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1. Introduction and main result

In [1,2] the first author and Bencherif established that Chebyshev polynomials of first and second
kind - and more generally bivariate polynomials associated with recurrence sequences of order two,
including Jacobsthal polynomials, Vieta polynomials, Morgan-Voyce polynomials and others - admit
remarkable integer coordinates in a specific basis. What about Bell polynomials?

The Bell polynomials {B, (x)},>¢ are defined by their generating function

tn
ZOB,., ) = exp (x(e" —1)).

They also satisfy
o0 in .
— Y
B, (x) = exp (—x) ZO: 7 X
i=l

It is well known that B, admits integer coordinates in the two following bases {xi}izo o and
{XB; (%)}i=o
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n n—1
B,,(x):ZS(n,i)xi and Bn(X)=XZ(n:1)B,‘(X)
i=0 i=0

according, respectively, to the Stirling numbers of the second kind and the binomial coefficients

of bases of the Q-vectorial space formed by polynomlals of Q[X] for Wthh B, admits a Binomial
Recurrence Coefficient. When s = 0, we obtain the first expression, and when r = 1, we obtain
the second one.

Theorem 1. Decomposition of B, into {¥/By. (x) }j B

Byt (x) = ZZ]S s ) () ¥B . (1)

As an immediate consequence (for x = 1), we deduce the Spivey’s generalized recurrence for Bell
numbers — see [3]. He gives a very nice and attractive combinatorial proof.

Corollary 2. Bell numbers satisfy the following recurrence relationship

B =Y 3750 () Be

k=0 j=0

After our paper was submitted we learned that HW. Gould and Jocelyn Quaintance: Implications
of Spivey’s Bell Number Formula, ]. Integer Sequences, 11 (2008), Article 08.3.7., obtained the same
result as ours, independently from us. However, the proofs are different. Gould and Quaintance’s proof
is a generating function one. Our proof follows a different approach. It consists of establishing that Bell
polynomials admit specific integer coordinates in a family of bases. Also, the motivations for the two
papers are different and complementary.

2. Proof of the main result

From [4, p. 157], we have
do'F (y)

3)(1 .

ZS(rJ)y’ 'FO (y) withy =x;---% (r>1).

j=1

Setting F (y) := exp (y) B; (y) = Z;’:OO gy", with s being a nonnegative integer, we obtain

8r1-‘(y) ar 00 s i
yax]...axr _yaxl'“axr (Zi! (X1 -Xr)

i=0

o0 s

=Y L x)
— {|
i=0
= exp () Bsyr (v),
also, we have
d"F (y) ! o
——— = ST )HyF?
e = S5

—Zs(r )y,<z(l+1) )
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k=0 j=0
Then, from the two expressions of y aﬁ:F (Xir we conclude to
s r s )
B =Y () ST Di™YB®). s=0andr=1. )
k=0 j=0

We can verify that the expression given by (1) is true for r = 0 and, for r > 1, we take x; := x and
X, = --- = x, = linrelation (2).
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