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We evaluate the contribution of pion–pion rescattering to the pp → ppπ+π− and pp̄ → pp̄π+π− reac-
tions. We compare our results with the close-to-threshold experimental data. The pion–pion rescattering
contribution is found there to be negligible. The predictions for future experiments with PANDA detec-
tor at High Energy Storage Ring (HESR) in GSI Darmstadt are presented. It is discussed how to cut off
the dominant Roper resonance and double-� excitation mechanisms leading to the ppπ+π− channel in
final state. Differential distributions in momentum transfers, transverse momentum, effective two-pions
mass, relative azimuthal angle between pions, and pion rapidities are presented.
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1. Introduction

The pp → ppπ+π− reaction, which is one of the reactions with
four charged particles in the final state, can be easily measured.
Very close to the threshold the excitation of the Roper resonance
and its subsequent decay as well as double-� excitation constitute
the dominant reaction mechanism [1]. Only energy dependence of
the total cross section was discussed in [1]. The pion–pion rescat-
tering mechanism shown in Fig. 1 was not discussed so far in the
literature.1

On the other hand a significant progress in studying pion–
pion scattering at low-energy has been recently achieved due to
works based on dispersive analyses of experimental data [3–8].
These works, led to precise determination of the ππ scattering
amplitudes consistent with analyticity, unitarity, crossing symme-
try and chiral perturbation theory (χPT) within error bars. Strong
theoretical constraints from forward dispersion relations and sum
rules allowed to test several, sometimes conflicting sets of data [7].
The twice subtracted dispersion relations (Roy’s equations) used in

* Corresponding author at: Institute of Nuclear Physics PAN, PL-31-342 Cracow,
Poland.

E-mail addresses: piotr.lebiedowicz@ifj.edu.pl (P. Lebiedowicz),
antoni.szczurek@ifj.edu.pl (A. Szczurek), robert.kaminski@ifj.edu.pl (R. Kamiński).

1 The π0 is an unstable particle with life time of the order 10−17 seconds [2].
This is orders of magnitude more than a typical strong interaction times. Therefore
one can safely neglect the fact of the π0 decay.
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Fig. 1. The pion–pion rescattering mechanisms of exclusive production of π+ and
π− in proton–proton and proton–antiproton collisions. Some kinematical variables
are shown explicitly. The stars attached to π0 mesons denote the fact that they are
off-mass-shell.

[3,4] allowed to calculate very precisely sigma pole position and
S-wave scattering lengths a0 and a2. These works were contin-
ued in Refs. [5–9]. In Ref. [6] the sigma position was determined
from first principles with unprecedented precision. Recent works
on once subtracted dispersion relations give results with similar
precision [9]. Application of Roy’s equations in another dispersive
analysis of experimental data allowed to eliminate the long stand-
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ing “up–down” ambiguity below 1 GeV in lI = S0 2 wave [10]. The
simple and model independent amplitudes of the S0, P , S2, D0,
D2, F and G waves presented in series of works [7–9] seem to
be efficient and easy to use in analyses of ππ interactions. Am-
plitudes presented in [8] have been applied in this analysis to
parameterize the final state interactions π0π0 → π+π− .

The knowledge from the ππ → ππ reaction can almost di-
rectly be used in our pp → ppππ reaction shown in Fig. 1. It
is the aim of this Letter to evaluate the pion–pion rescattering
contribution for the measured close-to-threshold region of the
pp → ppπ+π− reaction as well as to make predictions for the fu-
ture experiments with the PANDA detector at High Energy Storage
Ring (HESR) in GSI Darmstadt for the pp̄ → pp̄π+π− reaction.

2. The two-pion rescattering amplitude

It is straightforward to evaluate the pion–pion exchange current
contribution shown in Fig. 1. If we assume the iγ5 type coupling of
the pion to the nucleon then the Born amplitude squared and av-
eraged over initial and summed over final spin polarizations reads:

|M|2 = 1

4

[
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1
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× 2
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In the formula above m is the mass of the nucleon, Ea , Eb and
E1, E2 are the energies of initial and outgoing nucleons, pa , pb
and p1, p2 are the corresponding three-momenta and mπ is the
pion mass. The factor gπ N N is the familiar pion–nucleon coupling

constant and is relatively well known [11] (
g2
π NN
4π = 13.5–14.6).

In the case of central production of pion pairs not far from the
threshold region rather large transferred four-momenta squared t1
and t2 are involved and one has to include non-point-like and off-
shellness nature of the particles involved in corresponding vertices.
This is incorporated via the Fπ N N (t1) or Fπ N N (t2) vertex form fac-
tors. We shall discuss how the uncertainties of the form factors
influence our final results. In the meson exchange approach [12]
they are parameterized in the monopole form as

Fπ N N(t1,2) = Λ2 − m2
π

Λ2 − t1,2
. (2.2)

In the following for brevity we shall use notation t1,2 which
means t1 or t2. Typical values of the form factor parameters are
Λ = 1.2–1.4 GeV [12], however the Gottfried Sum Rule violation
prefers smaller Λ ≈ 0.8 GeV [13].

The amplitude of the subprocess π0∗π0∗ → π+π− with virtual
initial pions is written in terms of the amplitude for real initial
pions and correction factors as:

2 Here l is angular momentum between pions and I is the total isospin of the
pion pair.
Mπ0∗π0∗→π+π−
(
s34, cos θ∗, t1, t2

)
= Mπ0∗π0∗→π+π−

(
s34, cos θ∗)Fπ0∗(t1)Fπ0∗(t2). (2.3)

The on-shell amplitude can be expanded into partial wave ampli-
tudes f I

l (s34) with angular momentum l and isospin I:

M
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(
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l (s34). (2.4)

For a limited range of Mππ = √
s34 it is enough to take only a few

partial waves. In our calculation f I
l (s34) can be parameterized in

terms of the pion–pion phase shifts δ I
l (s34) and the inelasticities

η I
l (s34) taken from [8]

f I
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s34 − 4m2
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2i
. (2.5)

In the formula above Fπ0∗ (t1,2) are extra correction factors due
to off-shellness of initial pions. We use exponential form factors of
the type

Fπ0∗(t1,2) = exp

(
t1,2 − m2

π

Λ2
off

)
, (2.6)

i.e. normalized to unity on the pion-mass-shell. In general, the pa-
rameter Λoff is not known but in principle could be fitted to the
experimental data providing that our mechanism is the dominant
mechanism which can be true only in a limited corner of the phase
space. From our general experience in hadronic physics we expect
Λoff ∼ 1 GeV.

The cos θ∗ in Eq. (2.4) requires a separate discussion. In the on-
shell case the cos θ can be expressed in terms of the two-body
Mandelstam invariants t̂ and û in two equivalent ways:

cos θt̂ = 1 + 2t̂

s34 − 4m2
π

,

cos θû = −1 − 2û

s34 − 4m2
π

. (2.7)

This can be generalized to the case of off-shell initial pions as:

cos θ∗
t̂

= 1 + 2t̂

s34 − m2
π − m2

π − t1 − t2
,

cos θ∗
û = −1 − 2û

s34 − m2
π − m2

π − t1 − t2
. (2.8)

In our case of the 2 → 4 reaction3 we have to deal with off-
shell initial pions and an analytical continuation of formula (2.8)
is required. In the following we use the most straightforward pre-
scription:

cos θ∗ = 1

2

(
cos θ∗

t̂
+ cos θ∗

û

) = t̂ − û

s34 − m2
π − m2

π − t1 − t2
. (2.9)

The formula above reproduces the on-shell formula (2.7) when
t1 → m2

π and t2 → m2
π , is symmetric with respect to t̂ and û and

fulfils the requirement −1 < cos θ∗ < 1.
The differential cross sections for the 2 → 4 reaction are calcu-

lated using the general formula

dσ = 1

2s
|M|2(2π)4δ4(pa + pb − p1 − p2 − p3 − p4)

× d3 p1

(2π)32E1

d3 p2
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d3 p3

(2π)32E3

d3 p4
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. (2.10)

3 2 → 4 reaction denotes a type of the reaction with two initial and four final
particles.
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Fig. 2. The dominant mechanisms of Roper resonance production at low energy proton–proton scattering.
3. Reactions via Roper resonance excitation and its decay

Close to the two-pions production threshold the dominant
mechanism for the reaction pp → ppπ+π− is Roper resonance
excitation and its subsequent three-body decay [1,14]. This mech-
anism constitutes an “unwanted background” to our pion–pion
rescattering. At low energy the sigma and pion exchanges are the
dominant mechanisms of Roper resonance excitation (see [15]).
Here we show how to approximately estimate the phase-space in-
tegrated contribution of the mechanism shown in Fig. 2 not very
close to the threshold.4

The amplitude for the Roper resonance N∗ excitation via
σ -meson exchange can be written as

M(σ ,t)
λaλb→λNλN∗ = gσ N N Fσ N N(t)

[
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] 1
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]
. (3.1)

The amplitude for the Roper resonance excitation via π -exchange
mechanism can be written as
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[
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In the above equations gπ N N , gσ N N , gπ N N∗ , gσ N N∗ represent the
coupling constants and N denotes proton or antiproton; u(pa, λa),
u(pb, λb), u(pN , λN ), u(pN∗ , λN∗ ) are the spinors of the protons
and Roper resonance; pN and pN∗ denote the four-momenta of
the outgoing proton and the Roper resonance; λN and λN∗ the he-
licities of the nucleon and the Roper resonance; t and u are the
four-momentum transfers; mπ and mσ are the mass of the pion
and sigma mesons.

In our calculations the coupling constants are taken as g2
π N N/

4π = 13.6 [11], g2
σ N N/4π = 5.69 [12], g2

π N N∗/4π = 2.0 and
g2
σ N N∗/4π = 2.0. Because numerically the σ -exchange is the domi-

nant mechanism and the π -exchange is only a small correction,5 in
practice the latter can be neglected. The coupling constant gσ N N∗

4 Very close to the threshold the reaction must be treated as genuine four-body
reaction with the ppπ+π− final state (see [1]).

5 The difference is due to scalar coupling for σ -exchange or pseudoscalar γ5 cou-
pling for pion exchange.
is in fact an unknown parameter which in principle should be de-
termined from the experimental data. Different values have been
used in the literature [12,16]. Our number is an average value of
those found in the literature. We parameterize the form factors
Fσ N N (t, u) (and Fπ N N (t, u)) either in the monopole form with cut-
off parameter ΛM as traditionally for low energy processes:

Fσ N N(t, u) = Λ2
M − m2

σ

Λ2
M − t, u

, (3.3)

or in the exponential form often used at high energies with cut-off
parameter ΛE :

Fσ N N(t, u) = exp

(
t, u − m2

σ

Λ2
E

)
. (3.4)

The angular distribution for single Roper resonance excitation can
be calculated from the amplitude above as

dσpp→pN∗(1440)

dΩ

= 1

64π2s

(
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)
1
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×
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, (3.5)

where s is a square of the proton–proton center-of-mass energy;
qi and q f are center-of-mass momenta in the initial pp or the final
pN∗ systems, respectively and z = cos θ , where θ is the center-of-
mass angle between the outgoing and initial nucleon. The factor
1
4 and

∑
λaλbλN λN∗ emerge for the simple reason that the polar-

ization of initial and final particles is not considered. In general,
one should calculate the cross section for 2 → 4 reaction based on
diagrams shown in Fig. 2 with Roper resonance in the interme-
diate state (in general off-shell particle). However, for sufficiently
high energies the total cross section for the ppπ+π− final state
can be written approximately as a cross section for the Roper res-
onance excitation and a probability for the N∗(1440) → pπ+π−
decay (on-shell approximation):

σpp→ppπ+π−(
√

s )

≈ σpp→pN∗(
√

s ) · Br
(
N∗(1440) → pπ+π−)

. (3.6)

This formula will be used to calculate the total cross section for
the Roper resonance mechanism to show as a reference for the
discussed above two-pion rescattering contribution. The branching
ratio to the pπ+π− channel is not very well known and the mech-
anism of the Roper resonance decay can be complicated. Particle
Data Book contains only branching fraction for all Nππ states. Our
decay channel (pπ+π−) is only one out of three possible (pπ0π0,
pπ+π− , nπ+π0). We take Br(N∗(1440) → pπ+π−) = 0.1.

In principle, all processes (pion rescattering, Roper production
and decay, etc.) add coherently and can interfere. At low energy,
where the phase space is very limited the interference seems un-
avoidable. Some distance from the threshold (of our main interest)
they may occupy different regions of the phase space. This au-
tomatically means small interference effects. In our preliminary
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Fig. 3. The angle-integrated cross section for the reaction π0π0 → π+π− . The thick
solid line represents the coherent sum of all partial waves. The contributions for
individual partial waves S0, S2, D0 and D2 are shown for comparison.

calculation we have estimated the Roper resonance contribution in
a simplified way (in terms of the two-body reaction amplitude and
a probability of the 3-body decay). In order to address numerically
the interference effects with pion rescattering the Roper resonance
must be treated as a genuine four-body processes. This requires
a modelling of the 3-body Roper resonance decay (not necessar-
ily simple as different sequential processes are possible). To avoid
the rather complicated problem of the interference we proposed
instead imposing extra kinematical cuts which is possible at suffi-
ciently large energies.

In the next section we shall show our predictions for several
differential distributions in different variables.

4. Results

Before we go to our four-body reaction let us stay for a moment
with the π0π0 → π+π− on-shell scattering. In Fig. 3 we show
the total (angle-integrated) cross section for the π0π0 → π+π−
process which constitutes the subprocess in the 2 → 4 reactions
discussed in the present Letter. Here the partial wave expansion
(2.4) with δ I

l and η I
l parameterizations from Ref. [8] were used. In

the present work we have limited to Mππ < 1.5 GeV, i.e. energies
relevant for WASA and future PANDA experiments.

At higher
√

s larger Mππ energies may contribute. This will be
discussed elsewhere [17]. We show also individual contributions of
different partial waves: (l, I) = (0,0), (0,2), (2,0) and (2,2). Be-
cause of identity of particles in the initial state only partial waves
with even l contribute. One can see characteristic bumps related
to the famous scalar–isoscalar σ -meson at Mππ ≈ 0.5–0.6 GeV
and the tensor–isoscalar f2(1270). The dip at Mππ = 980 MeV is
due to interference of the σ with another scalar–isoscalar narrow
f0(980) meson. Generally the contributions of nonresonant partial
waves with I = 2 are much smaller than those for I = 0.

In Fig. 4 we show the proton energy excitation function of the
integral cross section for the pp → ppπ+π− reaction. In addition,
we compare our results with the experimental data for the pp →
ppπ+π− reaction (from Refs. [18–26]) and for the pp̄ → pp̄π+π−
one (only data from the JETSET (PS202) experiment at LEAR [27]).
We present previous data (open symbols) with low statistics com-
ing mainly from bubble-chamber measurements on hydrogen or on
deuterium from Refs. [18–21] as well as one datum point from an
inclusive spectrometer measurement at 800 MeV [22]. The newer
Fig. 4. The phase-space integrated cross section for the pp → ppπ+π− reaction as
a function of the proton kinetic energy in the laboratory frame T p together with
the experimental data from Refs. [18–27]. The thick solid line is explained in the
text. The uncertainties band is also shown. In all cases a coherent sum of all partial
waves is taken.

Fig. 5. The phase-space integrated cross section for the reaction pp̄ → pp̄π+π− as
a function of center of mass energy

√
s. The thick solid line represents the coherent

sum of all partial waves. The contributions for individual partial waves S0, S2, D0
and D2 are shown for comparison.

data taken from Refs. [23–27] (full symbols) are much closer to the
threshold of the reaction and are an order of magnitude smaller.
We show how the uncertainties of the form factor parameters Λ

affect our final results. For the pion–pion rescattering we modify
the cut-off parameter Λ in Eq. (2.2) (Λ ∈ (0.8,1.4) GeV) and the
cut-off parameter Λoff in Eq. (2.6) (Λoff ∈ (0.5,2.0) GeV). The thick
solid line show theoretical predictions from the model calculations
with Λ = 0.8 GeV and Λoff = 1.0 GeV. The pion–pion rescattering
contribution is found to be negligible.

As discussed in the theory section, the π0π0 → π+π− am-
plitude used for the π0π0 → π+π− reaction can, after a small
“correction” for virtualities of both initial π0’s, be used for the
four-body process of our main interest. In Fig. 5 we show the
total cross section (integrated over the whole phase space with
the restriction Mππ < 1.42 GeV) for the four-body reaction as a
function of the overall center-of-mass energy

√
s. We show the

coherent sum of partial waves for different l and I as well as in-
dividual contributions. The maximum of the cross section occurs
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Fig. 6. The phase-space integrated cross section for the reaction pp̄ → pp̄π+π−
as a function of center of mass energy

√
s. We compare the pion–pion rescatter-

ing contribution and the Roper resonance contribution (only σ -meson exchange
included). The uncertainty bands for both contributions are also shown. The area of
uncertainties for the pion–pion rescattering contribution is indicated by the dashed
lines. The pion–pion rescattering contribution is a coherent sum of all partial waves.

at
√

s ≈ 5 GeV, i.e. at the highest energy planned for the FAIR
HESR. The l = 0, I = 0 partial wave has the dominant contribu-
tion. The sum of the individual contributions is not equal to the
cross section calculated with the sum of the partial wave ampli-
tudes because of relatively strong interference effects.

In Fig. 6 we compare the pion–pion rescattering contribution
and the contribution of Roper resonance excitation through σ -
meson exchange. In both cases we have estimated the uncer-
tainties of the contributions. For the pion–pion rescattering we
modify Λ in Eq. (2.2) (Λ ∈ (0.8,1.4) GeV) and Λoff in Eq. (2.6)
(Λoff ∈ (0.5,2.0) GeV). The bottom dashed line was obtained with
Λ = 0.8 GeV and Λoff = 0.5 GeV while the top dashed line with
Λ = 1.4 GeV and Λoff = 2.0 GeV. For the contribution of the Roper
resonance excitation through σ -meson exchange we modify ΛM ∈
(1.5,2.0) GeV (band with vertical lines) in the monopole parame-
terization and ΛE ∈ (1.0,1.5) GeV (band with horizontal lines) in
the exponential parameterization.

Because at low energies the Roper resonance excitation and
double-� excitation play the dominant role it is not obvious how
to extract the pion–pion rescattering contributions. To cut off the
Roper resonance excitation contribution we eliminate from the
phase space those cases when:

(MN∗ − �MN∗ < M134 < MN∗ + �MN∗)

or

(MN∗ − �MN∗ < M234 < MN∗ + �MN∗).

To suppress the double-� excitation we eliminate from the phase
space those cases when:

(M� − �M� < M13 < M� + �M� and

M� − �M� < M24 < M� + �M�)

or

(M� − �M� < M14 < M� + �M� and

M� − �M� < M23 < M� + �M�).

Above Mijk and Mik represent effective mass of the pππ and pπ
systems, respectively; �MN∗ and �M� are cut-off parameters. We
Fig. 7. Differential cross section dσ
dt1

= dσ
dt2

for the pp̄ → pp̄π+π− reaction at
√

s =
5.5 GeV. The solid line is the cross section without cuts, the dashed line includes
cuts to remove regions of Roper resonance and double-� excitations.

Fig. 8. Differential cross section dσ/dpt,sum for the pp̄ → pp̄π+π− reaction at
√

s =
5.5 GeV. The solid line is the cross section without cuts, the dashed line includes
cuts to remove regions of Roper resonance and double-� excitations.

take �MN∗ = 0.4 GeV and �M� = 0.2 GeV which are considerably
bigger than the decay widths.

In Fig. 7 we present differential cross section dσ
dt1

= dσ
dt2

(inte-
grated over all other variables) for pion–pion rescattering only. The
shape of the distribution reflects tensorial structure of the π N N
vertices (see Eq. (2.1)) as well as t1 or t2 dependence of vertex
form factor (see Eq. (2.2)). This plot illustrates how virtual are “ini-
tial” pions. In principle, measuring such distributions would allow
to limit, or even extract, the π N N form factor in relatively broad
range of t1 or t2. This is not possible in elastic nucleon–nucleon
scattering where many different exchange processes contribute.

In Fig. 8 we show differential cross section dσ/dpt,sum, where
�pt,sum = �p3t(π

+) + �p4t(π
−). For collinear (parallel to the parent

nucleons) initial pions this distribution would be proportional to
the Dirac δ(pt,sum). The deviation from δ(pt,sum) is therefore a
measure of noncollinearity and is strongly related to virtualities
of “initial” pions (see Fig. 7).

The two-pion invariant mass distribution given by the differ-
ential cross section dσ/dMππ is particularly interesting. Here (see
Fig. 9) one can see two characteristic bumps corresponding to the
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Fig. 9. Differential cross section dσ/dMππ for the pp̄ → pp̄π+π− reaction at
√

s =
5.5 GeV. The solid line is the cross section without cuts, the dashed line includes
cuts to remove regions of Roper resonance and double-� excitations.

Fig. 10. Differential cross section dσ/dφ34 for the pp̄ → pp̄π+π− reaction at
√

s =
5.5 GeV. The solid line is the cross section without cuts, the dashed line includes
cuts to remove regions of Roper resonance and double-� excitations.

famous scalar–isoscalar σ meson and tensor–isoscalar f2(1270)

meson as well as the dip from f0(980). The cuts to remove regions
of Roper resonance and double-� excitation only slightly modify
the spectral shape.

The PANDA detector is supposed to be a 4π solid angle de-
tector with good particle identification for charged particles and
photons. This opens a possibility to study several correlation ob-
servables for outgoing particles. One of them is azimuthal angle
correlation between charged outgoing pions φ34, never discussed
in the literature. In Fig. 10 we present differential cross section
dσ/dφ34. Clearly a preference of back-to-back emissions can be
seen. Imposing cuts on the Roper resonance and double-� exci-
tation lowers the cross section but only mildly modifies the shape.
Because the shape of the azimuthal angle correlations strongly
depends on the reaction mechanism, measuring such correlation
would provide then very valuable information.

In Fig. 11 we show differential cross section dσ/dy3 dy4 in the
two-dimensional space (y3, y4). For comparison in the right panel
we show a similar distribution when extra cuts to remove regions
of Roper resonance and double-� excitation are imposed. The cuts
do not much affect the region of y3, y4 ≈ 0. In practice, the cuts
on the Roper resonance region do not modify the results. The cuts
on Roper resonance act for (y3 < 0 and y4 < 0) or (y3 > 0 and
y4 > 0), i.e. in the region where the two-pion rescattering contri-
bution is small. The cuts on double-� excitation act for (y3 < 0
and y4 > 0) or (y3 > 0 and y4 < 0), i.e. in the region where
the two-pion rescattering contribution is sizeable. This shows that
the double-� excitation is more critical than the Roper resonance
excitation in the context of extracting the pion–pion rescattering
contribution.

5. Conclusions

We have calculated both differential and total cross sections for
the pp → ppπ+π− and pp̄ → pp̄π+π− reactions close to thresh-
old and for future PANDA experiments. Our results have been com-
pared with very close to threshold data measured by the WASA
Collaboration. We have shown that very close to threshold the
pion–pion rescattering mechanism gives much smaller contribu-
tion than the excitation of the Roper resonance and its subsequent
decay as well as the double-� excitation and subsequent decays
studied in the past [1]. At low energies all these mechanisms over-
lap and it is not possible to extract the pion–pion rescattering con-
tributions and therefore not possible to study the π0π0 → π+π−
process.
Fig. 11. Two-dimensional differential cross section dσ/dy3 dy4 in y3(π+)× y4(π−) for the pp̄ → pp̄π+π− reaction at
√

s = 5.5 GeV (left panel). In the right panel we have
included in addition cuts to remove regions of Roper resonance and double-� excitations.
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Going to higher energies allows to find regions of the final state
phase space where the pion–pion rescattering process dominates
over the Roper resonance and double-� excitation mechanisms.
Experiments at highest energies of the HESR (FAIR project) at GSI
Darmstadt open a possibility to study the pion rescattering pro-
cess and provide an excellent place for studying properties of the
Roper N∗(1440) resonance. At present it is not clear how precisely
the pion rescattering can be studied experimentally as the PANDA
detector is in the exploratory phase and its detailed final design
is still an open issue. We expect that the minimal scenario would
be to verify models like the one discussed in the present Letter.
Whether the phase shift analysis is possible requires extra Monte
Carlo studies including efficiencies of the PANDA detector. We hope
that the cross section for exclusive production and the line shape
(position and width) of the Roper resonance can be studied with
the PANDA detector. GSI is only possible place where the exclu-
sive pp̄ → pp̄π+π− reaction can be studied at sufficiently large
energy. At the Tevatron the pion rescattering cross section is com-
pletely negligible and other mechanisms becoming important [17].

We have presented several distributions which could be mea-
sured in the future with the PANDA detector at the GSI HESR. Par-
ticularly interesting is the distribution in two-pion invariant mass,
where one should observe bumps related to the famous scalar–
isoscalar σ -meson and to tensor–isoscalar f2(1270) meson as well
as a dip from the interference with f0(980) and σ . This distribu-
tion is slightly different compared to the dependence of the total
π0π0 → π+π− cross section on Mππ . This is caused mainly by
the four-body phase space modifications.

The pions from the pion–pion rescattering are produced pref-
erentially in opposite hemispheres, i.e. if one pion is produced at
positive center-of-mass rapidities the second pion is produced at
negative ones. This is similar to the double-� excitation mecha-
nism. Imposing cuts on double-� excitation leaves untouched the
region of midrapidities. Also the region of large pt,sum stays un-
modified by the cuts on double-� excitations.
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