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Abstract

A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V (G) to the set of all subsets of the
set {1, 2} such that for any vertex v € V(G) with f(v) = @ the condition UueN(v) f(u) = {1, 2} is fulfilled, where N (v) is the
open neighborhood of v. A maximal 2-rainbow dominating function on a graph G is a 2-rainbow dominating function f such that
the set {w € V(G)| f(w) = ¥} is not a dominating set of G. The weight of a maximal 2RDF f is the value w(f) = >, cy | f(W)[.
The maximal 2-rainbow domination number of a graph G, denoted by y,(G), is the minimum weight of a maximal 2RDF of G.
In this paper we initiate the study of maximal 2-rainbow domination number in graphs. We first show that the decision problem is
NP-complete even when restricted to bipartite or chordal graphs, and then, we present some sharp bounds for y,- (G). In addition,
we determine the maximal rainbow domination number of some graphs.
© 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to [1-3]. In this paper, G is a
simple graph with vertex set V = V(G) and edge set E = E(G). The order |V| of G is denoted by n = n(G). For
every vertex v € V, the open neighborhood N (v) is the set {u € V(G) | uv € E(G)} and the closed neighborhood of
v is the set N[v] = N (v) U {v}. The degree of a vertex v € V is d(v) = |N (v)|. The minimum and maximum degree
of a graph G are denoted by § = §(G) and A = A(G), respectively. A graph G is k-regular if d(v) = k for each
vertex v of G. The open neighborhood of a set S C V is the set N(S) = Uyes N (v), and the closed neighborhood of
S is the set N[S] = N(S) U S. A tree is an acyclic connected graph. The complement of a graph G is denoted by G.
We write K, for the complete graph of order n, P, for a path of order n and C,, for a cycle of length n.
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A subset S of vertices of G is a dominating set if N[S] = V. The domination number y (G) is the minimum
cardinality of a dominating set of G. A dominating set D is said to be a maximal dominating set (MDS) if V. — D
is not a dominating set of G. The maximal domination number y,,(G) is the minimum cardinality of a maximal
dominating set of G. The definition of the maximal domination was given by Kulli and Janakiram [4]. For more
information on maximal domination we refer the reader to [5,6].

A Roman dominating function (RDF) on a graph G = (V, E) is defined in [7,8] as a function f : V — {0, 1, 2}
satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f (1) = 2.
The weight of an RDF f is the value w(f) = Y, . f(v). A Roman dominating function f : V.— {0, 1, 2} can be
represented by the ordered partition (Vp, V1, V2) (or (Vof , Vlf , sz )Ytorefer f)of V,where V; ={v e V| f(v) =i}.
In this representation, its weight is w (f) = | V1| 4 2| V2|. A maximal Roman dominating function (MRDF) on a graph
G is a Roman dominating function f = (Vy, V1, V») such that Vj is not a dominating set of G. The maximal Roman
domination number of a graph G, denoted by y,, g (G), equals the minimum weight of an MRDF on G. A y,,gr(G)-
function is a maximal Roman dominating function of G with weight y,, g (G). The maximal Roman domination was
introduced by Ahangar et al. in [9] and has been studied in [10].

For a positive integer k, a k-rainbow dominating function (KRDF) of a graph G is a function f from the vertex set
V(G) to the set of all subsets of the set {1, 2, ..., k} such that for any vertex v € V(G) with f(v) = @ the condition
UueN(v) f) ={1,2,...,k}is fulfilled. The weight of a KRDF f is the value w(f) = Zvev | f (v)|. The k-rainbow
domination number of a graph G, denoted by y,4(G), is the minimum weight of a kRDF of G. A y,x(G)-function is a
k-rainbow dominating function of G with weight y,+(G). Note that y,1(G) is the classical domination number y (G).
The k-rainbow domination number was introduced by Bresar, Henning, and Rall [11] and has been studied by several
authors [12-20].

A 2-rainbow dominating function f : V. — P({1,2}) can be represented by the ordered partition (Vo, V1,
Va, Vio) (or (V¢ Vi vy Vi) torefer f)of V. where Vo = (v e V | f() =8}, Vi = v e V | f(v) = (1},
Vo ={eV] fv) =1{2}},Via ={ve V]| f(v) = ({1,2}} In this representation, its weight is w(f) =
Vil + [Va| + 2| V12|

A maximal 2-rainbow dominating function (M2RDF) on a graph G is a 2-rainbow dominating function f =
(Vo, V1, V2, V1 2) such that V) is not a dominating set of G. The maximal 2-rainbow domination number of a graph
G, denoted by yp,- (G), equals the minimum weight of an M2RDF on G. A y,, (G)-function is a maximal 2-rainbow
dominating function of G with weight y,,,,(G). As f = (@, V(G), @, ¥) is a maximal 2-rainbow dominating function
of G and since every maximal 2-rainbow dominating function is a 2-rainbow dominating function, we have

¥r2(G) < Ymr(G) < 1. (D

Since V1 U V5 U V] 2 is a maximal dominating set when f = (Vp, Vi, V2, V1,2) is an M2RDF, and since assigning
{1, 2} to the vertices of a maximal dominating set yields an M2RDF, we observe that

Ym(G) = Ymr(G) < 2ym(G). 2

We note that maximal 2-rainbow domination number differs significantly from 2-rainbow domination number. For
example, for n > 2, yy2(K,) = 2 and y;,,r (Kp,) = n.

Our purpose in this paper is to initiate the study of maximal 2-rainbow domination number in graphs. We first
show that the decision problem is NP-complete even when restricted to bipartite or chordal graphs, and then we study
basic properties and bounds for the maximal 2-rainbow domination number of a graph. In addition, we determine the
maximal 2-rainbow domination number of some classes of graphs.

We make use of the following results in this paper.

Proposition A ([12]). Forn > 2, y,2(P,) = ’V%—I
Proposition B ([12]). Forn >3, y2(Co) = | 5|+ %] — [ 4]

Proposition C (/9]). Let G be a connected graph of order n > 3. Then y,,(G) = n — 1 if and only if G = P4 or
G = K,, — M where M is a nonempty matching.
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Proposition D (/9]). Let G be a connected graph G of order n > 2. Then y,r(G) = n if and only if G =
K>, P3, P4, C3,Cyq,C5 0r G = K,, — M, where M is a matching of G.

Observation 1. Forn > 1, yp(K,) = Ymr (K,) = n.

Proof. Obviously, y, (K,) = n. Let f =W, V1, Va, V12) be a yi, (Kpn)-function. As every vertex of K,, dominates
all vertices, we must have Vy = ¥ and hence y,,- (K;) = |Vi| + [V2| + 2|Vi2| > |Vi| + V2| + |Vi2| =n. By (1) we
have vy (Ky) =n. 1

Observation 2. For n > 4 and any non-empty matching M of Ky, Vimr(Ky — M) =n — 1.

Proof. Let G = K,, — M. It follows from (2) and Proposition C that y,,,(G) > n — 1. Let uv € M and let
w € V(G) — {u, v}. Then the function f = ({u}, V(G) — {u, w}, {w}, @) is obviously a maximal rainbow dominating
function of G of weight n — 1 and hence y;,,-(G) = n — 1. This completes the proof. W

2. Complexity of maximal 2-rainbow domination problem

In this section we consider the following decision problem regarding the maximal 2-rainbow domination number
of a graph.

MAXIMAL 2-RAINBOW DOMINATION PROBLEM (M2RD-PROBLEM):
INSTANCE: A graph G and a positive integer k < |V (G)].
QUESTION: Is y,,(G) < k?

To prove that the decision problem for maximal 2-rainbow domination is NP-complete, we use a polynomial time
reduction from 2-rainbow domination problem.

2-RAINBOW DOMINATION PROBLEM (2RD-PROBLEM):
INSTANCE: A graph G and a positive integer k < |V (G)].
QUESTION: Is y,2(G) < k?

As shown in [12], the 2-rainbow domination problem remains NP-complete even when restricted to bipartite or
chordal graphs.

In order to present our results we need to introduce some additional terminology and notation. Given a graph G of
order n and a graph H with root vertex v, the rooted product graph G o, H is defined as the graph obtained from G
and H by taking one copy of G and n copies of H and identifying the vertex u; of G with the vertex v in the ith copy
of H forevery 1 <i < n [21]. More formally, assuming that V(G) = {uy, ..., u,} and that the root vertex of H is v,
we define the rooted product graph G o, H = (V, E), where V = V(G) x V(H) and

E = U{(ui,b)(ui, y): by € E(H)} U {(u;, v)(uj,v): wuj € E(G)}.
i=1

Fig. 1 shows an example of the rooted product of graphs.

Theorem 3. M2RD-PROBLEM problem is NP-complete, even when restricted to bipartite or chordal graphs.

Proof. Let G be a graph of order n. M2RD-PROBLEM is a member of NP, since for a given function f =
Vo, V1, Va2, V1,2) of G such that w(f) < n, we can check in polynomial time that f is a 2-rainbow dominating
function of G and that V{y does not dominate G.

Now, we consider a rooted product graph G o,, H, where G is a graph of order n with vertex set V(G) =
{ur,uz, ..., u,} and H is a graph with root vy constructed as follows. We begin with a cycle C4 with set of vertices
V(Cs) = {v1, v12, v3, v4} and set of edges E(Cs) = {viva, v2v3, V304, v4v1}. To obtain the graph H, we add three
vertices {xi, x2, x3}, and edges v3x1, v3x2 and v3x3. Notice that G oy, H can be done in polynomial time.
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Fig. 1. Rooted product C3 o, P4, where v has degree two in Py.

Let g be a y,2(G)-function and consider the function f = (Vy, Vi, V2, Vi,2) on G oy, H such that:

o f(uj,v1) =gW;) fori e{l,2,...,n}

o f(uj,v)= f(uj,vq) =0fori e {l1,2,...,n}

e f(u;j,v3) ={1,2}fori € {1,2,...,n};

o f(uy,x;)={1}and f(u;,x1) =0fori € {2,3,...,n};
e f(uj,x2) = f(uj,x3) =0fori € {1,2,...,n}.

Clearly f is a maximal 2-rainbow dominating function of G o,, H, since (1, x1) is not dominated by V. Thus
Ymr (G oy, H) <2n + 1+ y2,(G).

On the other hand, let f’ be a y,2(G oy, H)-function. From the structure of G oy, H, forany i € {1,...,n} we
deduce that either f’(u;, v3) = {1, 2} or we have three vertices (u;, x1), (u;, x2), and (u;, x3) to which f’ does not
assign @. Thus,

Vin (i, v3), i, x1), (i, x2), i x3)3| + | Va 0 |G, v3), (i, x1), (i %), (4, x3))
i=1 i=1

n
+2|Vip N @i, v3). (i x1), (i x2), (uin x3)}] = 2n.

i=1

Moreover, for alli € {1, ..., n} the vertex (u;, vy) has to be 2-rainbowly dominated. So, it follows that

Via N0 J i, v}

i=1

Vo n i, v} +2

i=1

vin | J{i, v}

i=1

+ = yr2(G).

Thus y,2(G oy, H) > 2n + y2(G). According to the structure of G o,, H, once more, it is straightforward to
observe that every 2-rainbow dominated function i = (V, V{, V;, V| ,) of G o, H, such that w(h) = 2n + y»2(G),
has the following form.

o h(uj,x1) = h(uj, x3) = h(uj,x3) =¥ fori € {1,2,...,n};

o h(u;,v3) ={1,2}fori € {1,2,...,n};

o h(uj,v2) = h(uj,vg) =9 fori € {1,2,...,n};

o h(uj,v) = g'(u;) fori € {1,2, ..., n}, where g’ is any y,2(G)-function.

Hence, V(; is a dominating set of G o,, H, and, as a consequence, ¥y, (G oy, H) > y,2(G oy, H) = 2n + y2(G).
So, the equality ¥, (G oy, H) = 2n + y2(G) + 1 is obtained.

If G is a bipartite, then G o,, H is a bipartite. If G is a chordal graph, then we construct a graph G o,, H’, where
V(Goy H) =V(Goy H)and E(G oy, H') = E(G oy, H)UJ!_ (u;, v2)(u;, v4). Clearly G o,, H' is chordal. By
an analogous procedure, the equality ¥, (G oy, H) = 2n + y,2(G) + 1 is derived. Therefore, for j = 2n 41+ k, we
infer that y,2(G) < k if and only if y,,-(G) < j, which completes the reduction of the M2RD-PROBLEM from the
2RD-PROBLEM. R
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3. Basic properties and bounds
In this section we study properties of maximal 2-rainbow domination and present some sharp bounds.

Proposition 4. For any nonempty graph G of order n > 4, Y (G) > 3 with equality if and only if A(G) =n — 1
and §(G) = 1 or A(G) = n — 2 and 8(G) = 0 or there are two vertices v, w such that N (v) N N(w) has a subset of
size n — 3 which is not a dominating set of G.

Proof. By (1), Ymr(G) > y2(G) > 2. If Y, (G) = 2 and f = (Vp, V1, V2, V12) is a Y, (G)-function, then clearly
either V12| =0, |Vi|=|Val =1and [Vo| =n —2o0r |Vi2| =1, |Vi| = |V2] =0and |Vy| = n — 1. Itis easy to see
that in each case, V| is a dominating set of G, a contradiction. Hence y,,-(G) > 3.

If A(G) = n —2and §(G) = 0, then let v be a vertex of degree n — 2 and suppose that u is an isolated vertex.
Clearly, the function f = (V(G)—{u, v}, {u}, ¥, {v}) is an M2RDF of G and hence y,,-(G) = 3.1f A(G) = n—1 and
8(G) = 1 then as above, we have y,,,,(G) = 3. Suppose now that there are two vertices v, w such that N (v) N N (w)
has a subset D of size n — 3 which is not a dominating set of G. If u is not dominated by D, then obviously
f = (D, {u, v}, {w}, ¥) is an M2RDF of G and hence y,,,(G) = 3.

Conversely, let y,,,-(G) = 3. Assume that f = (Vp, Vi, V2, V1.2) is a yi,(G)-function. Then, we may assume,
without loss of generality, that |Vi| = |V1 2| = 1 or |Vi| =2 and |V»| = 1. Firstlet |Vq| = |V 2| = 1. Let V] = {u}
and Vi > = {v}. Since v must dominate all vertices in Vp, we have A(G) > deg(v) > n — 2. Since f is an M2RDF of
G, u has no neighbor in Vj, otherwise Vy dominates V (G) which is a contradiction. If uv € E(G), then A(G) = n—1
and §(G) = 1, and if uv € E(G), then A(G) =n —2 and §(G) = 0. Now let |V|| = 2 and | V3| = 1. Let V| = {u, v}
and V, = {w}. Clearly, each vertex in Vj is adjacent to w. Since f is an M2RDF of G, we may assume « has no
neighbor in Vj. It follows that each vertex in Vj is adjacent to v. Thus, Vj is a subset of N(v) N N(w) of sizen — 3
which does not dominate V (G). This completes the proof. W

Proposition 5. For any graph G without isolated vertex,

Ymr (G) < y2(G) + 6(G).
Furthermore, this bound is sharp.

Proof. Let f = (Vo, V1, V2, V12) be a y.2(G)-function and let v be a vertex of minimum degree. Then either
ve ViuW,UVisorv e V. If v € Vj, then v has a neighbor in V] 7 or v has a neighbor in V; and a neighbor in V5. It
isclear that g = (Vo—N[v], VIU(N[v]—(V2UV]2)), V2, V1 2) is a maximal 2-rainbow dominating function on G and
hence Y (G) < y2(G)+8(G). If v € ViU Vo UV 5, then the function g = (Vo — N (v), VIU(N(v)NWy), Vo, Vi 2)
is a maximal 2-rainbow dominating function on G and hence y,,,, (G) < y42(G) + §(G).

To prove the sharpness, let G be the graph obtained from K, by adding a new vertex and joining it to exactly one
vertex of K. Then y,2(G) = 2 and y,,,(G) = 3 and the proof is complete. W

Corollary 6. For any tree T of order n > 2, vy (T) < y2(T) + 1.

Next we present an upper bound for maximal 2-rainbow domination number of a graph in terms of its order and
minimum degree.

Proposition 7. Let G be a connected graph of order n with diam(G) > 4. Then
Ymr(G) <n —38(G) + 1.
Proof. Consider a diametral path P = x1x2 ... Xdgiam(G)+1 in G. Then, the function f = (N(x2), ¥, V(G) — N[x2],

{x2}) is an M2RDF of G and hence y;,(G) < w(f) = |Vi| + |Va| + 2|Vi2] = n — deg(x2) + 1. Thus
Ymr(G) < n —8(G) + 1 and the proof is complete. W

Proposition 8. For any graph G,
Ymr(G) < 2ym(G) — 1.

Furthermore, this bound is sharp.
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Proof. Let D be a y,,(G)-set. Since D is an MDS, there is a vertex # € D not dominated by V — D. Define
f:V(G) - P{1,2) by f(u) = {1}, f(x) ={1,2} forx € D — {u} and f(x) = @ otherwise. It is easy to see that
f is an M2RDF of G and hence y;,-(G) <2(|D| —1) 4+ 1 =2y, (G) — 1.

To prove the sharpness, let G be the graph obtained from the complete K,, by adding a new vertex and joining it to
exactly one vertex of K,,. W

In (1) we observe that y,2(G) < ¥, (G) < n. In the rest of this section we characterize all extremal graphs.

Lemma 9. For a graph G, %ymR(G) < VYmr(G) < Ymr(G).

Proof. If f = (W, V1, V2) is a y,r(G)-function, then obviously (Vy, Vi, @, V2) is a M2RDF of G and hence
Ymr (G) < Ymr(G).

To prove the lower bound, let f be a y;,-(G)-function and let X; = {v € V(G) | i € f(v)} fori = 1, 2. We may
assume that [X{| < |X3|. Then |X1]| < (|X1] + |X2])/2 = Ymr(G)/2. Define g : V(G) — {0,1,2} by g(u) =0
if f(u)=0,g@m)=1when f(u) = {2} and g(u) = 2if 1 € f(u). Obviously, g is a maximal Roman dominating
function on G with w(g) < 2|X1| + | X2| < %ym,(G) and the result follows. W

Theorem 10. Let G be a connected graph G of order n > 2. Then yy,(G) = n if and only if G = K3, P3, C3 or
G =K,.

Proof. If G = K>, P3, C3 or G = K,,, then clearly y,,,,(G) = n. Let y,,,(G) = n. Then y,,g(G) = n by Lemma 9.
It follows from Proposition D that G = K3, P3, P4, C3, C4, C5 or G = K, — M, where M is a matching of G. Since
Ymr(G) < n—1for G = Py, Cyq,C5 or G = K,, — M where M is a nonempty matching of G, we deduce that
G = K3, P3, C3 or G = K,, and the proof is complete. = H

Theorem 11. Let G be a connected graph of order at least 3. Then vy, (G) = v2(G) if and only if G has a non-cut
vertex u such that

(@) ¥2(G —u) = y2(G) — 1,
(b) G — u has a yy2(G — u)-function f such that assigns 1 to all neighbors of u in G.

Proof. If (a) and (b) hold, then we can extend y,2(G — u)-function f to a 2RDF of G by defining f (1) = 1. Clearly,
f is an M2RDF of G and s0 ¥, (G) < y2(G — u) + 1 = y,2(G). Thus v, (G) = yr2(G).

Conversely, let v, (G) = y2(G). Assume f = (Vp, Vi, Va2, V1.2) is a ym,(G)-function such that | Vp| is maximum.
Let V4 be the set of vertices which are not dominated by Vj. Since Vp dominates Vp U V] 2, we have V4 € Vi U V.
If Va N Vp # @, then the function g = (Vo, Vi U (V4 N V2), Vo \ V4, Vi2) is a Y (G)-function such that |V
is maximum and all vertices not dominated by Vj belong to V. Thus we may assume, without loss of generality,
that V4 € Vj. If some vertex v € Vy4, has a neighbor in V; 2 or has a neighbor in V; and a neighbor in V>, then
(Vo U {v}, V1 — {v}, V2, V1,2) is a 2RDF of G of weight less than o (f) = y,2(G) which is a contradiction. Hence,
N(Vy) c ViU Vyand N(v) C Vi or N(v) C V, foreach v € Vy.

Claim 1. G[V4] is a complete graph.

Assume to the contrary that uv ¢ E(G) for some u, v € V4. Since G is connected and N (u) € Vi or N(u) C V, we
may assume that u has a neighbor w in V. Then g = (Vo U {u}, Vi — {u, w}, V2, Vi2 U {w}) is a y,-(G)-function
which contradicts the choice of f.

Claim 2. |V4| = 1.

Let |Va| > 2.1f [V4| > 3 then for each u € V4, the function (VoU (Va4 —{u}), V1 —Va, V2, Vi 2U{u}) isa2RDF of G
of weight less than w () = y»2(G) which is a contradiction. Suppose | V4| = 2 and V4 = {u, v}. Since G is connected
of order at least 3, we may assume deg(u) > 2. Since N (u) € Vi, the function (Vo U {u}, V1 — {u, v}, Vo U {v}, V1.2)
is a 2RDF of G of weight less than w(f) = y,2(G), a contradiction again.

Let V4 = {u}. We may assume N (1) € V;. We claim that u is not a cut vertex. Suppose to the contrary that « is a
cut vertex and G1, G2, ..., Gy are the components of G — u. Obviously, f|y(c,) if a 2RDF of G; for each i. Define
gbygw)=0,gx) ={1}ifx e V(G1) N Vo, g(x) ={2}if x € V(G1) N V] and g(x) = f(x) otherwise. It is easy
to see that g is a 2RDF of G of weight less than w (f) = y,2(G), a contradiction.
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Thus u is a non-cut vertex. Obviously, the function f, restricted to G —u, is a 2RDF of G of weight y,2(G)—1 which
assigns 1 to all neighbors of # in G. Hence y,2(G —u) < y»2(G)— 1. It remains to prove that y,2(G —u) = y2(G)—1.
Suppose to the contrary that y,2(G — u) < y2(G) — 1 and let & be a y,2(G — u)-function. Then we can extend 4 to
a 2RDF of G by defining #(u) = 1 implying that y,2(G) < y2(G — u) + 1 < y»2(G) which is a contradiction. This
completes the proof. M

4. Special values of maximal 2-rainbow domination numbers

In this section we determine the exact value of maximal 2-rainbow domination number of some classes of graphs
including paths, cycles and complete multipartite graphs.

Proposition 12. Form > n > 2, yyu, (Kip.n) = n + 1 and ypmr (K1) = 3 form > 2.

Proof. Let X = {x1,x2,..., x5} and Y = {y1, y2, ..., ym} be the bipartite sets of K, ,,. First let n = 1. It is easy to
see that the function f : V(G) — P({1, 2}) defined by f(x1) = {1, 2}, f(y1) = {1} and f(x) = @ otherwise, is an
M2RDF of weight 3 and hence y,,(K,;,1) = 3 by Proposition 4.

If n = 2, then clearly the function f defined by f(x;) = {2}, f(x2) = f(y1) = {1} and f(x) = @ otherwise, is an
M2RDF of G of weight 3 and it follows from Proposition 4 that y,, (K2.m) = 3.

Finally, let n > 3. First note that the function f defined by f(x1) = {2}, f(x2) =--- = f(x,) = f(y1) = {1} and
f(x) = @ otherwise, is an M2RDF of G of weight n+1 and hence Vi, (Kj.n) < n+1.Nowlet f = (Vo, Vi, Va, Vi.2)
be a yur (Kn.n)-function. If Vo N X # @ and VoNY # @, then clearly Vp is a dominating set of K, ,,, a contradiction.
Let N X =8. If VoNY = @, then w(f) > m +n > n + 1 which is a contradiction. Hence Vo N Y # @ that
implies f assigns 1 and 2 to some vertices in X. If Y = Vj, then Vj is a dominating set, a contradiction. Thus Vo C Y
implying that Y, (Kin.n) = o(f) > |X| 4+ 1 = n + 1. Similarly, if Vo N'Y = @, then y,,(K;p.n) > m + 1. In each
case, Ymr(Km n) = n+ 1 and hence Yy (Km,n) = n + 1. This completes the proof. MW

Proposition 13. Let G = Ky, 1,
Ymr(G) =1+ Y1 m.

Proof. Suppose X1, X», ..., X, are the partite sets of the complete n-partite graph G with |X;| = m;, and let
X; = {x{,xé, ...,xfni}. It is easy to see that the function f defined by f(x{) = {1}, f(x3) =--- = f(x,, ) =¥ and
f(x) = {2} otherwise, is an M2RDF of G and so y,,,,(G) < 1 + Z;’;ll m;.

Now let f = (Vo, Vi, V2, V12) be a yu,-(G)-function. If Vo N X; # @ and Vo N X; # @ for some i # j,
then Vj is a dominating set of G which is a contradiction. As in the proof of Proposition 12, one can verify that
Ymr(G) = 14 3"~ m; and hence y,, (G) = 1+ Y m;. M

m, be the complete n-partite graph withm, > 2and m; <my < --- < my. Then

,,,,,

Proposition 14. For n > 2, yy,(P,) = (%] if nis even and Yy, (Py) = f%} + 1 if nis odd.
Proof. First let n is even. Then the function f : V(G) — P({1,2}) defined by f(v,) = {1}, f(vsi+1) = {1} for
0<i=<T[71—1 f(vaiy3) = (2} for0 <i < ["T_zl — 1 and f(x) = @ otherwise, is an M2RDF of P, of weight

(#] and hence v, (P,) < f%}. Since Y (Py) > yr2(Py), we deduce from Proposition A that y,,,(P,) = (#].
Now let n be odd. Then the functions f and g defined by

Faie) = {1) forOSis(%]—l, Fuaies) = 2) fOYOSiSVT_z—‘—L and

f(x) = @ otherwise

and

n—2

m‘l’ g(vaiy3) = {1) fOfOSiS[T—‘—l, and

IA

g(vgiy1) = {2} for0<i
g(x) = 0 otherwise

are the unique y,2(P,)-functions. Obviously, f and g are not M2RDF on P,. Thus y;,, (P;) > ¥r2(P,) + 1. On the
other hand, the function f : V(G) — P({1, 2}) defined by f(vy—1) = 1, f(v4i+1) = {1} for 0 < i < f%} -1,
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f(vgi43) = {2} for 0 < i < ["T_zl — 1, and f(x) = @ otherwise, is an M2RDF of weight (#] + 1 and hence
VYr (Pp) < [%1 + 1. Thus yp (P,) = (%1 + 1 for odd n and the proof is complete. Wl

Proposition 15. Forn > 3, Y, (C,) = y2(Cp) if n = 2 (mod 4) and Y, (Cy) = y2(Cr)+1if n =0, 1, 3 (mod 4).

Proof. Let C, = (v1,v2,...,v,) be a cycle on n vertices. If n = 2 (mod 4), then the function f : V(C,) —
P({1,2)) defined by f(vy) = 1, f(uaiz1) = {1} for 0 < i < [2] — 1, f(vgr43) = (2} for 0 < i < [152] —
1, and f(x) = @ otherwise, is obviously an M2RDF of C,, of weight y,2(C},) implying that y,,,,-(Cy,) = y»2(Cp).

Now let n # 2 (mod 4). It is easy to see that y,2(C,, — v;) = y2(Pr—1) = [%1 = y2(C,) for each i. It follows
from Theorem 11 and (1) that y,,,-(Cy) > y2(Cy) + 1.

If n = 0 (mod 4), then define f : V(G) — P({1,2}) by f(v,) = {1}, f(v4i41) = {1} for0 <i < 7 — 1,
fuaiy3) = {2} for0 <i < % — land f(x) = @ otherwise. Obviously, f is an M2RDF of G of weight y,2(C,) + 1
which implies that y,,,(C,) = y2(Cp) + 1.

If n = 1 (mod 4), then define f : V(G) — P({1,2}) by f(v2) = {1}, f(vai+1) = {1} for0 < i < [3] -1,
fuait3) = {2} for0 <i < [7] — 1 and f(x) = ¥ otherwise. Clearly, f is an M2RDF of G of weight y,2(C;,) + 1
which implies that y,,,(Cp,) = yr2(Cp) + 1.

Let n = 3 (mod 4). Define f : V(G) — P({1,2}) by f(v2) = {1}, f(vai+1) = {1} for0 < i < [3] -1,
fuaig3) = {2} for0 <i < [%1 — 1 and f(x) = ¥ otherwise. It is easy to see that f is an M2RDF of G of weight
Yr2(Cy) + 1 and 80 Y, (Cpp) = ¥72(Cp) + 1. |
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