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A B S T R A C T

Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) contribute to normal heart development.
Deficient or abnormal expression of Pdgf and Pdgfr genes have a negative impact on cardiac development and
function. The cellular effects of PDGFs in the hearts of Pdgf/Pdgfr mutants and the pathogenesis of the
resulting abnormalities are poorly understood, but different PDGF isoforms induce varying effects. Here, we
generated three new transgenic mouse types which complete a set of studies, where all different PDGF ligands
have been expressed under the same heart specific alpha-myosin heavy chain promoter.

Transgenic expression of the natural isoforms of Pdgfa and Pdgfb resulted in isoform specific fibrotic
reactions and cardiac hypertrophy. Pdgfa overexpression resulted in a severe fibrotic reaction with up to 8-fold
increase in cardiac size, leading to lethal cardiac failure within a few weeks after birth. In contrast, Pdgfb
overexpression led to focal fibrosis and moderate cardiac hypertrophy. As PDGF-A and PDGF-B have different
affinity for the two PDGF receptors, we analyzed the expression of the receptors and the histology of the fibrotic
hearts. Our data suggest that the stronger fibrotic effect generated by Pdgfa overexpression was mediated by
Pdgfrα in cardiac interstitial mesenchymal cells, i.e. the likely source of extracellular matrix depostion and
fibrotic reaction. The apparent sensitivity of the heart to ectopic PDGFRα agonists supports a role for
endogenous PDGFRα agonists in the pathogenesis of cardiac fibrosis.

1. Introduction

Cardiac fibrosis is characterized by excessive production of extra-
cellular matrix proteins such as collagens and fibronectin deposited by
activated fibroblasts (a.k.a. myofibroblasts). These cells accumulate at
sites of injury or inflammation in response to locally released fibrogenic
mediators. The origin of cardiac myofibroblasts is unclear but may
potentially involve multiple sources, such as cardiac fibroblasts,
fibroblast progenitors, vascular mural cells, epicardial epithelium and
endothelial cells (reviewed by [1,2]). Accumulation of extracellular
matrix proteins in the cardiac interstitium causes myocardial stiffness
and ventricular dysfunction. Organ failure due to fibrosis is indeed the
major cause of death from inflammatory diseases. Unfortunately,
therapies directly targeting fibrosis or its pathogenesis are still limited
(reviewed by [3,4]).

Several molecular mediators are active during cardiac fibrosis, one
of them being the platelet-derived growth factors (PDGFs). PDGF
signalling has been implicated in fibrosis of different organs, such as
lung, liver, skin, kidney and heart (reviewed by [5]). PDGFs affect

multiple cellular functions, such as cell proliferation, differentiation,
cytoskeletal rearrangements and cell migration including chemotaxis.
In normal vertebrates, members of the PDGF family are widely
expressed throughout the body and play roles both during organogen-
esis and during disease processes. To-date, four PDGF ligands have
been identified (PDGF-A, -B, -C and -D), which form four homodimers
(AA, BB, CC and DD) and one heterodimer (AB) that bind to and
activate two different tyrosine kinase receptors (PDGFRα and -β) with
different affinity. A wide variety of potential ligand-receptor interac-
tions have been demonstrated in vitro, but not all have been confirmed
in developmental in vivo studies of knockout mice (reviewed by [5]). In
general, PDGF-A and -C bind to PDGFRα, and PDGF-B and -D bind to
PDGFRβ in vivo.

All PDGFs have been reported to influence heart development.
Endothelial cells express PDGF-B and -D, whereas vascular mural cells
(smooth muscle cells and pericytes) express PDGFRβ. Genetic loss-of-
function of PDGF-B or PDGFRβ in mice lead to a hypoplastic
myocardium that lack vascular smooth muscle cells [6,7], whereas
deletion of PDGF-D causes only a mild vascular phenotype in the heart
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[8]. PDGF-A and -C are both expressed by myocardial cells, whereas
PDGFRα-positive interstitial cells have been identified in the epicar-
dium, myocardium and endocardium. PDGFRα signalling is needed
during the establishment of the second heart field-derived structures,
such as ventricular septum, epicardial cells, epicardial-derived fibro-
blasts, second heart field-derived myocardium, epicardial-mesenchy-
mal derivates, cardiac neural crest cells, sinus venosus and outflow
tract [6,9–13].

Several reports point to a surprising complexity in the cardiac
responses to PDGF/PDGFR signalling, suggesting that fibrogenic
responses to PDGFs may be both model- and context-dependent. A
primary general increase in PDGFRα activation in mice leads to multi-
organ fibrosis, including in the heart [14], whereas increased PDGFRβ
activation does not [15]. In a heterotypic heart transplantation model
in rats, administration of adenoviruses expressing PDGF-A, -C and -D
led to accelerated cardiac fibrosis and chronic rejection [16]. Likely,
myocardial injection of adenoviruses expressing different PDGFs
results in an increased inflammatory reaction through PDGFRα
activation. Moreover, PDGFRα and -β neutralizing antibodies were
shown to attenuate the response to myocardial infarction, including
decreased collagen deposition and impaired neovessel maturation [17].
By administrating adenoviruses expressing different PDGF isoforms to
the heart of adult mice, we recently described that whereas PDGF-B
aggravated the adenovirus-induced inflammation PDGF-D attenuated
it, suggesting that different modes of activation of the same receptor
may result in seemingly opposite effects [18].

Overexpression of PDGF-C or -D from the α-myosin heavy chain
promoter (α-MHC) induces cardiac fibrosis in transgenic mice [19,20].
These mice were viable but developed hypertrophic hearts with signs of
dilated cardiomyopathy, proliferation of interstitial fibroblasts and
increased deposition of extracellular matrix. In addition, they devel-
oped malformed vascular networks with decreased capillary density
and dilated blood vessels with increased α-smooth muscle actin
(ASMA) expression. Here, we have generated transgenic mice over-
expressing PDGF-Ashort, PDGF-Along and PDGF-B from the same α-
MHC promoter and phenotypically characterized their hearts. We also
analyzed the expression of PDGF receptors in developing and adult
mouse hearts. Our results confirm a PDGF isoform-specific effect to
induce cardiac fibrosis, and further suggest a major role for PDGFRα-
positive cells in pathological cardiac fibrotic responses.

2. Materials and methods

2.1. Ethics statement

This study was carried out in strict accordance with applicable
standards. The protocols for this study were approved by the
Committees on the Ethics of Animal Experiments in Gothenburg
(permit numbers 81/97, 64-2000) and Stockholm North (permit
numbers N33/10, N15/12). Diet and water were provided ad libitum,
and standard light cycles were used. All efforts were made to minimize
animal suffering.

Transgenic mice were monitored daily, and mice that showed any
signs of disease were sacrificed. When the first mouse was suddenly
found dead, our daily observation was intensified. One mouse showed
clinical symptoms, and was euthanized and sacrificed with perfusion
fixation through the heart. Anesthesia was administered with i.p.
injection of avertin. The remaining mice were judged healthy, until
they all suddenly were found dead. As all mice belonged to the founder
generation, they were principally different and we had no reasons to
believe that they were all going to die within a few days. Criteria for
humane endpoints followed an internal template based on the follow-
ing documents; NIH Guidelines for Pain and Distress in Laboratory
Animals: Responsibilities, Recognition and Alleviation, ARAC – 03/08/
00, Morton DB; A systematic approach for establishing humane
endpoints. [21]; Guidelines on the recognition of pain, distress and

discomfort in experimental animals and an hypothesis for assessment.
[22]; Recognizing and assessing pain, suffering and distress in labor-
artory animals: a survey of current practice in the UK with recommen-
dations, P. Hawkins, Laboratory Animals (2002); 36.

3. Generation of transgenic mice

Transgenic mice were produced by pronuclear injection of the DNA
constructs schematically outlined in Fig. 2. The α-MHC promoter [23]
was cloned together with the full cDNA clones for PDGF-Ashort (clone
13.1, [24]), PDGF-Along (clone D1, [25]) and PDGF-B [26]. DNA
constructs were excised from the vector backbone, purified using the
Qiaex II gel extraction kit (Qiagen) and injected into fertilized C57BL6/
CBA oocytes, which were subsequently cultured until two-cell stage,
and transplanted into pseudo-pregnant B6 females. For screening/
genotyping by Southern Blot, tail biopsies were lyzed in 500 μl lysis
buffer (50 mM Tris, pH 8; 100 mM EDTA; 100 mM NaCl; 25 μl 20%
SDS and 25 μl 10 mg/ml proteinase K) and DNA was purified by
phenol/chloroform extraction and ethanol precipitation. Southern blot
was performed with standard techniques using PDGF-A and PDGF-B
human cDNA as probes [25,27,28].

4. Genotyping of mice

For PCR genotyping of transgenic founders, tail biopsies were lysed
in 100 μl lysis buffer (67 mM Tris, pH 8.8; 6.7 mM MgCl2; 0.5 mM β-
mercaptoethanol; 6.7 mM EDTA; 0.5% Triton-X100 and 500 μg/ml
Proteinase K). The following PCR primers were used: Pdgfa fwd 5′-
CTAAGGGATGGTACTGATTTTCGC-3′; Pdgfa rev 5′-AGGAATCTC
GTAAATGACCGTCC-3′; Pdgfb fwd 5′-ATAGACCGCACCAACG-
CCAACTTC-3′; Pdgfb rev 5′- AATAACCCTGCCCACACACTCTCC-3′.
This resulted in a 411 bp product for both PDGF-Along and PDGF-
Ashort, and 486 bp for PDGF-B.

The PdgfraGFP/+ mice were genotyped by their strong GFP
expression under a ultraviolet light, or with PCR using the following
primers: 5′-CCCTTGTGGTCATGCCAAAC-3′; 5′-GCTTTTGCCTCCA-
TTACACTG G-3′; 5′-ACGAAGTTATTAGGTCCCTCGAC-3′ generating
a 242 bp GFP-band and a 451 bp wt-band.

5. Fixation of heart tissue

Pdgf transgenic mice were perfusion fixed through the heart, or
when mice were found dead hearts were dissected out and immersion
fixed. All hearts were fixed in 4% paraformaldehyde (PFA) for 12 h at
4 °C and washed with PBS, before embedding in paraffin.

Hearts from PdgfraGFP/+ knock-in mice in C57Bl/6J background
[29] were analyzed from embryonic day 11.5 (E11.5) until postnatal
day 150 (P150). A minimum of 4 animals per timepoint was analyzed.
Embryos (E11.5, E12.5, E14.5, E15.5, E17.5) and postnatal mice (P0,
P1, P2, P6, P7, P15) were sacrificed by decapitation or with CO2. Adult
mice (P150) were perfusion fixed through the heart. All hearts were
fixed in 4% paraformaldehyde (PFA) for 12 h at 4 °C, washed with PBS
and soaked in a sucrose gradient (10–30% in PBS) before embedding
in OCT. Cryo sections (25–30 μm) were collected on poly-L-lysine-
coated slides and post fixed in 4% PFA for 10 min at RT.

6. Immunostaining of heart tissue

Immunohistochemistry on paraffin embedded hearts from trans-
genic mice was performed using antibodies directed against α-smooth
muscle actin (ASMA, DAKO, U7033) and PECAM-1 (PharMingen) as
previously described [30]. Collagen staining was performed using a
Masson Trichrome/aniline blue staining kit, according to manufac-
turer's instructions (Bio-Optica, Milan).

For immunofluorescent stainings of OCT embedded hearts from
PdgfraGFP/+ mice, the sections were permeabilized and blocked in
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Fig. 1. Expression of PDGFRα and PDGFRβ during normal heart development. Cardiac ventricular tissue from subsequent embryonic and postnatal stages of PdgfraGFP/+ mice,
stained with immunofluorescence for PDGFRβ (red) and the endothelial marker podocalyxin (blue). The membrane marker FM4-64 (white) is included to visualize the heart tissue.
Scalebar is 30 µm. (A) Epicardial expression of both PDGFRα and -β at E11.5. (B) Expansion of epicardial PDGFRα positive cells, whereas PDGFRβ and podocalyxin positive cells
appear in the myocardium at E12.5. (C–E) Between E14.5-E17.5, PDGFRα positive cells migrate from the epicardium into the myocardium, and PDGFRβ expression remains
perivascular. (F–L) Postnatally, PDGFRα positive cells are found in the interstitium of the myocardium and PDGFRβ expression remains perivascular. PDGFRα and -β were not co-
expressed by the same cells, and PDGFRβ expression was always in close proximity to endothelial podocalyxin expression around blood vessels (insert in i). (M) Schematic summary of
PDGF receptor localization at the different stages. V–ventricle.
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0.5% Triton-x 100 in 0.1% BSA. All antibodies were diluted in 0.1%
BSA. Primary antibodies used: PECAM-1 (553370, www.
bdbiosciences.com) 1.25 μg/ml; ASMA Cy3-conjugated (C6198, www.
sigmaaldrich.com) 2.8 μg/ml; PDGFRβ (CD140b, 14–1402-82, www.
ebioscience.com) 2.5 μg/ml; Podocalyxin (AF1556, www.rndsystems.
com) 1 μg/ml. Secondary antibodies used: Alexa Fluor 647 goat-anti-
rat IgG (A-21247, www.invitrogen.com) 2 μg/ml; DyLight-conjugated
donkey-anti-goat (705-475-147, www.jacksonimmuno.com) 3.75 μg/
ml; Cy3-conjugated goat-anti-rat IgG (112-165-167, www.
jacksonimmuno.com) 7.5 μg/ml. Sections were counter stained with
5 μg/ml FM 4-64 FX membrane dye (F34653, www.invitrogen.com),
and imaged with confocal microscopy (Zeiss 700 ZEN), where optical
sections were acquired with depth 0.684 µm.

7. Statistical analysis of interstitial cells and capillary density

Histological sections were imaged with a Zeiss Apotome micro-
scope. The number of cells in the interstitial space between cardio-
myocytes was recorded and divided by the number of intact cardio-
myocytes. The number of cross-sectioned capillaries was recorded and
divided by the analyzed area. The results were compared with unpaired
T-test between transgenic and control animals, and standard deviation
is shown with error bars in graphs.

8. Results

Overexpression of platelet-derived growth factors has been shown
to induce cardiac fibrosis in several animal models. Here, we present
three new transgenic mouse models that develop cardiac fibrosis as a
response to forced Pdgf expression in the heart; either by one of the
two splice isoforms of PDGF-A (PDGF-Ashort or PDGFAlong [24,25]) or
by PDGFB. PDGF-Along carries a C-terminal proteoglycan-binding
domain, which limits the solubility of the growth factor in vitro, and
presumably its ability to diffuse in a tissue in vivo. It is hypothesized
that PDGF-Along remains localized close to its cellular source of
secretions [5], whereas PDGF-Ashort that lacks the proteoglycan-bind-
ing domain is more diffusible in the tissue interstitium.

Transgenic expression of the different PDGF isoforms led to fibrosis
of varying severity, a variation that we hypothesized to depend on the
PDGF receptor subtype that was activated. To identify cell types that

were potential target cells for PDGFs, we first performed a thorough
characterization of the expression patterns of the two PDGF receptors
(PDGFRα and -β) in hearts from embryonic, early postnatal and adult
mice.

9. Cardiac expression of PDGFRα and PDGFRβ

PDGFRα and PDGFRβ expression was analyzed in cryo-sectioned
hearts of PdgfraGFP/+ knock-in mice [29] from E11.5 until adulthood.
PdgfraGFP/+ mice carry a H2B-GFP reporter cassette targeted to the
Pdgfra locus, which generates a bright nuclear fluorescence in all
PDGFRα-positive cells. The targeted allele is null for PDGFRα protein
expression; hence PdgfraGFP/+ mice are equivalent to Pdgfra hetero-
zygous knockouts. PDGFRβ expression was identified by immunofluor-
escent staining.

At 11.5 days post fertilization (E11.5), epicardial cells surrounding
the forming heart expressed both PDGFRα and PDGFRβ (Fig. 1A). No
co-expression of the two receptors was detected in any cell within the
myocardium. Between E12.5-E14.5, PDGFRα was still mainly ex-
pressed by cells in the epicardial area, but a few single PDGFRα
positive cells were identified in the myocardium. PDGFRβ expression,
on the other hand, was observed in both the myocardium and
endocardium, where it was associated to perivascular cells (Fig. 1B
and C). From E14.5 onwards, the epicardial PDGFRα positive cell
population expanded and migrated into the myocardium. By E17.5,
this cell population had reached a distribution pattern identical to that
observed for PDGFRα positive cells in the adult heart, i.e. expression by
a proportion of the interstital cells in the myocardium (Fig. 1E–L).

At all stages, PDGFRβ expression was localized to perivascular cells
in close association to endothelial cells, identified by podocalyxin
expression (Fig. 1I, inset). The PDGFRβ perivascular cells were most
likely pericytes. We were at no time point able to identify any cells co-
expressing PDGFRα and PDGFRβ. Observations are schematically
summarized in Fig. 1M.

10. Generation of α-MHC-Pdgf transgenic mice

The cardiac fibrosis-inducing potential of PDGF-A and -B was
investigated in transgenic mice, generated to express either of the two
PDGF-A isoforms (PDGF-Ashort and PDGF-Along) or PDGF-B, re-

Fig. 2. Transgenic constructs, genotyping and cardiac enlargement in transgenic mice. Design of transgenic constructs to express Pdgfs in cardiac myocytes under the α-MHC promoter,
PCR genotyping and whole mount images of enlarged hearts from transgenic mice. Control littermates are to the left. (A) Pdgfashort construct, PCR product of 411 bp confirms transgene
expression, and enlarged heart at P61. tg: transgene carriers. ctrl: non-transgenic littermates. M: DNA ladder. (B) Pdgfalong construct, PCR product of 411 bp confirms transgene
expression, enlarged heart at P27. (C) Pdgfb construct, PCR product of 486 bp confirms transgene expression, enlarged heart at 7 months.
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spectively. The transgenic constructs were designed as previously
reported [19,20], with expression driven by the heart specific α-myosin
heavy chain (α-MHC) promoter (Fig. 2). In the ventricular myocar-
dium, the promoter activity initiates at birth and maintains a high
expression during adulthood [23]. Before birth, the promoter activity
was restricted to the atrium.

11. Severe fibrosis and cardiac hypertrophy induced by
PDGF-A

Two different Pdgfa transgenic constructs were engineered; one
expressing the long isoform PDGF-Along and the other expressing the
short isoform PDGF-Ashort. Four + four Pdgfa transgenic founders were
obtained, all of which developed severe cardiac hypertrophy. All PDGF-
Ashort founders died within 2 months after birth. Three died sponta-
neously at around 6 weeks of age, and one was euthanized for ethical
reasons. These mice displayed an extensive cardiac hypertrophy
(Fig. 2A) that also caused deformation and compression in surrounding
anatomical structures. Three (out of 4) PDGF-Along founders died
within 5 weeks after birth, also displaying hypertrophic hearts
(Fig. 2B). Those hearts were enlarged up to 8-fold, which in turn
affected the development of the pleural cavity and the rib cage. The 4th
founder was perfectly healthy, but was later identified as a non-
expressing founder.

In all Pdgfa transgenic mice there was an extensive increase in
extracellular matrix in the ventricular myocardium (Fig. 3A–F).
Collagen was accumulated in the interstitium between the muscle
fibers, but was also concentrated in focal areas, especially in PDGF-
Along transgenics (Fig. 3C, asterisk). In some areas cardiomyocytes
appeared damaged, according to morphology (Fig. 3E, arrows).

The heart vasculature of the Pdgfa transgenic mice had an
abnormal appearance, including a reduced density of PECAM-1
positive capillaries in comparison with wildtype control mice
(Fig. 3G–L). On average, there was a more than 50% reduction of
capillaries surrounding the cardiomyocytes. The phenotype was more
pronounced in PDGF-Along mice ( > 70% loss, Fig. 3P). In the fibrotic
tissue of PDGF-Along transgenic mice, there was also an enrichment of
large, dilated and irregular blood vessels with a glomeruloid appear-
ance (Fig. 3I, arrows). These vessels where positive for ASMA (Fig. 3O,
arrows), which is more abundant in arteries. However, the layer of
mural cells was thin, resembling the morphology of veins (Fig. 3M and
N). In PDGF-Ashort mice, a small but significant increase (30%) in the
number of interstitial cells per intact unit of cardiomyocytes was
observed in fibrotic areas. No differences in number of interstitial cells
per intact unit was present in the hearts of neither PDGF-Along nor
PDGF-B transgenic mice (Fig. 3Q).

12. Local fibrosis and moderate hypertrophy induced by
PDGF-B

Using the α-MHC-Pdgfb transgenic construct we obtained four
founders, which all surivived until adulthood. They were euthanized at
7 months of age for analysis. Similar to the Pdgfa transgenic mice, all
Pdgfb transgenic founders exhibited cardiac hypertrophy (Fig. 2C) and
focal accumulations of collagen enriched extracellular matrix in the
ventricular myocardium (Fig. 4A–F). However, in contrast to the Pdgfa

transgenic mice, collagen deposition in the Pdgfb transgenic mice was
mostly concentrated around intramyocardial branches of coronary
arteries (Fig. 4B) with a milder phenotype around cardiomyocytes
(Fig. 4D and F). In contrast to Pdgfa transgenic mice, the micro-
vascular morphology in the Pdgfb mice appeared normal (Fig. 4G and
H), although small changes in capillary density were observed in
fibrotic areas (30% decrease, Fig. 3P). There was no change in number
of interstitial cells per intact unit of cardiomyocytes in the Pdgfb
transgenic mice (Fig. 3Q).

13. Discussion

PDGF is known as a mitogen and chemotactic agent for fibroblasts
and smooth muscle cells and an inducer of extracellular matrix protein
synthesis, including fibronectin [31], proteoglycans [32] and collagens
[33]. Forced overexpression of PDGFs in mice induce proliferative and
fibrotic pathology in multiple organs, including retina [34–37], lens
[38], lung [39–41], brain [42,43] and liver [44]. Likewise, constitutive
activation of the PDGFRα leads to multi-organ fibrosis [14]. In the
present study, we focused on the ability of the classical PDGFs, i.e.
PDGF-A and PDGF-B, to induce cardiac fibrosis when expressed
transgenically in the mouse heart.

Beyond confirming that PDGF overexpression leads to cardiac
fibrosis, our study addresses the different abilities of different PDGFs
to induce fibrosis. PDGF-C and PDGF-D were previously shown to
induce heart fibrosis and vascular remodeling when expressed under
the α-MHC promoter in transgenic mice [19,20]. To extend this
comparison to all known PDGF ligands, we generated transgenic mice
overexpressing PDGF-A (both splice variants) and PDGF-B, respec-
tively, using the same α-MHC promoter [19,20]. All new founder mice
developed heart hypertrophy and cardiac fibrosis. Therefore, we
conclude that overexpression of all PDGF isoforms in ventricular
myocardial cells lead to cardiac fibrosis, but that extent and localization
of the fibrotic reactions vary depending on PDGF ligand expressed
(Table 1).

The most severe pathology was generated by PDGF-A overexpres-
sion, where all expressing founder mice died before 6 weeks of age. As a
consequence, no α-MHC-Pdgfa germline transgenic mouse strain
could be established, and all analyses were performed directly on the
founder generation, limiting postmortem analysis to a single timepoint.
The phenotypic differences between founders carrying the same
transgenic construct was small, in spite of the fact that each founder
mouse represented a new integration site of the transgene. Hence, it is
not likely that phenotypic changes between the different transgenic
contructs depended on variations in expression level. Thus, we
conclude that the data obtained from the different α-MHC-Pdgf
transgenic mice can be compared with good reliability, although the
number of mice expressing each PDGF ligand was limited.

We propose that differences in severity of the fibrotic reactions
generated by different PDGF ligands depend on the type of PDGF
receptor that was activated, and the cells carrying those receptors.
Differential fibrogenic effects of different PDGF isoforms have pre-
viously been analyzed in the mouse lung, when PDGF-A, -B and -C
were expressed in the distal lung epithelium under control of the
surfactant protein-C promoter [39–41]. These studies suggested that
differences in PDGFR activation dictate the different fibrogenic out-

Fig. 3. Histological analysis of hearts from α-MHC-Pdgfashort and α-MHC-Pdgfalong transgenic mice. (A–O) Histological analyses of paraffin sectioned hearts from wildtype (A, D, G, J,
M), α-MHC-Pdgfashort (B, E, H, K, N) and α-MHC-Pdgfalong (C, F, I, L, O) mice. (A–F) Masson TriChrome staining (MTC) visualizes collagen (blue), nuclei (black), cytoplasm, keratin,
muscle fibers, fibrin (red). (A–C) Hearts at low magnification. Asterisk in (C) marks focal fibrosis lacking cardiomyocytes. (D–F) Hearts at high magnification. Arrows in (E) point at
dead cardiomyocytes. (G-L) PECAM-1 positive endothelium (brown) counterstained with haematoxylin/eosin. (G-I) Dilated vessels in transgenic hearts at low magnification. In (I),
arrows point at glomeruloid vascular structures, and asterisk marks area of complete focal loss of microvessels. (J-L) Decreased capillary density in hearts of transgenic mice, at high
magnification. (M-O) Smooth muscle cells marked with alpha-smooth muscle actin (ASMA) (brown) and counterstained with hematoxylin. Arrow heads in (N) point at thin vein-like
vessels, arrows in (O) point at glomeruloid vascular structures. a – artery, v – vein. (P) Graph showing the capillary density in transgenic hearts vs. control littermates, normalized to the
area of analysis. The capillary density decrease was highly significant in all three types of transgenic mice. (Q) Graph showing the number of interstitial cells in relation to number of
intact cardiomyocytes in transgenic hearts vs. control littermates. Hearts from α-MHC-PdgfaS mice showed a significant increase in interstitial cells. Error bars in (P, Q) represent
standard deviation.
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Fig. 4. Histological analysis of hearts from α-MHC-Pdgfb transgenic mice. (A-F) Masson TriCrome staining of paraffin sectioned hearts from wt (A, C, E) and α-MHC-Pdgfb (B, D, F).
(A, B) Hearts in low magnification, perivascular collagen deposition (blue) in α-MHC-Pdgfb, but not in wt. (C, D) High magnification of sections longitudinal to the cardiomyocytes
shows collagen deposition along the cells in α-MHC-Pdgfb mice. (E, F) High magnification of sections perpendicular to the cardiomyocytes shows deposited collagen surrounding the
cells in α-MHC-Pdgfb mice. (G, H) Immunohistochemistry for PECAM-1 (brown) visualizes a subtile difference in vessel morphology between wt (G) and α-MHC-Pdgfb (H).
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come. Expression of the two PDGFRα ligands (PDGF-A and -C)
resulted in perinatal lethality due to mesenchymal cell overgrowth
and abnormal differentiation of the lung epithelium. In contrast,
expression of the PDGFRβ ligand PDGF-B was not lethal, but caused
fibrosis, inflammation and emphysema-like airway enlargement. These
results conform with our data in the heart where PDGF-A leads to a
more severe fibrogenic response and earlier lethality in transgenic
mice.

Under normal circumstances PDGF signalling works in a paracrine
way. Here we hypothesized that interstitial cardiac fibroblasts expres-
sing PDGFRα were the main target cell type for the transgenic PDGFs
expressed by the cardiomyocytes. In order to test this, and to
characterize potential target cells, we performed a thorough expression
analysis of PDGFRα and -β expression in the ventricular heart tissue at
different developmental stages, ranging from embryonic development
to adulthood. Others have shown (by immunoprecipitation) that
primary mouse cardiac fibroblasts in culture express both PDGF
receptors [20]. However, we could not detect co-expression of
PDGFRα and -β by overlapping reporter expression and immunostain-
ing in tissue sections. At early cardiogenesis (E11.5), both receptors
were detected in the epicardium, but thereafter, their expression
patterns diverged. Whereas PDGFRβ-positive cells were always loca-
lized to perivascular areas, PDGFRα-positive cells coincided with
interstitial fibroblasts in the myocardium, which has also been reported
in chicken [11] and mouse [13]. These data concur with observations
that PDGFRβ is important for the development of coronary mural cells,
whereas PDGFRα is important for the development of cardiac inter-
stitial fibroblasts [6,45].

In α-MHC-Pdgf transgenic mice some cardiomyocytes displayed
severe morphologic abnormalities. A highly interesting connection that
we can only speculate around is whether fibrosis generated cardio-
myocyte death or if damage to the cardiomyocytes generated fibrosis.
In fact, fibrosis and cardiac cell death can both be drivers in the
“fibrosis-cell death cycle” during heart failure (reviewed by [46]).

Taken together with previous publications [19,20], our data do not
support a model where all different PDGF ligands can activate the same
type of cell through different receptors. Out of all PDGFs, the most
severe phenotype was generated by overexpressing PDGF-A in the
heart. Because PDGF-A is a high affinity ligand for PDGFRα, but does
not bind PDGFRβ, it is reasonable to assume that the PDGFRα-positive
cardiac fibroblasts were involved in the fibrotic process. PDGF-C is also
a high affinity ligand for PDGFRα, but the phenotype of the α-MHC-
Pdgfc mice was less severe [19]. A likely explanation might be the fact
that PDGF-A is secreted as an active protein, whereas PDGF-C is
secreted as an inactive precursor protein that requires proteolytic
cleavage in the extracellular space to become biologically active [47]. In
α-MHC-Pdgfc mice, the vast majority of PDGF-C detected in the heart
had the size of the full-length inactive form [19]. In a parallell study, we
have also analyzed the effects of all different PDGF ligands on
adenovirus induced fibrosis in mouse hearts [18]. The two studies

support each other by showing PDGF ligand-specific effects.
The phenotypically different focal fibrosis in proximity to blood

vessels observed in α-MHC-Pdgfb and in α-MHC-Pdgfd mice [20] is
difficult to explain by PDGFRα activation. PDGF-B and -D are both
high affinity ligands for PDGFRβ, which has several reported key roles
in inflammatory responses in association with vessels [15,48,49].
Indeed, PDGF-B has affinity for PDGFRα in vitro [50,51], but no such
affinity has been reported for PDGF-D [52]. It should, however, be kept
in mind that PDGF ligand-receptor interactions during adult home-
ostasis and pathology have not been extensively analyzed and remain
poorly understood.

Together with the observed perivascular expression of PDGFRβ, it
seems plausible that stimulation of PDGFRβ-positive perivascular cells
caused the fibrotic events observed in α-MHC-Pdgfb (and α-MHC-
Pdgfd [20]) mice. These presumably vascular mural cells (pericytes
and/or vascular smooth muscle cells) might themselves transform into
a myofibroblast phenotype, or elicit a local inflammation that triggers
nearby non-mural mesenchymal cells, e.g. interstitial fibroblasts, to
assume a myofibroblast phenotype. Irrespective of scenario, the
localization of the fibrosis correlated spatially with the normal myo-
cardial distribution of PDGFRα and PDGFRβ−positive cells.

Taken together, our study and previously published work [19,20]
show that all known PDGF isoforms are capable of generating cardiac
fibrosis and hypertrophy when overexpressed from cardiomyocytes in
transgenic mice. However, the degree and location of fibrosis vary
between the different ligands, which are likely a result of differential
activation of the two PDGF receptors, which show largely non-over-
lapping patterns of expression in the heart.

Due to the sudden and unexpected death of α-MHC-Pdgfa founder
mice it was not ethical to generate more mice for further analysis.
There are, however, still several open paths to follow up for which new
strategies with inducible promoters should be considered.
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