Maximal 2-rainbow domination number of a graph

H. Abdollahzadeh Ahangar ${ }^{\text {a,* }}$, J. Amjadi ${ }^{\text {b }}$, S.M. Sheikholeslami ${ }^{\text {b }}$, D. Kuziak ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Basic Science, Babol University of Technology, Babol, Iran
${ }^{\mathrm{b}}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Islamic Republic of Iran
c Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain

Received 31 August 2013; accepted 14 April 2016
Available online 1 July 2016

Abstract

A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set $V(G)$ to the set of all subsets of the set $\{1,2\}$ such that for any vertex $v \in V(G)$ with $f(v)=\emptyset$ the condition $\bigcup_{u \in N(v)} f(u)=\{1,2\}$ is fulfilled, where $N(v)$ is the open neighborhood of v. A maximal 2-rainbow dominating function on a graph G is a 2-rainbow dominating function f such that the set $\{w \in V(G) \mid f(w)=\emptyset\}$ is not a dominating set of G. The weight of a maximal $2 \operatorname{RDF} f$ is the value $\omega(f)=\sum_{v \in V}|f(v)|$. The maximal 2-rainbow domination number of a graph G, denoted by $\gamma_{m r}(G)$, is the minimum weight of a maximal 2RDF of G. In this paper we initiate the study of maximal 2-rainbow domination number in graphs. We first show that the decision problem is NP-complete even when restricted to bipartite or chordal graphs, and then, we present some sharp bounds for $\gamma_{m r}(G)$. In addition, we determine the maximal rainbow domination number of some graphs.

(C) 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Maximal domination; Rainbow domination; Maximal rainbow domination

1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to [1-3]. In this paper, G is a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of G is denoted by $n=n(G)$. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $d(v)=|N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. A graph G is k-regular if $d(v)=k$ for each vertex v of G. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\cup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S]=N(S) \cup S$. A tree is an acyclic connected graph. The complement of a graph G is denoted by \bar{G}. We write K_{n} for the complete graph of order n, P_{n} for a path of order n and C_{n} for a cycle of length n.

[^0]A subset S of vertices of G is a dominating set if $N[S]=V$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set D is said to be a maximal dominating set (MDS) if $V-D$ is not a dominating set of G. The maximal domination number $\gamma_{m}(G)$ is the minimum cardinality of a maximal dominating set of G. The definition of the maximal domination was given by Kulli and Janakiram [4]. For more information on maximal domination we refer the reader to [5,6].

A Roman dominating function (RDF) on a graph $G=(V, E)$ is defined in $[7,8]$ as a function $f: V \longrightarrow\{0,1,2\}$ satisfying the condition that every vertex v for which $f(v)=0$ is adjacent to at least one vertex u for which $f(u)=2$. The weight of an RDF f is the value $\omega(f)=\sum_{v \in V} f(v)$. A Roman dominating function $f: V \longrightarrow\{0,1,2\}$ can be represented by the ordered partition $\left(V_{0}, V_{1}, V_{2}\right)$ (or $\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ to refer f) of V, where $V_{i}=\{v \in V \mid f(v)=i\}$. In this representation, its weight is $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|$. A maximal Roman dominating function (MRDF) on a graph G is a Roman dominating function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that V_{0} is not a dominating set of G. The maximal Roman domination number of a graph G, denoted by $\gamma_{m R}(G)$, equals the minimum weight of an MRDF on G. A $\gamma_{m R}(G)$ function is a maximal Roman dominating function of G with weight $\gamma_{m R}(G)$. The maximal Roman domination was introduced by Ahangar et al. in [9] and has been studied in [10].

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from the vertex set $V(G)$ to the set of all subsets of the set $\{1,2, \ldots, k\}$ such that for any vertex $v \in V(G)$ with $f(v)=\emptyset$ the condition $\bigcup_{u \in N(v)} f(u)=\{1,2, \ldots, k\}$ is fulfilled. The weight of a kRDF f is the value $\omega(f)=\sum_{v \in V}|f(v)|$. The k-rainbow domination number of a graph G, denoted by $\gamma_{r k}(G)$, is the minimum weight of a kRDF of G. A $\gamma_{r k}(G)$-function is a k-rainbow dominating function of G with weight $\gamma_{r k}(G)$. Note that $\gamma_{r 1}(G)$ is the classical domination number $\gamma(G)$. The k-rainbow domination number was introduced by Brešar, Henning, and Rall [11] and has been studied by several authors [12-20].

A 2-rainbow dominating function $f: V \longrightarrow \mathcal{P}(\{1,2\})$ can be represented by the ordered partition $\left(V_{0}, V_{1}\right.$, $\left.V_{2}, V_{1,2}\right)\left(\right.$ or $\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}, V_{1,2}^{f}\right)$ to refer $\left.f\right)$ of V, where $V_{0}=\{v \in V \mid f(v)=\emptyset\}, V_{1}=\{v \in V \mid f(v)=\{1\}\}$, $V_{2}=\{v \in V \mid f(v)=\{2\}\}, V_{1,2}=\{v \in V \mid f(v)=\{1,2\}\}$. In this representation, its weight is $\omega(f)=$ $\left|V_{1}\right|+\left|V_{2}\right|+2\left|V_{1,2}\right|$.

A maximal 2-rainbow dominating function (M2RDF) on a graph G is a 2-rainbow dominating function $f=$ ($V_{0}, V_{1}, V_{2}, V_{1,2}$) such that V_{0} is not a dominating set of G. The maximal 2-rainbow domination number of a graph G, denoted by $\gamma_{m r}(G)$, equals the minimum weight of an M2RDF on G. A $\gamma_{m r}(G)$-function is a maximal 2-rainbow dominating function of G with weight $\gamma_{m r}(G)$. As $f=(\emptyset, V(G), \emptyset, \emptyset)$ is a maximal 2-rainbow dominating function of G and since every maximal 2-rainbow dominating function is a 2-rainbow dominating function, we have

$$
\begin{equation*}
\gamma_{r 2}(G) \leq \gamma_{m r}(G) \leq n \tag{1}
\end{equation*}
$$

Since $V_{1} \cup V_{2} \cup V_{1,2}$ is a maximal dominating set when $f=\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ is an M2RDF, and since assigning $\{1,2\}$ to the vertices of a maximal dominating set yields an M2RDF, we observe that

$$
\begin{equation*}
\gamma_{m}(G) \leq \gamma_{m r}(G) \leq 2 \gamma_{m}(G) \tag{2}
\end{equation*}
$$

We note that maximal 2-rainbow domination number differs significantly from 2-rainbow domination number. For example, for $n \geq 2, \gamma_{r 2}\left(K_{n}\right)=2$ and $\gamma_{m r}\left(K_{n}\right)=n$.

Our purpose in this paper is to initiate the study of maximal 2-rainbow domination number in graphs. We first show that the decision problem is NP-complete even when restricted to bipartite or chordal graphs, and then we study basic properties and bounds for the maximal 2-rainbow domination number of a graph. In addition, we determine the maximal 2-rainbow domination number of some classes of graphs.

We make use of the following results in this paper.
Proposition A ([12]). For $n \geq 2, \gamma_{r 2}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.
Proposition B ([12]). For $n \geq 3, \gamma_{r 2}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+\left\lceil\frac{n}{4}\right\rceil-\left\lfloor\frac{n}{4}\right\rfloor$.
Proposition C ([9]). Let G be a connected graph of order $n \geq 3$. Then $\gamma_{m}(G)=n-1$ if and only if $G=P_{4}$ or $G=K_{n}-M$ where M is a nonempty matching.

Proposition D ([9]). Let G be a connected graph G of order $n \geq 2$. Then $\gamma_{m R}(G)=n$ if and only if $G=$ $K_{2}, P_{3}, P_{4}, C_{3}, C_{4}, C_{5}$ or $G=K_{n}-M$, where M is a matching of G.

Observation 1. For $n \geq 1, \gamma_{m r}\left(K_{n}\right)=\gamma_{m r}\left(\overline{K_{n}}\right)=n$.
Proof. Obviously, $\gamma_{m r}\left(\overline{K_{n}}\right)=n$. Let $f=\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ be a $\gamma_{m r}\left(K_{n}\right)$-function. As every vertex of K_{n} dominates all vertices, we must have $V_{0}=\emptyset$ and hence $\gamma_{m r}\left(K_{n}\right)=\left|V_{1}\right|+\left|V_{2}\right|+2\left|V_{1,2}\right| \geq\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{1,2}\right|=n$. By (1) we have $\gamma_{m r}\left(K_{n}\right)=n$.

Observation 2. For $n \geq 4$ and any non-empty matching M of $K_{n}, \gamma_{m r}\left(K_{n}-M\right)=n-1$.
Proof. Let $G=K_{n}-M$. It follows from (2) and Proposition C that $\gamma_{m r}(G) \geq n-1$. Let $u v \in M$ and let $w \in V(G)-\{u, v\}$. Then the function $f=(\{u\}, V(G)-\{u, w\},\{w\}, \emptyset)$ is obviously a maximal rainbow dominating function of G of weight $n-1$ and hence $\gamma_{m r}(G)=n-1$. This completes the proof.

2. Complexity of maximal 2-rainbow domination problem

In this section we consider the following decision problem regarding the maximal 2-rainbow domination number of a graph.

MAXIMAL 2-RAINBOW DOMINATION PROBLEM (M2RD-PROBLEM):

INSTANCE: A graph G and a positive integer $k \leq|V(G)|$.
QUESTION: Is $\gamma_{m r}(G) \leq k$?
To prove that the decision problem for maximal 2-rainbow domination is NP-complete, we use a polynomial time reduction from 2-rainbow domination problem.

2-RAINBOW DOMINATION PROBLEM (2RD-PROBLEM):

INSTANCE: A graph G and a positive integer $k \leq|V(G)|$.
QUESTION: Is $\gamma_{r 2}(G) \leq k$?
As shown in [12], the 2-rainbow domination problem remains NP-complete even when restricted to bipartite or chordal graphs.

In order to present our results we need to introduce some additional terminology and notation. Given a graph G of order n and a graph H with root vertex v, the rooted product graph $G \circ_{v} H$ is defined as the graph obtained from G and H by taking one copy of G and n copies of H and identifying the vertex u_{i} of G with the vertex v in the i th copy of H for every $1 \leq i \leq n$ [21]. More formally, assuming that $V(G)=\left\{u_{1}, \ldots, u_{n}\right\}$ and that the root vertex of H is v, we define the rooted product graph $G \circ_{v} H=(V, E)$, where $V=V(G) \times V(H)$ and

$$
E=\bigcup_{i=1}^{n}\left\{\left(u_{i}, b\right)\left(u_{i}, y\right): b y \in E(H)\right\} \cup\left\{\left(u_{i}, v\right)\left(u_{j}, v\right): u_{i} u_{j} \in E(G)\right\} .
$$

Fig. 1 shows an example of the rooted product of graphs.
Theorem 3. M2RD-PROBLEM problem is NP-complete, even when restricted to bipartite or chordal graphs.
Proof. Let G be a graph of order n. M2RD-PROBLEM is a member of NP, since for a given function $f=$ $\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ of G such that $\omega(f) \leq n$, we can check in polynomial time that f is a 2-rainbow dominating function of G and that V_{0} does not dominate G.

Now, we consider a rooted product graph $G \circ_{v_{1}} H$, where G is a graph of order n with vertex set $V(G)=$ $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and H is a graph with root v_{1} constructed as follows. We begin with a cycle C_{4} with set of vertices $V\left(C_{4}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and set of edges $E\left(C_{4}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{1}\right\}$. To obtain the graph H, we add three vertices $\left\{x_{1}, x_{2}, x_{3}\right\}$, and edges $v_{3} x_{1}, v_{3} x_{2}$ and $v_{3} x_{3}$. Notice that $G \circ_{v_{1}} H$ can be done in polynomial time.

Fig. 1. Rooted product $C_{3} \circ_{v} P_{4}$, where v has degree two in P_{4}.
Let g be a $\gamma_{r 2}(G)$-function and consider the function $f=\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ on $G \circ_{v_{1}} H$ such that:

- $f\left(u_{i}, v_{1}\right)=g\left(u_{i}\right)$ for $i \in\{1,2, \ldots, n\}$;
- $f\left(u_{i}, v_{2}\right)=f\left(u_{i}, v_{4}\right)=\emptyset$ for $i \in\{1,2, \ldots, n\}$;
- $f\left(u_{i}, v_{3}\right)=\{1,2\}$ for $i \in\{1,2, \ldots, n\}$;
- $f\left(u_{1}, x_{1}\right)=\{1\}$ and $f\left(u_{i}, x_{1}\right)=\emptyset$ for $i \in\{2,3, \ldots, n\}$;
- $f\left(u_{i}, x_{2}\right)=f\left(u_{i}, x_{3}\right)=\emptyset$ for $i \in\{1,2, \ldots, n\}$.

Clearly f is a maximal 2-rainbow dominating function of $G \circ_{v_{1}} H$, since $\left(u_{1}, x_{1}\right)$ is not dominated by V_{0}. Thus $\gamma_{m r}\left(G \circ_{v_{1}} H\right) \leq 2 n+1+\gamma_{2 r}(G)$.

On the other hand, let f^{\prime} be a $\gamma_{r 2}\left(G \circ_{v_{1}} H\right)$-function. From the structure of $G \circ_{v_{1}} H$, for any $i \in\{1, \ldots, n\}$ we deduce that either $f^{\prime}\left(u_{i}, v_{3}\right)=\{1,2\}$ or we have three vertices $\left(u_{i}, x_{1}\right),\left(u_{i}, x_{2}\right)$, and $\left(u_{i}, x_{3}\right)$ to which f^{\prime} does not assign \emptyset. Thus,

$$
\begin{aligned}
& \left|V_{1} \cap \bigcup_{i=1}^{n}\left\{\left(u_{i}, v_{3}\right),\left(u_{i}, x_{1}\right),\left(u_{i}, x_{2}\right),\left(u_{i}, x_{3}\right)\right\}\right|+\left|V_{2} \cap \bigcup_{i=1}^{n}\left\{\left(u_{i}, v_{3}\right),\left(u_{i}, x_{1}\right),\left(u_{i}, x_{2}\right),\left(u_{i}, x_{3}\right)\right\}\right| \\
& \quad+2\left|V_{1,2} \cap \bigcup_{i=1}^{n}\left\{\left(u_{i}, v_{3}\right),\left(u_{i}, x_{1}\right),\left(u_{i}, x_{2}\right),\left(u_{i}, x_{3}\right)\right\}\right| \geq 2 n .
\end{aligned}
$$

Moreover, for all $i \in\{1, \ldots, n\}$ the vertex $\left(u_{i}, v_{1}\right)$ has to be 2-rainbowly dominated. So, it follows that

$$
\left|V_{1} \cap \bigcup_{i=1}^{n}\left\{\left(u_{i}, v_{1}\right)\right\}\right|+\left|V_{2} \cap \bigcup_{i=1}^{n}\left\{\left(u_{i}, v_{1}\right)\right\}\right|+2\left|V_{1,2} \cap \bigcup_{i=1}^{n}\left\{\left(u_{i}, v_{1}\right)\right\}\right| \geq \gamma_{r 2}(G) .
$$

Thus $\gamma_{r 2}\left(G \circ_{v_{1}} H\right) \geq 2 n+\gamma_{r 2}(G)$. According to the structure of $G \circ_{v_{1}} H$, once more, it is straightforward to observe that every 2-rainbow dominated function $h=\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}, V_{1,2}^{\prime}\right)$ of $G \circ_{v_{1}} H$, such that $\omega(h)=2 n+\gamma_{r 2}(G)$, has the following form.

- $h\left(u_{i}, x_{1}\right)=h\left(u_{i}, x_{2}\right)=h\left(u_{i}, x_{3}\right)=\emptyset$ for $i \in\{1,2, \ldots, n\}$;
- $h\left(u_{i}, v_{3}\right)=\{1,2\}$ for $i \in\{1,2, \ldots, n\}$;
- $h\left(u_{i}, v_{2}\right)=h\left(u_{i}, v_{4}\right)=\emptyset$ for $i \in\{1,2, \ldots, n\}$;
- $h\left(u_{i}, v_{1}\right)=g^{\prime}\left(u_{i}\right)$ for $i \in\{1,2, \ldots, n\}$, where g^{\prime} is any $\gamma_{r 2}(G)$-function.

Hence, V_{0}^{\prime} is a dominating set of $G \circ_{v_{1}} H$, and, as a consequence, $\gamma_{m r}\left(G \circ_{v_{1}} H\right)>\gamma_{r 2}\left(G \circ_{v_{1}} H\right)=2 n+\gamma_{r 2}(G)$. So, the equality $\gamma_{m r}\left(G \circ_{v_{1}} H\right)=2 n+\gamma_{r 2}(G)+1$ is obtained.

If G is a bipartite, then $G \circ_{v_{1}} H$ is a bipartite. If G is a chordal graph, then we construct a graph $G \circ_{v_{1}} H^{\prime}$, where $V\left(G \circ_{v_{1}} H^{\prime}\right)=V\left(G \circ_{v_{1}} H\right)$ and $E\left(G \circ_{v_{1}} H^{\prime}\right)=E\left(G \circ_{v_{1}} H\right) \cup \bigcup_{i=1}^{n}\left(u_{i}, v_{2}\right)\left(u_{i}, v_{4}\right)$. Clearly $G \circ_{v_{1}} H^{\prime}$ is chordal. By an analogous procedure, the equality $\gamma_{m r}\left(G \circ_{v_{1}} H\right)=2 n+\gamma_{r 2}(G)+1$ is derived. Therefore, for $j=2 n+1+k$, we infer that $\gamma_{r 2}(G) \leq k$ if and only if $\gamma_{m r}(G) \leq j$, which completes the reduction of the M2RD-PROBLEM from the 2RD-PROBLEM.

3. Basic properties and bounds

In this section we study properties of maximal 2-rainbow domination and present some sharp bounds.
Proposition 4. For any nonempty graph G of order $n \geq 4, \gamma_{m r}(G) \geq 3$ with equality if and only if $\Delta(G)=n-1$ and $\delta(G)=1$ or $\Delta(G)=n-2$ and $\delta(G)=0$ or there are two vertices v, w such that $N(v) \cap N(w)$ has a subset of size $n-3$ which is not a dominating set of G.
Proof. By (1), $\gamma_{m r}(G) \geq \gamma_{r 2}(G) \geq 2$. If $\gamma_{m r}(G)=2$ and $f=\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ is a $\gamma_{m r}(G)$-function, then clearly either $\left|V_{1,2}\right|=0,\left|V_{1}\right|=\left|V_{2}\right|=1$ and $\left|V_{0}\right|=n-2$ or $\left|V_{1,2}\right|=1,\left|V_{1}\right|=\left|V_{2}\right|=0$ and $\left|V_{0}\right|=n-1$. It is easy to see that in each case, V_{0} is a dominating set of G, a contradiction. Hence $\gamma_{m r}(G) \geq 3$.

If $\Delta(G)=n-2$ and $\delta(G)=0$, then let v be a vertex of degree $n-2$ and suppose that u is an isolated vertex. Clearly, the function $f=(V(G)-\{u, v\},\{u\}, \emptyset,\{v\})$ is an M2RDF of G and hence $\gamma_{m r}(G)=3$. If $\Delta(G)=n-1$ and $\delta(G)=1$ then as above, we have $\gamma_{m r}(G)=3$. Suppose now that there are two vertices v, w such that $N(v) \cap N(w)$ has a subset D of size $n-3$ which is not a dominating set of G. If u is not dominated by D, then obviously $f=(D,\{u, v\},\{w\}, \emptyset)$ is an M2RDF of G and hence $\gamma_{m r}(G)=3$.

Conversely, let $\gamma_{m r}(G)=3$. Assume that $f=\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ is a $\gamma_{m r}(G)$-function. Then, we may assume, without loss of generality, that $\left|V_{1}\right|=\left|V_{1,2}\right|=1$ or $\left|V_{1}\right|=2$ and $\left|V_{2}\right|=1$. First let $\left|V_{1}\right|=\left|V_{1,2}\right|=1$. Let $V_{1}=\{u\}$ and $V_{1,2}=\{v\}$. Since v must dominate all vertices in V_{0}, we have $\Delta(G) \geq \operatorname{deg}(v) \geq n-2$. Since f is an M2RDF of G, u has no neighbor in V_{0}, otherwise V_{0} dominates $V(G)$ which is a contradiction. If $u v \in E(G)$, then $\Delta(G)=n-1$ and $\delta(G)=1$, and if $u v \notin E(G)$, then $\Delta(G)=n-2$ and $\delta(G)=0$. Now let $\left|V_{1}\right|=2$ and $\left|V_{2}\right|=1$. Let $V_{1}=\{u, v\}$ and $V_{2}=\{w\}$. Clearly, each vertex in V_{0} is adjacent to w. Since f is an M2RDF of G, we may assume u has no neighbor in V_{0}. It follows that each vertex in V_{0} is adjacent to v. Thus, V_{0} is a subset of $N(v) \cap N(w)$ of size $n-3$ which does not dominate $V(G)$. This completes the proof.

Proposition 5. For any graph G without isolated vertex,

$$
\gamma_{m r}(G) \leq \gamma_{r 2}(G)+\delta(G)
$$

Furthermore, this bound is sharp.
Proof. Let $f=\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ be a $\gamma_{r 2}(G)$-function and let v be a vertex of minimum degree. Then either $v \in V_{1} \cup V_{2} \cup V_{1,2}$ or $v \in V_{0}$. If $v \in V_{0}$, then v has a neighbor in $V_{1,2}$ or v has a neighbor in V_{1} and a neighbor in V_{2}. It is clear that $g=\left(V_{0}-N[v], V_{1} \cup\left(N[v]-\left(V_{2} \cup V_{1,2}\right)\right), V_{2}, V_{1,2}\right)$ is a maximal 2-rainbow dominating function on G and hence $\gamma_{m r}(G) \leq \gamma_{r 2}(G)+\delta(G)$. If $v \in V_{1} \cup V_{2} \cup V_{1,2}$, then the function $g=\left(V_{0}-N(v), V_{1} \cup\left(N(v) \cap V_{0}\right), V_{2}, V_{1,2}\right)$ is a maximal 2-rainbow dominating function on G and hence $\gamma_{m r}(G) \leq \gamma_{r 2}(G)+\delta(G)$.

To prove the sharpness, let G be the graph obtained from K_{n} by adding a new vertex and joining it to exactly one vertex of K_{n}. Then $\gamma_{r 2}(G)=2$ and $\gamma_{m r}(G)=3$ and the proof is complete.

Corollary 6. For any tree T of order $n \geq 2, \gamma_{m r}(T) \leq \gamma_{r 2}(T)+1$.
Next we present an upper bound for maximal 2-rainbow domination number of a graph in terms of its order and minimum degree.

Proposition 7. Let G be a connected graph of order n with $\operatorname{diam}(G) \geq 4$. Then

$$
\gamma_{m r}(G) \leq n-\delta(G)+1
$$

Proof. Consider a diametral path $P=x_{1} x_{2} \ldots x_{\operatorname{diam}(G)+1}$ in G. Then, the function $f=\left(N\left(x_{2}\right), \emptyset, V(G)-N\left[x_{2}\right]\right.$, $\left.\left\{x_{2}\right\}\right)$ is an M2RDF of G and hence $\gamma_{m r}(G) \leq \omega(f)=\left|V_{1}\right|+\left|V_{2}\right|+2\left|V_{1,2}\right|=n-\operatorname{deg}\left(x_{2}\right)+1$. Thus $\gamma_{m r}(G) \leq n-\delta(G)+1$ and the proof is complete.

Proposition 8. For any graph G,

$$
\gamma_{m r}(G) \leq 2 \gamma_{m}(G)-1 .
$$

Furthermore, this bound is sharp.

Proof. Let D be a $\gamma_{m}(G)$-set. Since D is an MDS, there is a vertex $u \in D$ not dominated by $V-D$. Define $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ by $f(u)=\{1\}, f(x)=\{1,2\}$ for $x \in D-\{u\}$ and $f(x)=\emptyset$ otherwise. It is easy to see that f is an M2RDF of G and hence $\gamma_{m r}(G) \leq 2(|D|-1)+1=2 \gamma_{m}(G)-1$.

To prove the sharpness, let G be the graph obtained from the complete K_{n} by adding a new vertex and joining it to exactly one vertex of K_{n}.

In (1) we observe that $\gamma_{r 2}(G) \leq \gamma_{m r}(G) \leq n$. In the rest of this section we characterize all extremal graphs.
Lemma 9. For a graph $G, \frac{2}{3} \gamma_{m R}(G) \leq \gamma_{m r}(G) \leq \gamma_{m R}(G)$.
Proof. If $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{m R}(G)$-function, then obviously $\left(V_{0}, V_{1}, \emptyset, V_{2}\right)$ is a M2RDF of G and hence $\gamma_{m r}(G) \leq \gamma_{m R}(G)$.

To prove the lower bound, let f be a $\gamma_{m r}(G)$-function and let $X_{i}=\{v \in V(G) \mid i \in f(v)\}$ for $i=1$, 2. We may assume that $\left|X_{1}\right| \leq\left|X_{2}\right|$. Then $\left|X_{1}\right| \leq\left(\left|X_{1}\right|+\left|X_{2}\right|\right) / 2=\gamma_{m r}(G) / 2$. Define $g: V(G) \rightarrow\{0,1,2\}$ by $g(u)=0$ if $f(u)=\emptyset, g(u)=1$ when $f(u)=\{2\}$ and $g(u)=2$ if $1 \in f(u)$. Obviously, g is a maximal Roman dominating function on G with $\omega(g) \leq 2\left|X_{1}\right|+\left|X_{2}\right| \leq \frac{3}{2} \gamma_{m r}(G)$ and the result follows.

Theorem 10. Let G be a connected graph G of order $n \geq 2$. Then $\gamma_{m r}(G)=n$ if and only if $G=K_{2}, P_{3}, C_{3}$ or $G=K_{n}$.
Proof. If $G=K_{2}, P_{3}, C_{3}$ or $G=K_{n}$, then clearly $\gamma_{m r}(G)=n$. Let $\gamma_{m r}(G)=n$. Then $\gamma_{m R}(G)=n$ by Lemma 9 . It follows from Proposition D that $G=K_{2}, P_{3}, P_{4}, C_{3}, C_{4}, C_{5}$ or $G=K_{n}-M$, where M is a matching of G. Since $\gamma_{m r}(G) \leq n-1$ for $G=P_{4}, C_{4}, C_{5}$ or $G=K_{n}-M$ where M is a nonempty matching of G, we deduce that $G=K_{2}, P_{3}, C_{3}$ or $G=K_{n}$ and the proof is complete.

Theorem 11. Let G be a connected graph of order at least 3. Then $\gamma_{m r}(G)=\gamma_{r 2}(G)$ if and only if G has a non-cut vertex u such that
(a) $\gamma_{r 2}(G-u)=\gamma_{r 2}(G)-1$,
(b) $G-u$ has a $\gamma_{r 2}(G-u)$-function f such that assigns 1 to all neighbors of u in G.

Proof. If (a) and (b) hold, then we can extend $\gamma_{r 2}(G-u)$-function f to a 2 RDF of G by defining $f(u)=1$. Clearly, f is an M2RDF of G and so $\gamma_{m r}(G) \leq \gamma_{r 2}(G-u)+1=\gamma_{r 2}(G)$. Thus $\gamma_{m r}(G)=\gamma_{r 2}(G)$.

Conversely, let $\gamma_{m r}(G)=\gamma_{r 2}(G)$. Assume $f=\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ is a $\gamma_{m r}(G)$-function such that $\left|V_{0}\right|$ is maximum. Let V_{A} be the set of vertices which are not dominated by V_{0}. Since V_{0} dominates $V_{0} \cup V_{1,2}$, we have $V_{A} \subseteq V_{1} \cup V_{2}$. If $V_{A} \cap V_{2} \neq \emptyset$, then the function $g=\left(V_{0}, V_{1} \cup\left(V_{A} \cap V_{2}\right), V_{2} \backslash V_{A}, V_{1,2}\right)$ is a $\gamma_{m r}(G)$-function such that $\left|V_{0}\right|$ is maximum and all vertices not dominated by V_{0} belong to V_{1}. Thus we may assume, without loss of generality, that $V_{A} \subseteq V_{1}$. If some vertex $v \in V_{A}$, has a neighbor in $V_{1,2}$ or has a neighbor in V_{1} and a neighbor in V_{2}, then $\left(V_{0} \cup\{v\}, V_{1}-\{v\}, V_{2}, V_{1,2}\right)$ is a 2 RDF of G of weight less than $\omega(f)=\gamma_{r 2}(G)$ which is a contradiction. Hence, $N\left(V_{A}\right) \subset V_{1} \cup V_{2}$ and $N(v) \subseteq V_{1}$ or $N(v) \subseteq V_{2}$ for each $v \in V_{A}$.
Claim 1. $G\left[V_{A}\right]$ is a complete graph.
Assume to the contrary that $u v \notin E(G)$ for some $u, v \in V_{A}$. Since G is connected and $N(u) \subseteq V_{1}$ or $N(u) \subseteq V_{2}$, we may assume that u has a neighbor w in V_{1}. Then $g=\left(V_{0} \cup\{u\}, V_{1}-\{u, w\}, V_{2}, V_{1,2} \cup\{w\}\right)$ is a $\gamma_{m r}(G)$-function which contradicts the choice of f.
Claim 2. $\left|V_{A}\right|=1$.
Let $\left|V_{A}\right| \geq 2$. If $\left|V_{A}\right| \geq 3$ then for each $u \in V_{A}$, the function $\left(V_{0} \cup\left(V_{A}-\{u\}\right), V_{1}-V_{A}, V_{2}, V_{1,2} \cup\{u\}\right)$ is a 2 RDF of G of weight less than $\omega(f)=\gamma_{r 2}(G)$ which is a contradiction. Suppose $\left|V_{A}\right|=2$ and $V_{A}=\{u, v\}$. Since G is connected of order at least 3 , we may assume $\operatorname{deg}(u) \geq 2$. Since $N(u) \subseteq V_{1}$, the function $\left(V_{0} \cup\{u\}, V_{1}-\{u, v\}, V_{2} \cup\{v\}, V_{1,2}\right)$ is a 2 RDF of G of weight less than $\omega(f)=\gamma_{r 2}(G)$, a contradiction again.

Let $V_{A}=\{u\}$. We may assume $N(u) \subseteq V_{1}$. We claim that u is not a cut vertex. Suppose to the contrary that u is a cut vertex and $G_{1}, G_{2}, \ldots, G_{k}$ are the components of $G-u$. Obviously, $\left.f\right|_{V\left(G_{i}\right)}$ if a 2RDF of G_{i} for each i. Define g by $g(u)=\emptyset, g(x)=\{1\}$ if $x \in V\left(G_{1}\right) \cap V_{2}, g(x)=\{2\}$ if $x \in V\left(G_{1}\right) \cap V_{1}$ and $g(x)=f(x)$ otherwise. It is easy to see that g is a 2RDF of G of weight less than $\omega(f)=\gamma_{r 2}(G)$, a contradiction.

Thus u is a non-cut vertex. Obviously, the function f, restricted to $G-u$, is a 2 RDF of G of weight $\gamma_{r 2}(G)-1$ which assigns 1 to all neighbors of u in G. Hence $\gamma_{r 2}(G-u) \leq \gamma_{r 2}(G)-1$. It remains to prove that $\gamma_{r 2}(G-u)=\gamma_{r 2}(G)-1$. Suppose to the contrary that $\gamma_{r 2}(G-u)<\gamma_{r 2}(G)-1$ and let h be a $\gamma_{r 2}(G-u)$-function. Then we can extend h to a 2RDF of G by defining $h(u)=1$ implying that $\gamma_{r 2}(G) \leq \gamma_{r 2}(G-u)+1<\gamma_{r 2}(G)$ which is a contradiction. This completes the proof.

4. Special values of maximal 2-rainbow domination numbers

In this section we determine the exact value of maximal 2-rainbow domination number of some classes of graphs including paths, cycles and complete multipartite graphs.

Proposition 12. For $m \geq n \geq 2, \gamma_{m r}\left(K_{m, n}\right)=n+1$ and $\gamma_{m r}\left(K_{m, 1}\right)=3$ for $m \geq 2$.
Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ be the bipartite sets of $K_{m, n}$. First let $n=1$. It is easy to see that the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(x_{1}\right)=\{1,2\}, f\left(y_{1}\right)=\{1\}$ and $f(x)=\emptyset$ otherwise, is an M2RDF of weight 3 and hence $\gamma_{m r}\left(K_{m, 1}\right)=3$ by Proposition 4 .

If $n=2$, then clearly the function f defined by $f\left(x_{1}\right)=\{2\}, f\left(x_{2}\right)=f\left(y_{1}\right)=\{1\}$ and $f(x)=\emptyset$ otherwise, is an M2RDF of G of weight 3 and it follows from Proposition 4 that $\gamma_{m r}\left(K_{2, m}\right)=3$.

Finally, let $n \geq 3$. First note that the function f defined by $f\left(x_{1}\right)=\{2\}, f\left(x_{2}\right)=\cdots=f\left(x_{n}\right)=f\left(y_{1}\right)=\{1\}$ and $f(x)=\emptyset$ otherwise, is an M2RDF of G of weight $n+1$ and hence $\gamma_{m r}\left(K_{m, n}\right) \leq n+1$. Now let $f=\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ be a $\gamma_{m r}\left(K_{m, n}\right)$-function. If $V_{0} \cap X \neq \emptyset$ and $V_{0} \cap Y \neq \emptyset$, then clearly V_{0} is a dominating set of $K_{m, n}$, a contradiction. Let $V_{0} \cap X=\emptyset$. If $V_{0} \cap Y=\emptyset$, then $\omega(f) \geq m+n>n+1$ which is a contradiction. Hence $V_{0} \cap Y \neq \emptyset$ that implies f assigns 1 and 2 to some vertices in X. If $Y=V_{0}$, then V_{0} is a dominating set, a contradiction. Thus $V_{0} \subset Y$ implying that $\gamma_{m r}\left(K_{m, n}\right)=\omega(f) \geq|X|+1=n+1$. Similarly, if $V_{0} \cap Y=\emptyset$, then $\gamma_{m r}\left(K_{m, n}\right) \geq m+1$. In each case, $\gamma_{m r}\left(K_{m, n}\right) \geq n+1$ and hence $\gamma_{m r}\left(K_{m, n}\right)=n+1$. This completes the proof.

Proposition 13. Let $G=K_{m_{1}, m_{2}, \ldots, m_{n}}$ be the complete n-partite graph with $m_{n} \geq 2$ and $m_{1} \leq m_{2} \leq \cdots \leq m_{n}$. Then $\gamma_{m r}(G)=1+\sum_{i=1}^{n-1} m_{i}$.
Proof. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are the partite sets of the complete n-partite graph G with $\left|X_{i}\right|=m_{i}$, and let $X_{i}=\left\{x_{1}^{i}, x_{2}^{i}, \ldots, x_{m_{i}}^{i}\right\}$. It is easy to see that the function f defined by $f\left(x_{1}^{n}\right)=\{1\}, f\left(x_{2}^{n}\right)=\cdots=f\left(x_{m_{n}}^{n}\right)=\emptyset$ and $f(x)=\{2\}$ otherwise, is an M2RDF of G and so $\gamma_{m r}(G) \leq 1+\sum_{i=1}^{n-1} m_{i}$.

Now let $f=\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ be a $\gamma_{m r}(G)$-function. If $V_{0} \cap X_{i} \neq \emptyset$ and $V_{0} \cap X_{j} \neq \emptyset$ for some $i \neq j$, then V_{0} is a dominating set of G which is a contradiction. As in the proof of Proposition 12, one can verify that $\gamma_{m r}(G) \geq 1+\sum_{i=1}^{n-1} m_{i}$ and hence $\gamma_{m r}(G)=1+\sum_{i=1}^{n-1} m_{i}$.

Proposition 14. For $n \geq 2, \gamma_{m r}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$ if n is even and $\gamma_{m r}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil+1$ if n is odd.
Proof. First let n is even. Then the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(v_{n}\right)=\{1\}, f\left(v_{4 i+1}\right)=\{1\}$ for $0 \leq i \leq\left\lceil\frac{n}{4}\right\rceil-1, f\left(v_{4 i+3}\right)=\{2\}$ for $0 \leq i \leq\left\lceil\frac{n-2}{4}\right\rceil-1$ and $f(x)=\emptyset$ otherwise, is an M2RDF of P_{n} of weight $\left\lceil\frac{n+1}{2}\right\rceil$ and hence $\gamma_{m r}\left(P_{n}\right) \leq\left\lceil\frac{n+1}{2}\right\rceil$. Since $\gamma_{m r}\left(P_{n}\right) \geq \gamma_{r 2}\left(P_{n}\right)$, we deduce from Proposition A that $\gamma_{m r}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.

Now let n be odd. Then the functions f and g defined by

$$
\begin{aligned}
& f\left(v_{4 i+1}\right)=\{1\} \quad \text { for } 0 \leq i \leq\left\lceil\frac{n}{4}\right\rceil-1, \quad f\left(v_{4 i+3}\right)=\{2\} \quad \text { for } 0 \leq i \leq\left\lceil\frac{n-2}{4}\right\rceil-1, \quad \text { and } \\
& f(x)=\emptyset \text { otherwise }
\end{aligned}
$$

and

$$
g\left(v_{4 i+1}\right)=\{2\} \quad \text { for } 0 \leq i \leq\left\lceil\frac{n}{4}\right\rceil-1, \quad g\left(v_{4 i+3}\right)=\{1\} \quad \text { for } 0 \leq i \leq\left\lceil\frac{n-2}{4}\right\rceil-1, \quad \text { and }
$$

$$
g(x)=\emptyset \text { otherwise }
$$

are the unique $\gamma_{r 2}\left(P_{n}\right)$-functions. Obviously, f and g are not M2RDF on P_{n}. Thus $\gamma_{m r}\left(P_{n}\right) \geq \gamma_{r 2}\left(P_{n}\right)+1$. On the other hand, the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f\left(v_{n-1}\right)=1, f\left(v_{4 i+1}\right)=\{1\}$ for $0 \leq i \leq\left\lceil\frac{n}{4}\right\rceil-1$,
$f\left(v_{4 i+3}\right)=\{2\}$ for $0 \leq i \leq\left\lceil\frac{n-2}{4}\right\rceil-1$, and $f(x)=\emptyset$ otherwise, is an M2RDF of weight $\left\lceil\frac{n+1}{2}\right\rceil+1$ and hence $\gamma_{m r}\left(P_{n}\right) \leq\left\lceil\frac{n+1}{2}\right\rceil+1$. Thus $\gamma_{m r}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil+1$ for odd n and the proof is complete.

Proposition 15. For $n \geq 3, \gamma_{m r}\left(C_{n}\right)=\gamma_{r 2}\left(C_{n}\right)$ if $n \equiv 2(\bmod 4)$ and $\gamma_{m r}\left(C_{n}\right)=\gamma_{r 2}\left(C_{n}\right)+1$ if $n \equiv 0,1,3(\bmod 4)$.
Proof. Let $C_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a cycle on n vertices. If $n \equiv 2(\bmod 4)$, then the function $f: V\left(C_{n}\right) \rightarrow$ $\mathcal{P}(\{1,2\})$ defined by $f\left(v_{n}\right)=1, f\left(v_{4 i+1}\right)=\{1\}$ for $0 \leq i \leq\left\lceil\frac{n}{4}\right\rceil-1, f\left(v_{4 i+3}\right)=\{2\}$ for $0 \leq i \leq\left\lceil\frac{n-2}{4}\right\rceil-$ 1 , and $f(x)=\emptyset$ otherwise, is obviously an M2RDF of C_{n} of weight $\gamma_{r 2}\left(C_{n}\right)$ implying that $\gamma_{m r}\left(C_{n}\right)=\gamma_{r 2}\left(C_{n}\right)$.

Now let $n \not \equiv 2(\bmod 4)$. It is easy to see that $\gamma_{r 2}\left(C_{n}-v_{i}\right)=\gamma_{r 2}\left(P_{n-1}\right)=\left\lceil\frac{n}{2}\right\rceil=\gamma_{r 2}\left(C_{n}\right)$ for each i. It follows from Theorem 11 and (1) that $\gamma_{m r}\left(C_{n}\right) \geq \gamma_{r 2}\left(C_{n}\right)+1$.

If $n \equiv 0(\bmod 4)$, then define $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ by $f\left(v_{n}\right)=\{1\}, f\left(v_{4 i+1}\right)=\{1\}$ for $0 \leq i \leq \frac{n}{4}-1$, $f\left(v_{4 i+3}\right)=\{2\}$ for $0 \leq i \leq \frac{n}{4}-1$ and $f(x)=\emptyset$ otherwise. Obviously, f is an M2RDF of G of weight $\gamma_{r 2}\left(C_{n}\right)+1$ which implies that $\gamma_{m r}\left(C_{n}\right)=\gamma_{r 2}\left(C_{n}\right)+1$.

If $n \equiv 1(\bmod 4)$, then define $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ by $f\left(v_{2}\right)=\{1\}, f\left(v_{4 i+1}\right)=\{1\}$ for $0 \leq i \leq\left\lceil\frac{n}{4}\right\rceil-1$, $f\left(v_{4 i+3}\right)=\{2\}$ for $0 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor-1$ and $f(x)=\emptyset$ otherwise. Clearly, f is an M2RDF of G of weight $\gamma_{r 2}\left(C_{n}\right)+1$ which implies that $\gamma_{m r}\left(C_{n}\right)=\gamma_{r 2}\left(C_{n}\right)+1$.

Let $n \equiv 3(\bmod 4)$. Define $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ by $f\left(v_{2}\right)=\{1\}, f\left(v_{4 i+1}\right)=\{1\}$ for $0 \leq i \leq\left\lceil\frac{n}{4}\right\rceil-1$, $f\left(v_{4 i+3}\right)=\{2\}$ for $0 \leq i \leq\left\lceil\frac{n}{4}\right\rceil-1$ and $f(x)=\emptyset$ otherwise. It is easy to see that f is an M2RDF of G of weight $\gamma_{r 2}\left(C_{n}\right)+1$ and so $\gamma_{m r}\left(C_{n}\right)=\gamma_{r 2}\left(C_{n}\right)+1$.

References

[1] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[2] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[3] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc., 2000.
[4] V.R. Kulli, B. Janakiram, The maximal domination number of a graph, in: Graph Theory Notes of New York, vol. XXXIII, New York Academy of Sciences, 1997, pp. 11-13.
[5] V.R. Kulli, B. Janakiram, A note on maximal domination number of a graph, in: Graph Theory Notes of New York, vol. XXXIII, New York Academy of Sciences XXXIII, 2000, pp. 35-36.
[6] V.R. Kulli, Theory of Domination in Graphs, Vishwa International Publications, 2010.
[7] C.S. ReVelle, K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585-594.
[8] I. Stewart, Defend the Roman empire, Sci. Amer. 281 (1999) 136-139.
[9] H. Abdollahzadeh Ahangar, A. Bahremandpour, S.M. Sheikholeslami, N.D. Soner, Z. Tahmasbzadehbaee, L. Volkmann, Maximal Roman domination numbers in graphs, Util. Math. (2016) in press.
[10] H. Abdollahzadeh Ahangar, M. Chellali, D. Kuziak, V. Samodivkin, On maximal Roman domination in graphs, Int. J. Comput. Math. 93 (7) (2016) 1093-1102.
[11] B. Brešar, M.A. Henning, D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 213-225.
[12] B. Brešar, T.K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394-2400.
[13] G.J. Chang, J. Wu, X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010) 8-12.
[14] T. Chunling, L. Xiaohui, Y. Yuansheng, L. Meiqin, 2-rainbow domination of generalized Petersen graphs P (n, 2), Discrete Appl. Math. 157 (2009) 1932-1937.
[15] N. Dehgardi, S.M. Sheikholeslami, L. Volkmann, The k-rainbow bondage number of a graph, Discrete Appl. Math. 174 (2014) 133-139.
[16] N. Dehgardi, S.M. Sheikholeslami, L. Volkmann, The rainbow domination subdivision numbers of graphs, Mat. Vesnik 67 (2015) $102-114$.
[17] M. Falahat, S.M. Sheikholeslami, L. Volkmann, New bounds on the rainbow domination subdivision number, Filomat 28 (2014) 615-622.
[18] D. Meierling, S.M. Sheikholeslami, L. Volkmann, Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph, Appl. Math. Lett. 24 (2011) 1758-1761.
[19] S.M. Sheikholeslami, L. Volkmann, The k-rainbow domatic number of a graph, Discuss. Math. Graph Theory 32 (2012) 129-140.
[20] G. Xu, 2-rainbow domination of generalized Petersen graphs $P(n, 3)$, Discrete Appl. Math. 157 (2009) 2570-2573.
[21] C.D. Godsil, B.D. McKay, A new graph product and its spectrum, Bull. Aust. Math. Soc. 18 (1) (1978) 21-28.

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: ha.ahangar@nit.ac.ir (H. Abdollahzadeh Ahangar), j-amjadi@azaruniv.edu (J. Amjadi), s.m.sheikholeslami@azaruniv.edu (S.M. Sheikholeslami), dorota.kuziak@urv.cat (D. Kuziak).

