to the phases.

4. Summary and conclusions

Here we have given a covariant expression for the Aharonov–
Casher effect in equations (6), (16) as a generalization of the 
usual non-covariant 3-vector expression from (3). This covari-
ant expression also includes the Bernstein or scalar Aharonov–
Bohm phase shift. In 3-vector, non-covariant form the Bernstein 
phase is given in equation (5). One encounters the Bernstein/scalar 
Aharonov–Bohm effect when a neutral particle with a magnetic 
dipole moment moves through a magnetic field. One conclusion 
of the of the covariant expression (8) is that in general the 
Aharonov–Casher phase is dispersive i.e. depends on the velocity 
of the particle. This velocity dependence comes in through the 
form of the 4-vector spin, Sμ , given in (7) which depends on �β . 
In contrast one of the hallmarks of the Aharonov–Bohm phase, 
e

h̄c

∮
Aμdxμ , is its non-dispersive character. As well the standard 

non-covariant, 3-vector Aharonov–Casher phase of (3) is velocity 
independent/non-dispersive.

The covariant expression of (6), (16) can be used to analyze 
situations where one has both electric and magnetic fields such 
as occurs generally in time dependent situations. Here we used 
the covariant expression to investigate the phase shift that oc-
curs when a neutron moves in the background field of a plane, 
linearly polarized electromagnetic wave. The final result of the 
phase shift for this kind of background (and for the diamond 
path shown in Fig. 1) is that the time-dependent Aharonov–Casher 
phase vanishes to first order – from (30) we see that the first 
non-zero term comes from the second order term in the expan-
sion of F (ζ ). This approximate vanishing can be attributed to the 
interplay and partial cancellation between the electric and mag-
netic contributions to the phase. A similar partial cancellation be-
tween the electric and magnetic contributions to the phase has 
been seen in the case of the time-dependent Aharonov–Bohm ef-
fect [11,12,21].
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