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c Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain

Received 31 August 2013; accepted 14 April 2016
Available online 1 July 2016

Abstract

A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V (G) to the set of all subsets of the
set {1, 2} such that for any vertex v ∈ V (G) with f (v) = ∅ the condition


u∈N (v) f (u) = {1, 2} is fulfilled, where N (v) is the

open neighborhood of v. A maximal 2-rainbow dominating function on a graph G is a 2-rainbow dominating function f such that
the set {w ∈ V (G)| f (w) = ∅} is not a dominating set of G. The weight of a maximal 2RDF f is the value ω( f ) =


v∈V | f (v)|.

The maximal 2-rainbow domination number of a graph G, denoted by γmr (G), is the minimum weight of a maximal 2RDF of G.
In this paper we initiate the study of maximal 2-rainbow domination number in graphs. We first show that the decision problem is
NP-complete even when restricted to bipartite or chordal graphs, and then, we present some sharp bounds for γmr (G). In addition,
we determine the maximal rainbow domination number of some graphs.
c⃝ 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to [1–3]. In this paper, G is a
simple graph with vertex set V = V (G) and edge set E = E(G). The order |V | of G is denoted by n = n(G). For
every vertex v ∈ V , the open neighborhood N (v) is the set {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood of
v is the set N [v] = N (v) ∪ {v}. The degree of a vertex v ∈ V is d(v) = |N (v)|. The minimum and maximum degree
of a graph G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. A graph G is k-regular if d(v) = k for each
vertex v of G. The open neighborhood of a set S ⊆ V is the set N (S) = ∪v∈S N (v), and the closed neighborhood of
S is the set N [S] = N (S) ∪ S. A tree is an acyclic connected graph. The complement of a graph G is denoted by G.
We write Kn for the complete graph of order n, Pn for a path of order n and Cn for a cycle of length n.
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A subset S of vertices of G is a dominating set if N [S] = V . The domination number γ (G) is the minimum
cardinality of a dominating set of G. A dominating set D is said to be a maximal dominating set (MDS) if V − D
is not a dominating set of G. The maximal domination number γm(G) is the minimum cardinality of a maximal
dominating set of G. The definition of the maximal domination was given by Kulli and Janakiram [4]. For more
information on maximal domination we refer the reader to [5,6].

A Roman dominating function (RDF) on a graph G = (V, E) is defined in [7,8] as a function f : V −→ {0, 1, 2}

satisfying the condition that every vertex v for which f (v) = 0 is adjacent to at least one vertex u for which f (u) = 2.
The weight of an RDF f is the value ω( f ) =


v∈V f (v). A Roman dominating function f : V −→ {0, 1, 2} can be

represented by the ordered partition (V0, V1, V2) (or (V f
0 , V f

1 , V f
2 ) to refer f ) of V , where Vi = {v ∈ V | f (v) = i}.

In this representation, its weight is ω( f ) = |V1| + 2|V2|. A maximal Roman dominating function (MRDF) on a graph
G is a Roman dominating function f = (V0, V1, V2) such that V0 is not a dominating set of G. The maximal Roman
domination number of a graph G, denoted by γm R(G), equals the minimum weight of an MRDF on G. A γm R(G)-
function is a maximal Roman dominating function of G with weight γm R(G). The maximal Roman domination was
introduced by Ahangar et al. in [9] and has been studied in [10].

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from the vertex set
V (G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (G) with f (v) = ∅ the condition

u∈N (v) f (u) = {1, 2, . . . , k} is fulfilled. The weight of a kRDF f is the value ω( f ) =


v∈V | f (v)|. The k-rainbow
domination number of a graph G, denoted by γrk(G), is the minimum weight of a kRDF of G. A γrk(G)-function is a
k-rainbow dominating function of G with weight γrk(G). Note that γr1(G) is the classical domination number γ (G).
The k-rainbow domination number was introduced by Brešar, Henning, and Rall [11] and has been studied by several
authors [12–20].

A 2-rainbow dominating function f : V −→ P({1, 2}) can be represented by the ordered partition (V0, V1,

V2, V1,2) (or (V f
0 , V f

1 , V f
2 , V f

1,2) to refer f ) of V , where V0 = {v ∈ V | f (v) = ∅}, V1 = {v ∈ V | f (v) = {1}},
V2 = {v ∈ V | f (v) = {2}}, V1,2 = {v ∈ V | f (v) = {1, 2}}. In this representation, its weight is ω( f ) =

|V1| + |V2| + 2|V1,2|.
A maximal 2-rainbow dominating function (M2RDF) on a graph G is a 2-rainbow dominating function f =

(V0, V1, V2, V1,2) such that V0 is not a dominating set of G. The maximal 2-rainbow domination number of a graph
G, denoted by γmr (G), equals the minimum weight of an M2RDF on G. A γmr (G)-function is a maximal 2-rainbow
dominating function of G with weight γmr (G). As f = (∅, V (G), ∅, ∅) is a maximal 2-rainbow dominating function
of G and since every maximal 2-rainbow dominating function is a 2-rainbow dominating function, we have

γr2(G) ≤ γmr (G) ≤ n. (1)

Since V1 ∪ V2 ∪ V1,2 is a maximal dominating set when f = (V0, V1, V2, V1,2) is an M2RDF, and since assigning
{1, 2} to the vertices of a maximal dominating set yields an M2RDF, we observe that

γm(G) ≤ γmr (G) ≤ 2γm(G). (2)

We note that maximal 2-rainbow domination number differs significantly from 2-rainbow domination number. For
example, for n ≥ 2, γr2(Kn) = 2 and γmr (Kn) = n.

Our purpose in this paper is to initiate the study of maximal 2-rainbow domination number in graphs. We first
show that the decision problem is NP-complete even when restricted to bipartite or chordal graphs, and then we study
basic properties and bounds for the maximal 2-rainbow domination number of a graph. In addition, we determine the
maximal 2-rainbow domination number of some classes of graphs.

We make use of the following results in this paper.

Proposition A ([12]). For n ≥ 2, γr2(Pn) =


n+1

2


.

Proposition B ([12]). For n ≥ 3, γr2(Cn) =
 n

2


+

 n
4


−

 n
4


.

Proposition C ([9]). Let G be a connected graph of order n ≥ 3. Then γm(G) = n − 1 if and only if G = P4 or
G = Kn − M where M is a nonempty matching.
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Proposition D ([9]). Let G be a connected graph G of order n ≥ 2. Then γm R(G) = n if and only if G =

K2, P3, P4, C3, C4, C5 or G = Kn − M, where M is a matching of G.

Observation 1. For n ≥ 1, γmr (Kn) = γmr (Kn) = n.

Proof. Obviously, γmr (Kn) = n. Let f = (V0, V1, V2, V1,2) be a γmr (Kn)-function. As every vertex of Kn dominates
all vertices, we must have V0 = ∅ and hence γmr (Kn) = |V1| + |V2| + 2|V1,2| ≥ |V1| + |V2| + |V1,2| = n. By (1) we
have γmr (Kn) = n. �

Observation 2. For n ≥ 4 and any non-empty matching M of Kn , γmr (Kn − M) = n − 1.

Proof. Let G = Kn − M . It follows from (2) and Proposition C that γmr (G) ≥ n − 1. Let uv ∈ M and let
w ∈ V (G)−{u, v}. Then the function f = ({u}, V (G)−{u, w}, {w}, ∅) is obviously a maximal rainbow dominating
function of G of weight n − 1 and hence γmr (G) = n − 1. This completes the proof. �

2. Complexity of maximal 2-rainbow domination problem

In this section we consider the following decision problem regarding the maximal 2-rainbow domination number
of a graph.

MAXIMAL 2-RAINBOW DOMINATION PROBLEM (M2RD-PROBLEM):

INSTANCE: A graph G and a positive integer k ≤ |V (G)|.

QUESTION: Is γmr (G) ≤ k?

To prove that the decision problem for maximal 2-rainbow domination is NP-complete, we use a polynomial time
reduction from 2-rainbow domination problem.

2-RAINBOW DOMINATION PROBLEM (2RD-PROBLEM):

INSTANCE: A graph G and a positive integer k ≤ |V (G)|.

QUESTION: Is γr2(G) ≤ k?

As shown in [12], the 2-rainbow domination problem remains NP-complete even when restricted to bipartite or
chordal graphs.

In order to present our results we need to introduce some additional terminology and notation. Given a graph G of
order n and a graph H with root vertex v, the rooted product graph G ◦v H is defined as the graph obtained from G
and H by taking one copy of G and n copies of H and identifying the vertex ui of G with the vertex v in the i th copy
of H for every 1 ≤ i ≤ n [21]. More formally, assuming that V (G) = {u1, . . . , un} and that the root vertex of H is v,
we define the rooted product graph G ◦v H = (V, E), where V = V (G) × V (H) and

E =

n
i=1

{(ui , b)(ui , y) : by ∈ E(H)} ∪ {(ui , v)(u j , v) : ui u j ∈ E(G)}.

Fig. 1 shows an example of the rooted product of graphs.

Theorem 3. M2RD-PROBLEM problem is NP-complete, even when restricted to bipartite or chordal graphs.

Proof. Let G be a graph of order n. M2RD-PROBLEM is a member of NP, since for a given function f =

(V0, V1, V2, V1,2) of G such that ω( f ) ≤ n, we can check in polynomial time that f is a 2-rainbow dominating
function of G and that V0 does not dominate G.

Now, we consider a rooted product graph G ◦v1 H , where G is a graph of order n with vertex set V (G) =

{u1, u2, . . . , un} and H is a graph with root v1 constructed as follows. We begin with a cycle C4 with set of vertices
V (C4) = {v1, v2, v3, v4} and set of edges E(C4) = {v1v2, v2v3, v3v4, v4v1}. To obtain the graph H , we add three
vertices {x1, x2, x3}, and edges v3x1, v3x2 and v3x3. Notice that G ◦v1 H can be done in polynomial time.
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Fig. 1. Rooted product C3 ◦v P4, where v has degree two in P4.

Let g be a γr2(G)-function and consider the function f = (V0, V1, V2, V1,2) on G ◦v1 H such that:

• f (ui , v1) = g(ui ) for i ∈ {1, 2, . . . , n};

• f (ui , v2) = f (ui , v4) = ∅ for i ∈ {1, 2, . . . , n};

• f (ui , v3) = {1, 2} for i ∈ {1, 2, . . . , n};

• f (u1, x1) = {1} and f (ui , x1) = ∅ for i ∈ {2, 3, . . . , n};

• f (ui , x2) = f (ui , x3) = ∅ for i ∈ {1, 2, . . . , n}.

Clearly f is a maximal 2-rainbow dominating function of G ◦v1 H , since (u1, x1) is not dominated by V0. Thus
γmr (G ◦v1 H) ≤ 2n + 1 + γ2r (G).

On the other hand, let f ′ be a γr2(G ◦v1 H)-function. From the structure of G ◦v1 H , for any i ∈ {1, . . . , n} we
deduce that either f ′(ui , v3) = {1, 2} or we have three vertices (ui , x1), (ui , x2), and (ui , x3) to which f ′ does not
assign ∅. Thus,V1 ∩

n
i=1

{(ui , v3), (ui , x1), (ui , x2), (ui , x3)}

 +

V2 ∩

n
i=1

{(ui , v3), (ui , x1), (ui , x2), (ui , x3)}


+ 2

V1,2 ∩

n
i=1

{(ui , v3), (ui , x1), (ui , x2), (ui , x3)}

 ≥ 2n.

Moreover, for all i ∈ {1, . . . , n} the vertex (ui , v1) has to be 2-rainbowly dominated. So, it follows thatV1 ∩

n
i=1

{(ui , v1)}

 +

V2 ∩

n
i=1

{(ui , v1)}

 + 2

V1,2 ∩

n
i=1

{(ui , v1)}

 ≥ γr2(G).

Thus γr2(G ◦v1 H) ≥ 2n + γr2(G). According to the structure of G ◦v1 H , once more, it is straightforward to
observe that every 2-rainbow dominated function h = (V ′

0, V ′

1, V ′

2, V ′

1,2) of G ◦v1 H , such that ω(h) = 2n + γr2(G),
has the following form.

• h(ui , x1) = h(ui , x2) = h(ui , x3) = ∅ for i ∈ {1, 2, . . . , n};

• h(ui , v3) = {1, 2} for i ∈ {1, 2, . . . , n};

• h(ui , v2) = h(ui , v4) = ∅ for i ∈ {1, 2, . . . , n};

• h(ui , v1) = g′(ui ) for i ∈ {1, 2, . . . , n}, where g′ is any γr2(G)-function.

Hence, V ′

0 is a dominating set of G ◦v1 H , and, as a consequence, γmr (G ◦v1 H) > γr2(G ◦v1 H) = 2n + γr2(G).
So, the equality γmr (G ◦v1 H) = 2n + γr2(G) + 1 is obtained.

If G is a bipartite, then G ◦v1 H is a bipartite. If G is a chordal graph, then we construct a graph G ◦v1 H ′, where
V (G ◦v1 H ′) = V (G ◦v1 H) and E(G ◦v1 H ′) = E(G ◦v1 H)∪

n
i=1(ui , v2)(ui , v4). Clearly G ◦v1 H ′ is chordal. By

an analogous procedure, the equality γmr (G ◦v1 H) = 2n + γr2(G) + 1 is derived. Therefore, for j = 2n + 1 + k, we
infer that γr2(G) ≤ k if and only if γmr (G) ≤ j , which completes the reduction of the M2RD-PROBLEM from the
2RD-PROBLEM. �
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3. Basic properties and bounds

In this section we study properties of maximal 2-rainbow domination and present some sharp bounds.

Proposition 4. For any nonempty graph G of order n ≥ 4, γmr (G) ≥ 3 with equality if and only if ∆(G) = n − 1
and δ(G) = 1 or ∆(G) = n − 2 and δ(G) = 0 or there are two vertices v, w such that N (v) ∩ N (w) has a subset of
size n − 3 which is not a dominating set of G.

Proof. By (1), γmr (G) ≥ γr2(G) ≥ 2. If γmr (G) = 2 and f = (V0, V1, V2, V1,2) is a γmr (G)-function, then clearly
either |V1,2| = 0, |V1| = |V2| = 1 and |V0| = n − 2 or |V1,2| = 1, |V1| = |V2| = 0 and |V0| = n − 1. It is easy to see
that in each case, V0 is a dominating set of G, a contradiction. Hence γmr (G) ≥ 3.

If ∆(G) = n − 2 and δ(G) = 0, then let v be a vertex of degree n − 2 and suppose that u is an isolated vertex.
Clearly, the function f = (V (G)−{u, v}, {u}, ∅, {v}) is an M2RDF of G and hence γmr (G) = 3. If ∆(G) = n−1 and
δ(G) = 1 then as above, we have γmr (G) = 3. Suppose now that there are two vertices v, w such that N (v) ∩ N (w)

has a subset D of size n − 3 which is not a dominating set of G. If u is not dominated by D, then obviously
f = (D, {u, v}, {w}, ∅) is an M2RDF of G and hence γmr (G) = 3.

Conversely, let γmr (G) = 3. Assume that f = (V0, V1, V2, V1,2) is a γmr (G)-function. Then, we may assume,
without loss of generality, that |V1| = |V1,2| = 1 or |V1| = 2 and |V2| = 1. First let |V1| = |V1,2| = 1. Let V1 = {u}

and V1,2 = {v}. Since v must dominate all vertices in V0, we have ∆(G) ≥ deg(v) ≥ n − 2. Since f is an M2RDF of
G, u has no neighbor in V0, otherwise V0 dominates V (G) which is a contradiction. If uv ∈ E(G), then ∆(G) = n−1
and δ(G) = 1, and if uv ∉ E(G), then ∆(G) = n − 2 and δ(G) = 0. Now let |V1| = 2 and |V2| = 1. Let V1 = {u, v}

and V2 = {w}. Clearly, each vertex in V0 is adjacent to w. Since f is an M2RDF of G, we may assume u has no
neighbor in V0. It follows that each vertex in V0 is adjacent to v. Thus, V0 is a subset of N (v) ∩ N (w) of size n − 3
which does not dominate V (G). This completes the proof. �

Proposition 5. For any graph G without isolated vertex,

γmr (G) ≤ γr2(G) + δ(G).

Furthermore, this bound is sharp.

Proof. Let f = (V0, V1, V2, V1,2) be a γr2(G)-function and let v be a vertex of minimum degree. Then either
v ∈ V1 ∪ V2 ∪ V1,2 or v ∈ V0. If v ∈ V0, then v has a neighbor in V1,2 or v has a neighbor in V1 and a neighbor in V2. It
is clear that g = (V0−N [v], V1∪(N [v]−(V2∪V1,2)), V2, V1,2) is a maximal 2-rainbow dominating function on G and
hence γmr (G) ≤ γr2(G)+δ(G). If v ∈ V1 ∪ V2 ∪ V1,2, then the function g = (V0 − N (v), V1 ∪ (N (v)∩ V0), V2, V1,2)

is a maximal 2-rainbow dominating function on G and hence γmr (G) ≤ γr2(G) + δ(G).
To prove the sharpness, let G be the graph obtained from Kn by adding a new vertex and joining it to exactly one

vertex of Kn . Then γr2(G) = 2 and γmr (G) = 3 and the proof is complete. �

Corollary 6. For any tree T of order n ≥ 2, γmr (T ) ≤ γr2(T ) + 1.

Next we present an upper bound for maximal 2-rainbow domination number of a graph in terms of its order and
minimum degree.

Proposition 7. Let G be a connected graph of order n with diam(G) ≥ 4. Then

γmr (G) ≤ n − δ(G) + 1.

Proof. Consider a diametral path P = x1x2 . . . xdiam(G)+1 in G. Then, the function f = (N (x2), ∅, V (G) − N [x2],

{x2}) is an M2RDF of G and hence γmr (G) ≤ ω( f ) = |V1| + |V2| + 2|V1,2| = n − deg(x2) + 1. Thus
γmr (G) ≤ n − δ(G) + 1 and the proof is complete. �

Proposition 8. For any graph G,

γmr (G) ≤ 2γm(G) − 1.

Furthermore, this bound is sharp.
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Proof. Let D be a γm(G)-set. Since D is an MDS, there is a vertex u ∈ D not dominated by V − D. Define
f : V (G) → P({1, 2}) by f (u) = {1}, f (x) = {1, 2} for x ∈ D − {u} and f (x) = ∅ otherwise. It is easy to see that
f is an M2RDF of G and hence γmr (G) ≤ 2(|D| − 1) + 1 = 2γm(G) − 1.

To prove the sharpness, let G be the graph obtained from the complete Kn by adding a new vertex and joining it to
exactly one vertex of Kn . �

In (1) we observe that γr2(G) ≤ γmr (G) ≤ n. In the rest of this section we characterize all extremal graphs.

Lemma 9. For a graph G, 2
3γm R(G) ≤ γmr (G) ≤ γm R(G).

Proof. If f = (V0, V1, V2) is a γm R(G)-function, then obviously (V0, V1, ∅, V2) is a M2RDF of G and hence
γmr (G) ≤ γm R(G).

To prove the lower bound, let f be a γmr (G)-function and let X i = {v ∈ V (G) | i ∈ f (v)} for i = 1, 2. We may
assume that |X1| ≤ |X2|. Then |X1| ≤ (|X1| + |X2|)/2 = γmr (G)/2. Define g : V (G) → {0, 1, 2} by g(u) = 0
if f (u) = ∅, g(u) = 1 when f (u) = {2} and g(u) = 2 if 1 ∈ f (u). Obviously, g is a maximal Roman dominating
function on G with ω(g) ≤ 2|X1| + |X2| ≤

3
2γmr (G) and the result follows. �

Theorem 10. Let G be a connected graph G of order n ≥ 2. Then γmr (G) = n if and only if G = K2, P3, C3 or
G = Kn .

Proof. If G = K2, P3, C3 or G = Kn , then clearly γmr (G) = n. Let γmr (G) = n. Then γm R(G) = n by Lemma 9.
It follows from Proposition D that G = K2, P3, P4, C3, C4, C5 or G = Kn − M , where M is a matching of G. Since
γmr (G) ≤ n − 1 for G = P4, C4, C5 or G = Kn − M where M is a nonempty matching of G, we deduce that
G = K2, P3, C3 or G = Kn and the proof is complete. �

Theorem 11. Let G be a connected graph of order at least 3. Then γmr (G) = γr2(G) if and only if G has a non-cut
vertex u such that

(a) γr2(G − u) = γr2(G) − 1,
(b) G − u has a γr2(G − u)-function f such that assigns 1 to all neighbors of u in G.

Proof. If (a) and (b) hold, then we can extend γr2(G − u)-function f to a 2RDF of G by defining f (u) = 1. Clearly,
f is an M2RDF of G and so γmr (G) ≤ γr2(G − u) + 1 = γr2(G). Thus γmr (G) = γr2(G).

Conversely, let γmr (G) = γr2(G). Assume f = (V0, V1, V2, V1,2) is a γmr (G)-function such that |V0| is maximum.
Let VA be the set of vertices which are not dominated by V0. Since V0 dominates V0 ∪ V1,2, we have VA ⊆ V1 ∪ V2.
If VA ∩ V2 ≠ ∅, then the function g = (V0, V1 ∪ (VA ∩ V2), V2 \ VA, V1,2) is a γmr (G)-function such that |V0|

is maximum and all vertices not dominated by V0 belong to V1. Thus we may assume, without loss of generality,
that VA ⊆ V1. If some vertex v ∈ VA, has a neighbor in V1,2 or has a neighbor in V1 and a neighbor in V2, then
(V0 ∪ {v}, V1 − {v}, V2, V1,2) is a 2RDF of G of weight less than ω( f ) = γr2(G) which is a contradiction. Hence,
N (VA) ⊂ V1 ∪ V2 and N (v) ⊆ V1 or N (v) ⊆ V2 for each v ∈ VA.

Claim 1. G[VA] is a complete graph.

Assume to the contrary that uv ∉ E(G) for some u, v ∈ VA. Since G is connected and N (u) ⊆ V1 or N (u) ⊆ V2, we
may assume that u has a neighbor w in V1. Then g = (V0 ∪ {u}, V1 − {u, w}, V2, V1,2 ∪ {w}) is a γmr (G)-function
which contradicts the choice of f .

Claim 2. |VA| = 1.

Let |VA| ≥ 2. If |VA| ≥ 3 then for each u ∈ VA, the function (V0 ∪(VA −{u}), V1 −VA, V2, V1,2 ∪{u}) is a 2RDF of G
of weight less than ω( f ) = γr2(G) which is a contradiction. Suppose |VA| = 2 and VA = {u, v}. Since G is connected
of order at least 3, we may assume deg(u) ≥ 2. Since N (u) ⊆ V1, the function (V0 ∪ {u}, V1 − {u, v}, V2 ∪ {v}, V1,2)

is a 2RDF of G of weight less than ω( f ) = γr2(G), a contradiction again.
Let VA = {u}. We may assume N (u) ⊆ V1. We claim that u is not a cut vertex. Suppose to the contrary that u is a

cut vertex and G1, G2, . . . , Gk are the components of G − u. Obviously, f |V (Gi ) if a 2RDF of Gi for each i . Define
g by g(u) = ∅, g(x) = {1} if x ∈ V (G1) ∩ V2, g(x) = {2} if x ∈ V (G1) ∩ V1 and g(x) = f (x) otherwise. It is easy
to see that g is a 2RDF of G of weight less than ω( f ) = γr2(G), a contradiction.



H. Abdollahzadeh Ahangar et al. / AKCE International Journal of Graphs and Combinatorics 13 (2016) 157–164 163

Thus u is a non-cut vertex. Obviously, the function f , restricted to G−u, is a 2RDF of G of weight γr2(G)−1 which
assigns 1 to all neighbors of u in G. Hence γr2(G−u) ≤ γr2(G)−1. It remains to prove that γr2(G−u) = γr2(G)−1.
Suppose to the contrary that γr2(G − u) < γr2(G) − 1 and let h be a γr2(G − u)-function. Then we can extend h to
a 2RDF of G by defining h(u) = 1 implying that γr2(G) ≤ γr2(G − u) + 1 < γr2(G) which is a contradiction. This
completes the proof. �

4. Special values of maximal 2-rainbow domination numbers

In this section we determine the exact value of maximal 2-rainbow domination number of some classes of graphs
including paths, cycles and complete multipartite graphs.

Proposition 12. For m ≥ n ≥ 2, γmr (Km,n) = n + 1 and γmr (Km,1) = 3 for m ≥ 2.

Proof. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be the bipartite sets of Km,n . First let n = 1. It is easy to
see that the function f : V (G) → P({1, 2}) defined by f (x1) = {1, 2}, f (y1) = {1} and f (x) = ∅ otherwise, is an
M2RDF of weight 3 and hence γmr (Km,1) = 3 by Proposition 4.

If n = 2, then clearly the function f defined by f (x1) = {2}, f (x2) = f (y1) = {1} and f (x) = ∅ otherwise, is an
M2RDF of G of weight 3 and it follows from Proposition 4 that γmr (K2,m) = 3.

Finally, let n ≥ 3. First note that the function f defined by f (x1) = {2}, f (x2) = · · · = f (xn) = f (y1) = {1} and
f (x) = ∅ otherwise, is an M2RDF of G of weight n+1 and hence γmr (Km,n) ≤ n+1. Now let f = (V0, V1, V2, V1,2)

be a γmr (Km,n)-function. If V0 ∩ X ≠ ∅ and V0 ∩ Y ≠ ∅, then clearly V0 is a dominating set of Km,n , a contradiction.
Let V0 ∩ X = ∅. If V0 ∩ Y = ∅, then ω( f ) ≥ m + n > n + 1 which is a contradiction. Hence V0 ∩ Y ≠ ∅ that
implies f assigns 1 and 2 to some vertices in X . If Y = V0, then V0 is a dominating set, a contradiction. Thus V0 ⊂ Y
implying that γmr (Km,n) = ω( f ) ≥ |X | + 1 = n + 1. Similarly, if V0 ∩ Y = ∅, then γmr (Km,n) ≥ m + 1. In each
case, γmr (Km,n) ≥ n + 1 and hence γmr (Km,n) = n + 1. This completes the proof. �

Proposition 13. Let G = Km1,m2,...,mn be the complete n-partite graph with mn ≥ 2 and m1 ≤ m2 ≤ · · · ≤ mn . Then
γmr (G) = 1 +

n−1
i=1 mi .

Proof. Suppose X1, X2, . . . , Xn are the partite sets of the complete n-partite graph G with |X i | = mi , and let
X i = {x i

1, x i
2, . . . , x i

mi
}. It is easy to see that the function f defined by f (xn

1 ) = {1}, f (xn
2 ) = · · · = f (xn

mn
) = ∅ and

f (x) = {2} otherwise, is an M2RDF of G and so γmr (G) ≤ 1 +
n−1

i=1 mi .
Now let f = (V0, V1, V2, V1,2) be a γmr (G)-function. If V0 ∩ X i ≠ ∅ and V0 ∩ X j ≠ ∅ for some i ≠ j ,

then V0 is a dominating set of G which is a contradiction. As in the proof of Proposition 12, one can verify that
γmr (G) ≥ 1 +

n−1
i=1 mi and hence γmr (G) = 1 +

n−1
i=1 mi . �

Proposition 14. For n ≥ 2, γmr (Pn) = ⌈
n+1

2 ⌉ if n is even and γmr (Pn) = ⌈
n+1

2 ⌉ + 1 if n is odd.

Proof. First let n is even. Then the function f : V (G) → P({1, 2}) defined by f (vn) = {1}, f (v4i+1) = {1} for
0 ≤ i ≤ ⌈

n
4 ⌉ − 1, f (v4i+3) = {2} for 0 ≤ i ≤ ⌈

n−2
4 ⌉ − 1 and f (x) = ∅ otherwise, is an M2RDF of Pn of weight

⌈
n+1

2 ⌉ and hence γmr (Pn) ≤ ⌈
n+1

2 ⌉. Since γmr (Pn) ≥ γr2(Pn), we deduce from Proposition A that γmr (Pn) = ⌈
n+1

2 ⌉.
Now let n be odd. Then the functions f and g defined by

f (v4i+1) = {1} for 0 ≤ i ≤

n

4


− 1, f (v4i+3) = {2} for 0 ≤ i ≤


n − 2

4


− 1, and

f (x) = ∅ otherwise

and

g(v4i+1) = {2} for 0 ≤ i ≤

n

4


− 1, g(v4i+3) = {1} for 0 ≤ i ≤


n − 2

4


− 1, and

g(x) = ∅ otherwise

are the unique γr2(Pn)-functions. Obviously, f and g are not M2RDF on Pn . Thus γmr (Pn) ≥ γr2(Pn) + 1. On the
other hand, the function f : V (G) → P({1, 2}) defined by f (vn−1) = 1, f (v4i+1) = {1} for 0 ≤ i ≤ ⌈

n
4 ⌉ − 1,
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f (v4i+3) = {2} for 0 ≤ i ≤ ⌈
n−2

4 ⌉ − 1, and f (x) = ∅ otherwise, is an M2RDF of weight ⌈
n+1

2 ⌉ + 1 and hence
γmr (Pn) ≤ ⌈

n+1
2 ⌉ + 1. Thus γmr (Pn) = ⌈

n+1
2 ⌉ + 1 for odd n and the proof is complete. �

Proposition 15. For n ≥ 3, γmr (Cn) = γr2(Cn) if n ≡ 2 (mod 4) and γmr (Cn) = γr2(Cn)+1 if n ≡ 0, 1, 3 (mod 4).

Proof. Let Cn = (v1, v2, . . . , vn) be a cycle on n vertices. If n ≡ 2 (mod 4), then the function f : V (Cn) →

P({1, 2}) defined by f (vn) = 1, f (v4i+1) = {1} for 0 ≤ i ≤ ⌈
n
4 ⌉ − 1, f (v4i+3) = {2} for 0 ≤ i ≤ ⌈

n−2
4 ⌉ −

1, and f (x) = ∅ otherwise, is obviously an M2RDF of Cn of weight γr2(Cn) implying that γmr (Cn) = γr2(Cn).
Now let n ≢ 2 (mod 4). It is easy to see that γr2(Cn − vi ) = γr2(Pn−1) = ⌈

n
2 ⌉ = γr2(Cn) for each i . It follows

from Theorem 11 and (1) that γmr (Cn) ≥ γr2(Cn) + 1.
If n ≡ 0 (mod 4), then define f : V (G) → P({1, 2}) by f (vn) = {1}, f (v4i+1) = {1} for 0 ≤ i ≤

n
4 − 1,

f (v4i+3) = {2} for 0 ≤ i ≤
n
4 − 1 and f (x) = ∅ otherwise. Obviously, f is an M2RDF of G of weight γr2(Cn) + 1

which implies that γmr (Cn) = γr2(Cn) + 1.
If n ≡ 1 (mod 4), then define f : V (G) → P({1, 2}) by f (v2) = {1}, f (v4i+1) = {1} for 0 ≤ i ≤ ⌈

n
4 ⌉ − 1,

f (v4i+3) = {2} for 0 ≤ i ≤ ⌊
n
4 ⌋ − 1 and f (x) = ∅ otherwise. Clearly, f is an M2RDF of G of weight γr2(Cn) + 1

which implies that γmr (Cn) = γr2(Cn) + 1.
Let n ≡ 3 (mod 4). Define f : V (G) → P({1, 2}) by f (v2) = {1}, f (v4i+1) = {1} for 0 ≤ i ≤ ⌈

n
4 ⌉ − 1,

f (v4i+3) = {2} for 0 ≤ i ≤ ⌈
n
4 ⌉ − 1 and f (x) = ∅ otherwise. It is easy to see that f is an M2RDF of G of weight

γr2(Cn) + 1 and so γmr (Cn) = γr2(Cn) + 1. �
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