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a b s t r a c t

Letting Bn (x) the n-th Bell polynomial, it is well known that
Bn admit specific integer coordinates in the two following bases{
xi
}
i=0,...,n and {xBi (x)}i=0,...,n−1 according, respectively, to Stirling

numbers and binomial coefficients. Our aim is to prove that, for
r + s = n, the sequence

{
xjBk (x)

}
j=0,...,r
k=0,...,s

is a family of bases of

theQ-vectorial space formed by polynomials ofQ [X] for which Bn
admits a Binomial Recurrence Coefficient.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction and main result

In [1,2] the first author and Bencherif established that Chebyshev polynomials of first and second
kind – and more generally bivariate polynomials associated with recurrence sequences of order two,
including Jacobsthal polynomials, Vieta polynomials, Morgan–Voyce polynomials and others – admit
remarkable integer coordinates in a specific basis. What about Bell polynomials?
The Bell polynomials {Bn (x)}n≥0 are defined by their generating function∑

n≥0

Bn (x)
tn

n!
= exp

(
x
(
et − 1

))
.

They also satisfy

Bn (x) = exp (−x)
∞∑
i=0

in

i!
xi.

It is well known that Bn admits integer coordinates in the two following bases
{
xi
}
i=0,...,n and

{xBi (x)}i=0,...,n−1 as
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Bn (x) =
n∑
i=0

S (n, i) xi and Bn (x) = x
n−1∑
i=0

(
n− 1
i

)
Bi (x)

according, respectively, to the Stirling numbers of the second kind and the binomial coefficients.
Our aim is to prove that the sequence

{
xjBk (x)

}
j=0,...,r
k=0,...,s

,with s+ r = n, is a (anti-diagonal) family

of bases of the Q-vectorial space formed by polynomials of Q [X] for which Bn admits a Binomial
Recurrence Coefficient. When s = 0, we obtain the first expression, and when r = 1, we obtain
the second one.

Theorem 1. Decomposition of Bn into
{
xjBk (x)

}
j,k

Bs+r (x) =
s∑
k=0

r∑
j=0

js−kS (r, j)
( s
k

)
xjBk (x) . (1)

As an immediate consequence (for x = 1), we deduce the Spivey’s generalized recurrence for Bell
numbers — see [3]. He gives a very nice and attractive combinatorial proof.

Corollary 2. Bell numbers satisfy the following recurrence relationship

Bs+r =
s∑
k=0

r∑
j=0

js−kS (r, j)
( s
k

)
Bk.

After our paper was submitted we learned that H.W. Gould and Jocelyn Quaintance: Implications
of Spivey’s Bell Number Formula, J. Integer Sequences, 11 (2008), Article 08.3.7., obtained the same
result as ours, independently fromus. However, the proofs are different. Gould andQuaintance’s proof
is a generating function one. Our proof follows a different approach. It consists of establishing that Bell
polynomials admit specific integer coordinates in a family of bases. Also, the motivations for the two
papers are different and complementary.

2. Proof of the main result

From [4, p. 157], we have

∂ rF (y)
∂x1 · · · ∂xr

=

r∑
j=1

S (r, j) yj−1F (j) (y) with y = x1 · · · xr (r ≥ 1) .

Setting F (y) := exp (y) Bs (y) =
∑
∞

i=0
is
i! y
i,with s being a nonnegative integer, we obtain

y
∂ rF (y)

∂x1 · · · ∂xr
= y

∂ r

∂x1 · · · ∂xr

(
∞∑
i=0

is

i!
(x1 · · · xr)i

)

=

∞∑
i=0

is

i!
ir (x1 · · · xr)i

= exp (y) Bs+r (y) ,

also, we have

y
∂ rF (y)

∂x1 · · · ∂xr
=

r∑
j=0

S (r, j) yjF (j) (y)

=

r∑
j=0

S (r, j) yj
(
∞∑
i=0

(i+ j)s

i!
yi
)
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=

s∑
k=0

r∑
j=0

( s
k

)
S (r, j) js−kyj

(
∞∑
i=0

ik

i!
yi
)

= exp (y)
s∑
k=0

r∑
j=0

( s
k

)
S (r, j) js−kyjBk (y) .

Then, from the two expressions of y ∂r F(y)
∂x1···∂xr

we conclude to

Bs+r (y) =
s∑
k=0

r∑
j=0

( s
k

)
S (r, j) js−kyjBk (y) , s ≥ 0 and r ≥ 1. (2)

We can verify that the expression given by (1) is true for r = 0 and, for r ≥ 1,we take x1 := x and
x2 = · · · = xr = 1 in relation (2).

Acknowledgment

The first author’s research is supported by LAID3 Laboratory of USTHB University.

References

[1] H. Belbachir, F. Bencherif, On some properties of bivariate Fibonacci and Lucas polynomials, J. Integer Seq. 11 (2008) Art.
08.2.6.

[2] H. Belbachir, F. Bencherif, On some properties of Chebyshev polynomials, Discuss. Math. Gen. Algebra Appl. 28 (2) (2008).
[3] M.Z. Spivey, A generalized recurrence for Bell numbers, J. Integer Seq. 11 (2008) Art. 08.2.5.
[4] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Company, Dordrecht, Holland/Boston, USA, 1974.


	A generalized recurrence for Bell polynomials: An alternate approach to Spivey and Gould--Quaintance formulas
	Introduction and main result
	Proof of the main result
	Acknowledgment
	References


