



Available online at www.sciencedirect.com ScienceDirect

AKCE International Journal of Graphs and Combinatorics

AKCE International Journal of Graphs and Combinatorics 13 (2016) 157-164

www.elsevier.com/locate/akcej

# Maximal 2-rainbow domination number of a graph

H. Abdollahzadeh Ahangar<sup>a,\*</sup>, J. Amjadi<sup>b</sup>, S.M. Sheikholeslami<sup>b</sup>, D. Kuziak<sup>c</sup>

<sup>a</sup> Department of Basic Science, Babol University of Technology, Babol, Iran

<sup>b</sup> Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Islamic Republic of Iran <sup>c</sup> Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain

> Received 31 August 2013; accepted 14 April 2016 Available online 1 July 2016

#### Abstract

A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set  $\{1, 2\}$  such that for any vertex  $v \in V(G)$  with  $f(v) = \emptyset$  the condition  $\bigcup_{u \in N(v)} f(u) = \{1, 2\}$  is fulfilled, where N(v) is the open neighborhood of v. A maximal 2-rainbow dominating function on a graph G is a 2-rainbow dominating function f such that the set  $\{w \in V(G) | f(w) = \emptyset\}$  is not a dominating set of G. The weight of a maximal 2RDF f is the value  $\omega(f) = \sum_{v \in V} |f(v)|$ . The maximal 2-rainbow domination number of a graph G, denoted by  $\gamma_{mr}(G)$ , is the minimum weight of a maximal 2RDF of G. In this paper we initiate the study of maximal 2-rainbow domination number in graphs. We first show that the decision problem is NP-complete even when restricted to bipartite or chordal graphs, and then, we present some sharp bounds for  $\gamma_{mr}(G)$ . In addition, we determine the maximal rainbow domination number of some graphs.

© 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Maximal domination; Rainbow domination; Maximal rainbow domination

# 1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to [1-3]. In this paper, *G* is a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V| of *G* is denoted by n = n(G). For every vertex  $v \in V$ , the open neighborhood N(v) is the set  $\{u \in V(G) \mid uv \in E(G)\}$  and the closed neighborhood of v is the set  $N[v] = N(v) \cup \{v\}$ . The degree of a vertex  $v \in V$  is d(v) = |N(v)|. The minimum and maximum degree of a graph *G* are denoted by  $\delta = \delta(G)$  and  $\Delta = \Delta(G)$ , respectively. A graph *G* is *k*-regular if d(v) = k for each vertex v of *G*. The open neighborhood of a set  $S \subseteq V$  is the set  $N(S) = \bigcup_{v \in S} N(v)$ , and the closed neighborhood of *S* is the set  $N[S] = N(S) \cup S$ . A tree is an acyclic connected graph. The complement of a graph *G* is denoted by  $\overline{G}$ . We write  $K_n$  for the complete graph of order n,  $P_n$  for a path of order n and  $C_n$  for a cycle of length n.

http://dx.doi.org/10.1016/j.akcej.2016.06.009

Peer review under responsibility of Kalasalingam University.

<sup>\*</sup> Corresponding author.

*E-mail addresses*: ha.ahangar@nit.ac.ir (H. Abdollahzadeh Ahangar), j-amjadi@azaruniv.edu (J. Amjadi), s.m.sheikholeslami@azaruniv.edu (S.M. Sheikholeslami), dorota.kuziak@urv.cat (D. Kuziak).

<sup>0972-8600/© 2016</sup> Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

A subset S of vertices of G is a *dominating set* if N[S] = V. The *domination number*  $\gamma(G)$  is the minimum cardinality of a dominating set of G. A dominating set D is said to be a *maximal dominating set* (MDS) if V - D is not a dominating set of G. The *maximal domination number*  $\gamma_m(G)$  is the minimum cardinality of a maximal dominating set of G. The definition of the maximal domination was given by Kulli and Janakiram [4]. For more information on maximal domination we refer the reader to [5,6].

A Roman dominating function (RDF) on a graph G = (V, E) is defined in [7,8] as a function  $f : V \longrightarrow \{0, 1, 2\}$ satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of an RDF f is the value  $\omega(f) = \sum_{v \in V} f(v)$ . A Roman dominating function  $f : V \longrightarrow \{0, 1, 2\}$  can be represented by the ordered partition  $(V_0, V_1, V_2)$  (or  $(V_0^f, V_1^f, V_2^f)$  to refer f) of V, where  $V_i = \{v \in V \mid f(v) = i\}$ . In this representation, its weight is  $\omega(f) = |V_1| + 2|V_2|$ . A maximal Roman dominating function (MRDF) on a graph G is a Roman dominating function  $f = (V_0, V_1, V_2)$  such that  $V_0$  is not a dominating set of G. The maximal Roman domination number of a graph G, denoted by  $\gamma_{mR}(G)$ , equals the minimum weight of an MRDF on G. A  $\gamma_{mR}(G)$ function is a maximal Roman dominating function of G with weight  $\gamma_{mR}(G)$ . The maximal Roman domination was introduced by Ahangar et al. in [9] and has been studied in [10].

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set  $\{1, 2, ..., k\}$  such that for any vertex  $v \in V(G)$  with  $f(v) = \emptyset$  the condition  $\bigcup_{u \in N(v)} f(u) = \{1, 2, ..., k\}$  is fulfilled. The *weight* of a kRDF f is the value  $\omega(f) = \sum_{v \in V} |f(v)|$ . The k-rainbow domination number of a graph G, denoted by  $\gamma_{rk}(G)$ , is the minimum weight of a kRDF of G. A  $\gamma_{rk}(G)$ -function is a k-rainbow dominating function of G with weight  $\gamma_{rk}(G)$ . Note that  $\gamma_{r1}(G)$  is the classical domination number  $\gamma(G)$ . The k-rainbow domination number was introduced by Brešar, Henning, and Rall [11] and has been studied by several authors [12–20].

A 2-rainbow dominating function  $f: V \longrightarrow \mathcal{P}(\{1, 2\})$  can be represented by the ordered partition  $(V_0, V_1, V_2, V_{1,2})$  (or  $(V_0^f, V_1^f, V_2^f, V_{1,2}^f)$  to refer f) of V, where  $V_0 = \{v \in V \mid f(v) = \emptyset\}$ ,  $V_1 = \{v \in V \mid f(v) = \{1\}\}$ ,  $V_2 = \{v \in V \mid f(v) = \{2\}\}$ ,  $V_{1,2} = \{v \in V \mid f(v) = \{1, 2\}\}$ . In this representation, its weight is  $\omega(f) = |V_1| + |V_2| + 2|V_{1,2}|$ .

A maximal 2-rainbow dominating function (M2RDF) on a graph G is a 2-rainbow dominating function  $f = (V_0, V_1, V_2, V_{1,2})$  such that  $V_0$  is not a dominating set of G. The maximal 2-rainbow domination number of a graph G, denoted by  $\gamma_{mr}(G)$ , equals the minimum weight of an M2RDF on G. A  $\gamma_{mr}(G)$ -function is a maximal 2-rainbow dominating function of G with weight  $\gamma_{mr}(G)$ . As  $f = (\emptyset, V(G), \emptyset, \emptyset)$  is a maximal 2-rainbow dominating function of G and since every maximal 2-rainbow dominating function is a 2-rainbow dominating function, we have

$$\gamma_{r2}(G) \le \gamma_{mr}(G) \le n. \tag{1}$$

Since  $V_1 \cup V_2 \cup V_{1,2}$  is a maximal dominating set when  $f = (V_0, V_1, V_2, V_{1,2})$  is an M2RDF, and since assigning  $\{1, 2\}$  to the vertices of a maximal dominating set yields an M2RDF, we observe that

$$\gamma_m(G) \le \gamma_{mr}(G) \le 2\gamma_m(G). \tag{2}$$

We note that maximal 2-rainbow domination number differs significantly from 2-rainbow domination number. For example, for  $n \ge 2$ ,  $\gamma_{r2}(K_n) = 2$  and  $\gamma_{mr}(K_n) = n$ .

Our purpose in this paper is to initiate the study of maximal 2-rainbow domination number in graphs. We first show that the decision problem is NP-complete even when restricted to bipartite or chordal graphs, and then we study basic properties and bounds for the maximal 2-rainbow domination number of a graph. In addition, we determine the maximal 2-rainbow domination number of some classes of graphs.

We make use of the following results in this paper.

**Proposition A** ([12]). For  $n \ge 2$ ,  $\gamma_{r2}(P_n) = \left\lceil \frac{n+1}{2} \right\rceil$ .

**Proposition B** ([12]). For  $n \ge 3$ ,  $\gamma_{r2}(C_n) = \lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{4} \rceil - \lfloor \frac{n}{4} \rfloor$ .

**Proposition C** ([9]). Let G be a connected graph of order  $n \ge 3$ . Then  $\gamma_m(G) = n - 1$  if and only if  $G = P_4$  or  $G = K_n - M$  where M is a nonempty matching.

**Proposition D** ([9]). Let G be a connected graph G of order  $n \ge 2$ . Then  $\gamma_{mR}(G) = n$  if and only if  $G = K_2, P_3, P_4, C_3, C_4, C_5$  or  $G = K_n - M$ , where M is a matching of G.

**Observation 1.** For  $n \ge 1$ ,  $\gamma_{mr}(K_n) = \gamma_{mr}(\overline{K_n}) = n$ .

**Proof.** Obviously,  $\gamma_{mr}(\overline{K_n}) = n$ . Let  $f = (V_0, V_1, V_2, V_{1,2})$  be a  $\gamma_{mr}(K_n)$ -function. As every vertex of  $K_n$  dominates all vertices, we must have  $V_0 = \emptyset$  and hence  $\gamma_{mr}(K_n) = |V_1| + |V_2| + 2|V_{1,2}| \ge |V_1| + |V_2| + |V_{1,2}| = n$ . By (1) we have  $\gamma_{mr}(K_n) = n$ .

**Observation 2.** For  $n \ge 4$  and any non-empty matching M of  $K_n$ ,  $\gamma_{mr}(K_n - M) = n - 1$ .

**Proof.** Let  $G = K_n - M$ . It follows from (2) and Proposition C that  $\gamma_{mr}(G) \ge n - 1$ . Let  $uv \in M$  and let  $w \in V(G) - \{u, v\}$ . Then the function  $f = (\{u\}, V(G) - \{u, w\}, \{w\}, \emptyset)$  is obviously a maximal rainbow dominating function of G of weight n - 1 and hence  $\gamma_{mr}(G) = n - 1$ . This completes the proof.

### 2. Complexity of maximal 2-rainbow domination problem

In this section we consider the following decision problem regarding the maximal 2-rainbow domination number of a graph.

### MAXIMAL 2-RAINBOW DOMINATION PROBLEM (M2RD-PROBLEM):

**INSTANCE:** A graph G and a positive integer  $k \leq |V(G)|$ .

## **QUESTION:** Is $\gamma_{mr}(G) \leq k$ ?

To prove that the decision problem for maximal 2-rainbow domination is NP-complete, we use a polynomial time reduction from 2-rainbow domination problem.

### 2-RAINBOW DOMINATION PROBLEM (2RD-PROBLEM):

**INSTANCE:** A graph G and a positive integer  $k \leq |V(G)|$ .

# **QUESTION:** Is $\gamma_{r2}(G) \leq k$ ?

п

As shown in [12], the 2-rainbow domination problem remains NP-complete even when restricted to bipartite or chordal graphs.

In order to present our results we need to introduce some additional terminology and notation. Given a graph *G* of order *n* and a graph *H* with root vertex *v*, the rooted product graph  $G \circ_v H$  is defined as the graph obtained from *G* and *H* by taking one copy of *G* and *n* copies of *H* and identifying the vertex  $u_i$  of *G* with the vertex *v* in the *i*th copy of *H* for every  $1 \le i \le n$  [21]. More formally, assuming that  $V(G) = \{u_1, \ldots, u_n\}$  and that the root vertex of *H* is *v*, we define the rooted product graph  $G \circ_v H = (V, E)$ , where  $V = V(G) \times V(H)$  and

$$E = \bigcup_{i=1} \{ (u_i, b)(u_i, y) : by \in E(H) \} \cup \{ (u_i, v)(u_j, v) : u_i u_j \in E(G) \}.$$

Fig. 1 shows an example of the rooted product of graphs.

### **Theorem 3.** M2RD-PROBLEM problem is NP-complete, even when restricted to bipartite or chordal graphs.

**Proof.** Let G be a graph of order n. M2RD-PROBLEM is a member of NP, since for a given function  $f = (V_0, V_1, V_2, V_{1,2})$  of G such that  $\omega(f) \leq n$ , we can check in polynomial time that f is a 2-rainbow dominating function of G and that  $V_0$  does not dominate G.

Now, we consider a rooted product graph  $G \circ_{v_1} H$ , where G is a graph of order n with vertex set  $V(G) = \{u_1, u_2, \dots, u_n\}$  and H is a graph with root  $v_1$  constructed as follows. We begin with a cycle  $C_4$  with set of vertices  $V(C_4) = \{v_1, v_2, v_3, v_4\}$  and set of edges  $E(C_4) = \{v_1v_2, v_2v_3, v_3v_4, v_4v_1\}$ . To obtain the graph H, we add three vertices  $\{x_1, x_2, x_3\}$ , and edges  $v_3x_1, v_3x_2$  and  $v_3x_3$ . Notice that  $G \circ_{v_1} H$  can be done in polynomial time.



Fig. 1. Rooted product  $C_3 \circ_v P_4$ , where v has degree two in  $P_4$ .

Let g be a  $\gamma_{r2}(G)$ -function and consider the function  $f = (V_0, V_1, V_2, V_{1,2})$  on  $G \circ_{v_1} H$  such that:

- $f(u_i, v_1) = g(u_i)$  for  $i \in \{1, 2, ..., n\}$ ;
- $f(u_i, v_2) = f(u_i, v_4) = \emptyset$  for  $i \in \{1, 2, ..., n\}$ ;
- $f(u_i, v_3) = \{1, 2\}$  for  $i \in \{1, 2, ..., n\}$ ;
- $f(u_1, x_1) = \{1\}$  and  $f(u_i, x_1) = \emptyset$  for  $i \in \{2, 3, \dots, n\}$ ;
- $f(u_i, x_2) = f(u_i, x_3) = \emptyset$  for  $i \in \{1, 2, ..., n\}$ .

Clearly f is a maximal 2-rainbow dominating function of  $G \circ_{v_1} H$ , since  $(u_1, x_1)$  is not dominated by  $V_0$ . Thus  $\gamma_{mr}(G \circ_{v_1} H) \leq 2n + 1 + \gamma_{2r}(G)$ .

On the other hand, let f' be a  $\gamma_{r2}(G \circ_{v_1} H)$ -function. From the structure of  $G \circ_{v_1} H$ , for any  $i \in \{1, ..., n\}$  we deduce that either  $f'(u_i, v_3) = \{1, 2\}$  or we have three vertices  $(u_i, x_1), (u_i, x_2)$ , and  $(u_i, x_3)$  to which f' does not assign  $\emptyset$ . Thus,

$$V_{1} \cap \bigcup_{i=1}^{n} \{(u_{i}, v_{3}), (u_{i}, x_{1}), (u_{i}, x_{2}), (u_{i}, x_{3})\} + \left| V_{2} \cap \bigcup_{i=1}^{n} \{(u_{i}, v_{3}), (u_{i}, x_{1}), (u_{i}, x_{2}), (u_{i}, x_{3})\} + 2 \left| V_{1,2} \cap \bigcup_{i=1}^{n} \{(u_{i}, v_{3}), (u_{i}, x_{1}), (u_{i}, x_{2}), (u_{i}, x_{3})\} \right| \ge 2n.$$

Moreover, for all  $i \in \{1, ..., n\}$  the vertex  $(u_i, v_1)$  has to be 2-rainbowly dominated. So, it follows that

$$V_1 \cap \bigcup_{i=1}^n \{(u_i, v_1)\} + \left| V_2 \cap \bigcup_{i=1}^n \{(u_i, v_1)\} \right| + 2 \left| V_{1,2} \cap \bigcup_{i=1}^n \{(u_i, v_1)\} \right| \ge \gamma_{r2}(G).$$

Thus  $\gamma_{r2}(G \circ_{v_1} H) \ge 2n + \gamma_{r2}(G)$ . According to the structure of  $G \circ_{v_1} H$ , once more, it is straightforward to observe that every 2-rainbow dominated function  $h = (V'_0, V'_1, V'_2, V'_{1,2})$  of  $G \circ_{v_1} H$ , such that  $\omega(h) = 2n + \gamma_{r2}(G)$ , has the following form.

- $h(u_i, x_1) = h(u_i, x_2) = h(u_i, x_3) = \emptyset$  for  $i \in \{1, 2, ..., n\}$ ;
- $h(u_i, v_3) = \{1, 2\}$  for  $i \in \{1, 2, ..., n\}$ ;
- $h(u_i, v_2) = h(u_i, v_4) = \emptyset$  for  $i \in \{1, 2, ..., n\}$ ;
- $h(u_i, v_1) = g'(u_i)$  for  $i \in \{1, 2, \dots, n\}$ , where g' is any  $\gamma_{r_2}(G)$ -function.

Hence,  $V'_0$  is a dominating set of  $G \circ_{v_1} H$ , and, as a consequence,  $\gamma_{mr}(G \circ_{v_1} H) > \gamma_{r2}(G \circ_{v_1} H) = 2n + \gamma_{r2}(G)$ . So, the equality  $\gamma_{mr}(G \circ_{v_1} H) = 2n + \gamma_{r2}(G) + 1$  is obtained.

If *G* is a bipartite, then  $G \circ_{v_1} H$  is a bipartite. If *G* is a chordal graph, then we construct a graph  $G \circ_{v_1} H'$ , where  $V(G \circ_{v_1} H') = V(G \circ_{v_1} H)$  and  $E(G \circ_{v_1} H') = E(G \circ_{v_1} H) \cup \bigcup_{i=1}^{n} (u_i, v_2)(u_i, v_4)$ . Clearly  $G \circ_{v_1} H'$  is chordal. By an analogous procedure, the equality  $\gamma_{mr}(G \circ_{v_1} H) = 2n + \gamma_{r2}(G) + 1$  is derived. Therefore, for j = 2n + 1 + k, we infer that  $\gamma_{r2}(G) \leq k$  if and only if  $\gamma_{mr}(G) \leq j$ , which completes the reduction of the M2RD-PROBLEM from the 2RD-PROBLEM.

### 3. Basic properties and bounds

In this section we study properties of maximal 2-rainbow domination and present some sharp bounds.

**Proposition 4.** For any nonempty graph G of order  $n \ge 4$ ,  $\gamma_{mr}(G) \ge 3$  with equality if and only if  $\Delta(G) = n - 1$ and  $\delta(G) = 1$  or  $\Delta(G) = n - 2$  and  $\delta(G) = 0$  or there are two vertices v, w such that  $N(v) \cap N(w)$  has a subset of size n - 3 which is not a dominating set of G.

**Proof.** By (1),  $\gamma_{mr}(G) \ge \gamma_{r2}(G) \ge 2$ . If  $\gamma_{mr}(G) = 2$  and  $f = (V_0, V_1, V_2, V_{1,2})$  is a  $\gamma_{mr}(G)$ -function, then clearly either  $|V_{1,2}| = 0$ ,  $|V_1| = |V_2| = 1$  and  $|V_0| = n - 2$  or  $|V_{1,2}| = 1$ ,  $|V_1| = |V_2| = 0$  and  $|V_0| = n - 1$ . It is easy to see that in each case,  $V_0$  is a dominating set of G, a contradiction. Hence  $\gamma_{mr}(G) \ge 3$ .

If  $\Delta(G) = n - 2$  and  $\delta(G) = 0$ , then let v be a vertex of degree n - 2 and suppose that u is an isolated vertex. Clearly, the function  $f = (V(G) - \{u, v\}, \{u\}, \emptyset, \{v\})$  is an M2RDF of G and hence  $\gamma_{mr}(G) = 3$ . If  $\Delta(G) = n - 1$  and  $\delta(G) = 1$  then as above, we have  $\gamma_{mr}(G) = 3$ . Suppose now that there are two vertices v, w such that  $N(v) \cap N(w)$  has a subset D of size n - 3 which is not a dominating set of G. If u is not dominated by D, then obviously  $f = (D, \{u, v\}, \{w\}, \emptyset)$  is an M2RDF of G and hence  $\gamma_{mr}(G) = 3$ .

Conversely, let  $\gamma_{mr}(G) = 3$ . Assume that  $f = (V_0, V_1, V_2, V_{1,2})$  is a  $\gamma_{mr}(G)$ -function. Then, we may assume, without loss of generality, that  $|V_1| = |V_{1,2}| = 1$  or  $|V_1| = 2$  and  $|V_2| = 1$ . First let  $|V_1| = |V_{1,2}| = 1$ . Let  $V_1 = \{u\}$  and  $V_{1,2} = \{v\}$ . Since v must dominate all vertices in  $V_0$ , we have  $\Delta(G) \ge \deg(v) \ge n - 2$ . Since f is an M2RDF of G, u has no neighbor in  $V_0$ , otherwise  $V_0$  dominates V(G) which is a contradiction. If  $uv \in E(G)$ , then  $\Delta(G) = n - 1$  and  $\delta(G) = 1$ , and if  $uv \notin E(G)$ , then  $\Delta(G) = n - 2$  and  $\delta(G) = 0$ . Now let  $|V_1| = 2$  and  $|V_2| = 1$ . Let  $V_1 = \{u, v\}$  and  $V_2 = \{w\}$ . Clearly, each vertex in  $V_0$  is adjacent to v. Since f is an M2RDF of G, we may assume u has no neighbor in  $V_0$ . It follows that each vertex in  $V_0$  is adjacent to v. Thus,  $V_0$  is a subset of  $N(v) \cap N(w)$  of size n - 3 which does not dominate V(G). This completes the proof.

**Proposition 5.** For any graph G without isolated vertex,

 $\gamma_{mr}(G) \leq \gamma_{r2}(G) + \delta(G).$ 

Furthermore, this bound is sharp.

**Proof.** Let  $f = (V_0, V_1, V_2, V_{1,2})$  be a  $\gamma_{r2}(G)$ -function and let v be a vertex of minimum degree. Then either  $v \in V_1 \cup V_2 \cup V_{1,2}$  or  $v \in V_0$ . If  $v \in V_0$ , then v has a neighbor in  $V_{1,2}$  or v has a neighbor in  $V_1$  and a neighbor in  $V_2$ . It is clear that  $g = (V_0 - N[v], V_1 \cup (N[v] - (V_2 \cup V_{1,2})), V_2, V_{1,2})$  is a maximal 2-rainbow dominating function on G and hence  $\gamma_{mr}(G) \leq \gamma_{r2}(G) + \delta(G)$ . If  $v \in V_1 \cup V_2 \cup V_{1,2}$ , then the function  $g = (V_0 - N(v), V_1 \cup (N(v) \cap V_0), V_2, V_{1,2})$  is a maximal 2-rainbow dominating function on G and hence  $\gamma_{mr}(G) \leq \gamma_{r2}(G) + \delta(G)$ .

To prove the sharpness, let *G* be the graph obtained from  $K_n$  by adding a new vertex and joining it to exactly one vertex of  $K_n$ . Then  $\gamma_{r2}(G) = 2$  and  $\gamma_{mr}(G) = 3$  and the proof is complete.

**Corollary 6.** For any tree T of order  $n \ge 2$ ,  $\gamma_{mr}(T) \le \gamma_{r2}(T) + 1$ .

Next we present an upper bound for maximal 2-rainbow domination number of a graph in terms of its order and minimum degree.

**Proposition 7.** Let G be a connected graph of order n with  $diam(G) \ge 4$ . Then

$$\gamma_{mr}(G) \le n - \delta(G) + 1.$$

**Proof.** Consider a diametral path  $P = x_1 x_2 \dots x_{\text{diam}(G)+1}$  in *G*. Then, the function  $f = (N(x_2), \emptyset, V(G) - N[x_2], \{x_2\})$  is an M2RDF of *G* and hence  $\gamma_{mr}(G) \leq \omega(f) = |V_1| + |V_2| + 2|V_{1,2}| = n - \deg(x_2) + 1$ . Thus  $\gamma_{mr}(G) \leq n - \delta(G) + 1$  and the proof is complete.

**Proposition 8.** For any graph G,

 $\gamma_{mr}(G) \le 2\gamma_m(G) - 1.$ 

Furthermore, this bound is sharp.

**Proof.** Let *D* be a  $\gamma_m(G)$ -set. Since *D* is an MDS, there is a vertex  $u \in D$  not dominated by V - D. Define  $f: V(G) \to \mathcal{P}(\{1, 2\})$  by  $f(u) = \{1\}, f(x) = \{1, 2\}$  for  $x \in D - \{u\}$  and  $f(x) = \emptyset$  otherwise. It is easy to see that f is an M2RDF of *G* and hence  $\gamma_{mr}(G) \le 2(|D| - 1) + 1 = 2\gamma_m(G) - 1$ .

To prove the sharpness, let *G* be the graph obtained from the complete  $K_n$  by adding a new vertex and joining it to exactly one vertex of  $K_n$ .

In (1) we observe that  $\gamma_{r2}(G) \leq \gamma_{mr}(G) \leq n$ . In the rest of this section we characterize all extremal graphs.

**Lemma 9.** For a graph G,  $\frac{2}{3}\gamma_{mR}(G) \leq \gamma_{mr}(G) \leq \gamma_{mR}(G)$ .

162

**Proof.** If  $f = (V_0, V_1, V_2)$  is a  $\gamma_{mR}(G)$ -function, then obviously  $(V_0, V_1, \emptyset, V_2)$  is a M2RDF of G and hence  $\gamma_{mr}(G) \leq \gamma_{mR}(G)$ .

To prove the lower bound, let f be a  $\gamma_{mr}(G)$ -function and let  $X_i = \{v \in V(G) \mid i \in f(v)\}$  for i = 1, 2. We may assume that  $|X_1| \leq |X_2|$ . Then  $|X_1| \leq (|X_1| + |X_2|)/2 = \gamma_{mr}(G)/2$ . Define  $g : V(G) \rightarrow \{0, 1, 2\}$  by g(u) = 0 if  $f(u) = \emptyset$ , g(u) = 1 when  $f(u) = \{2\}$  and g(u) = 2 if  $1 \in f(u)$ . Obviously, g is a maximal Roman dominating function on G with  $\omega(g) \leq 2|X_1| + |X_2| \leq \frac{3}{2}\gamma_{mr}(G)$  and the result follows.

**Theorem 10.** Let G be a connected graph G of order  $n \ge 2$ . Then  $\gamma_{mr}(G) = n$  if and only if  $G = K_2$ ,  $P_3$ ,  $C_3$  or  $G = K_n$ .

**Proof.** If  $G = K_2$ ,  $P_3$ ,  $C_3$  or  $G = K_n$ , then clearly  $\gamma_{mr}(G) = n$ . Let  $\gamma_{mr}(G) = n$ . Then  $\gamma_{mR}(G) = n$  by Lemma 9. It follows from Proposition D that  $G = K_2$ ,  $P_3$ ,  $P_4$ ,  $C_3$ ,  $C_4$ ,  $C_5$  or  $G = K_n - M$ , where M is a matching of G. Since  $\gamma_{mr}(G) \le n - 1$  for  $G = P_4$ ,  $C_4$ ,  $C_5$  or  $G = K_n - M$  where M is a nonempty matching of G, we deduce that  $G = K_2$ ,  $P_3$ ,  $C_3$  or  $G = K_n$  and the proof is complete.

**Theorem 11.** Let G be a connected graph of order at least 3. Then  $\gamma_{mr}(G) = \gamma_{r2}(G)$  if and only if G has a non-cut vertex u such that

(a) γ<sub>r2</sub>(G - u) = γ<sub>r2</sub>(G) - 1,
(b) G - u has a γ<sub>r2</sub>(G - u)-function f such that assigns 1 to all neighbors of u in G.

**Proof.** If (a) and (b) hold, then we can extend  $\gamma_{r2}(G - u)$ -function f to a 2RDF of G by defining f(u) = 1. Clearly, f is an M2RDF of G and so  $\gamma_{mr}(G) \leq \gamma_{r2}(G - u) + 1 = \gamma_{r2}(G)$ . Thus  $\gamma_{mr}(G) = \gamma_{r2}(G)$ .

Conversely, let  $\gamma_{mr}(G) = \gamma_{r2}(G)$ . Assume  $f = (V_0, V_1, V_2, V_{1,2})$  is a  $\gamma_{mr}(G)$ -function such that  $|V_0|$  is maximum. Let  $V_A$  be the set of vertices which are not dominated by  $V_0$ . Since  $V_0$  dominates  $V_0 \cup V_{1,2}$ , we have  $V_A \subseteq V_1 \cup V_2$ . If  $V_A \cap V_2 \neq \emptyset$ , then the function  $g = (V_0, V_1 \cup (V_A \cap V_2), V_2 \setminus V_A, V_{1,2})$  is a  $\gamma_{mr}(G)$ -function such that  $|V_0|$ is maximum and all vertices not dominated by  $V_0$  belong to  $V_1$ . Thus we may assume, without loss of generality, that  $V_A \subseteq V_1$ . If some vertex  $v \in V_A$ , has a neighbor in  $V_{1,2}$  or has a neighbor in  $V_1$  and a neighbor in  $V_2$ , then  $(V_0 \cup \{v\}, V_1 - \{v\}, V_2, V_{1,2})$  is a 2RDF of G of weight less than  $\omega(f) = \gamma_{r2}(G)$  which is a contradiction. Hence,  $N(V_A) \subset V_1 \cup V_2$  and  $N(v) \subseteq V_1$  or  $N(v) \subseteq V_2$  for each  $v \in V_A$ .

**Claim 1.**  $G[V_A]$  is a complete graph.

Assume to the contrary that  $uv \notin E(G)$  for some  $u, v \in V_A$ . Since G is connected and  $N(u) \subseteq V_1$  or  $N(u) \subseteq V_2$ , we may assume that u has a neighbor w in  $V_1$ . Then  $g = (V_0 \cup \{u\}, V_1 - \{u, w\}, V_2, V_{1,2} \cup \{w\})$  is a  $\gamma_{mr}(G)$ -function which contradicts the choice of f.

# **Claim 2.** $|V_A| = 1$ .

Let  $|V_A| \ge 2$ . If  $|V_A| \ge 3$  then for each  $u \in V_A$ , the function  $(V_0 \cup (V_A - \{u\}), V_1 - V_A, V_2, V_{1,2} \cup \{u\})$  is a 2RDF of *G* of weight less than  $\omega(f) = \gamma_{r2}(G)$  which is a contradiction. Suppose  $|V_A| = 2$  and  $V_A = \{u, v\}$ . Since *G* is connected of order at least 3, we may assume deg $(u) \ge 2$ . Since  $N(u) \subseteq V_1$ , the function  $(V_0 \cup \{u\}, V_1 - \{u, v\}, V_2 \cup \{v\}, V_{1,2})$  is a 2RDF of *G* of weight less than  $\omega(f) = \gamma_{r2}(G)$ , a contradiction again.

Let  $V_A = \{u\}$ . We may assume  $N(u) \subseteq V_1$ . We claim that u is not a cut vertex. Suppose to the contrary that u is a cut vertex and  $G_1, G_2, \ldots, G_k$  are the components of G - u. Obviously,  $f|_{V(G_i)}$  if a 2RDF of  $G_i$  for each i. Define g by  $g(u) = \emptyset$ ,  $g(x) = \{1\}$  if  $x \in V(G_1) \cap V_2$ ,  $g(x) = \{2\}$  if  $x \in V(G_1) \cap V_1$  and g(x) = f(x) otherwise. It is easy to see that g is a 2RDF of G of weight less than  $\omega(f) = \gamma_{r_2}(G)$ , a contradiction.

Thus *u* is a non-cut vertex. Obviously, the function *f*, restricted to G-u, is a 2RDF of *G* of weight  $\gamma_{r2}(G)-1$  which assigns 1 to all neighbors of *u* in *G*. Hence  $\gamma_{r2}(G-u) \leq \gamma_{r2}(G)-1$ . It remains to prove that  $\gamma_{r2}(G-u) = \gamma_{r2}(G)-1$ . Suppose to the contrary that  $\gamma_{r2}(G-u) < \gamma_{r2}(G)-1$  and let *h* be a  $\gamma_{r2}(G-u)$ -function. Then we can extend *h* to a 2RDF of *G* by defining h(u) = 1 implying that  $\gamma_{r2}(G) \leq \gamma_{r2}(G-u) + 1 < \gamma_{r2}(G)$  which is a contradiction. This completes the proof.

### 4. Special values of maximal 2-rainbow domination numbers

In this section we determine the exact value of maximal 2-rainbow domination number of some classes of graphs including paths, cycles and complete multipartite graphs.

**Proposition 12.** For  $m \ge n \ge 2$ ,  $\gamma_{mr}(K_{m,n}) = n + 1$  and  $\gamma_{mr}(K_{m,1}) = 3$  for  $m \ge 2$ .

**Proof.** Let  $X = \{x_1, x_2, ..., x_n\}$  and  $Y = \{y_1, y_2, ..., y_m\}$  be the bipartite sets of  $K_{m,n}$ . First let n = 1. It is easy to see that the function  $f : V(G) \rightarrow \mathcal{P}(\{1, 2\})$  defined by  $f(x_1) = \{1, 2\}, f(y_1) = \{1\}$  and  $f(x) = \emptyset$  otherwise, is an M2RDF of weight 3 and hence  $\gamma_{mr}(K_{m,1}) = 3$  by Proposition 4.

If n = 2, then clearly the function f defined by  $f(x_1) = \{2\}$ ,  $f(x_2) = f(y_1) = \{1\}$  and  $f(x) = \emptyset$  otherwise, is an M2RDF of G of weight 3 and it follows from Proposition 4 that  $\gamma_{mr}(K_{2,m}) = 3$ .

Finally, let  $n \ge 3$ . First note that the function f defined by  $f(x_1) = \{2\}$ ,  $f(x_2) = \cdots = f(x_n) = f(y_1) = \{1\}$  and  $f(x) = \emptyset$  otherwise, is an M2RDF of G of weight n+1 and hence  $\gamma_{mr}(K_{m,n}) \le n+1$ . Now let  $f = (V_0, V_1, V_2, V_{1,2})$  be a  $\gamma_{mr}(K_{m,n})$ -function. If  $V_0 \cap X \ne \emptyset$  and  $V_0 \cap Y \ne \emptyset$ , then clearly  $V_0$  is a dominating set of  $K_{m,n}$ , a contradiction. Let  $V_0 \cap X = \emptyset$ . If  $V_0 \cap Y = \emptyset$ , then  $\omega(f) \ge m + n > n + 1$  which is a contradiction. Hence  $V_0 \cap Y \ne \emptyset$  that implies f assigns 1 and 2 to some vertices in X. If  $Y = V_0$ , then  $V_0$  is a dominating set, a contradiction. Thus  $V_0 \subset Y$  implying that  $\gamma_{mr}(K_{m,n}) = \omega(f) \ge |X| + 1 = n + 1$ . Similarly, if  $V_0 \cap Y = \emptyset$ , then  $\gamma_{mr}(K_{m,n}) \ge m + 1$ . In each case,  $\gamma_{mr}(K_{m,n}) \ge n + 1$  and hence  $\gamma_{mr}(K_{m,n}) = n + 1$ . This completes the proof.

**Proposition 13.** Let  $G = K_{m_1,m_2,...,m_n}$  be the complete *n*-partite graph with  $m_n \ge 2$  and  $m_1 \le m_2 \le \cdots \le m_n$ . Then  $\gamma_{mr}(G) = 1 + \sum_{i=1}^{n-1} m_i$ .

**Proof.** Suppose  $X_1, X_2, \ldots, X_n$  are the partite sets of the complete *n*-partite graph *G* with  $|X_i| = m_i$ , and let  $X_i = \{x_1^i, x_2^i, \ldots, x_{m_i}^i\}$ . It is easy to see that the function *f* defined by  $f(x_1^n) = \{1\}, f(x_2^n) = \cdots = f(x_{m_n}^n) = \emptyset$  and  $f(x) = \{2\}$  otherwise, is an M2RDF of *G* and so  $\gamma_{mr}(G) \le 1 + \sum_{i=1}^{n-1} m_i$ .

Now let  $f = (V_0, V_1, V_2, V_{1,2})$  be a  $\gamma_{mr}(G)$ -function. If  $V_0 \cap X_i \neq \emptyset$  and  $V_0 \cap X_j \neq \emptyset$  for some  $i \neq j$ , then  $V_0$  is a dominating set of G which is a contradiction. As in the proof of Proposition 12, one can verify that  $\gamma_{mr}(G) \ge 1 + \sum_{i=1}^{n-1} m_i$  and hence  $\gamma_{mr}(G) = 1 + \sum_{i=1}^{n-1} m_i$ .

**Proposition 14.** For  $n \ge 2$ ,  $\gamma_{mr}(P_n) = \lceil \frac{n+1}{2} \rceil$  if n is even and  $\gamma_{mr}(P_n) = \lceil \frac{n+1}{2} \rceil + 1$  if n is odd.

**Proof.** First let *n* is even. Then the function  $f : V(G) \to \mathcal{P}(\{1, 2\})$  defined by  $f(v_n) = \{1\}$ ,  $f(v_{4i+1}) = \{1\}$  for  $0 \le i \le \lceil \frac{n}{4} \rceil - 1$ ,  $f(v_{4i+3}) = \{2\}$  for  $0 \le i \le \lceil \frac{n-2}{4} \rceil - 1$  and  $f(x) = \emptyset$  otherwise, is an M2RDF of  $P_n$  of weight  $\lceil \frac{n+1}{2} \rceil$  and hence  $\gamma_{mr}(P_n) \le \lceil \frac{n+1}{2} \rceil$ . Since  $\gamma_{mr}(P_n) \ge \gamma_{r2}(P_n)$ , we deduce from Proposition A that  $\gamma_{mr}(P_n) = \lceil \frac{n+1}{2} \rceil$ . Now let *n* be odd. Then the functions *f* and *g* defined by

 $f(v_{4i+1}) = \{1\}$  for  $0 \le i \le \left\lceil \frac{n}{4} \right\rceil - 1$ ,  $f(v_{4i+3}) = \{2\}$  for  $0 \le i \le \left\lceil \frac{n-2}{4} \right\rceil - 1$ , and

$$f(x) = \emptyset$$
 otherwise

and

$$g(v_{4i+1}) = \{2\} \text{ for } 0 \le i \le \left\lceil \frac{n}{4} \right\rceil - 1, \qquad g(v_{4i+3}) = \{1\} \text{ for } 0 \le i \le \left\lceil \frac{n-2}{4} \right\rceil - 1, \text{ and}$$
$$g(x) = \emptyset \text{ otherwise}$$

are the unique  $\gamma_{r2}(P_n)$ -functions. Obviously, f and g are not M2RDF on  $P_n$ . Thus  $\gamma_{mr}(P_n) \ge \gamma_{r2}(P_n) + 1$ . On the other hand, the function  $f: V(G) \to \mathcal{P}(\{1, 2\})$  defined by  $f(v_{n-1}) = 1$ ,  $f(v_{4i+1}) = \{1\}$  for  $0 \le i \le \lceil \frac{n}{4} \rceil - 1$ ,

 $f(v_{4i+3}) = \{2\}$  for  $0 \le i \le \lceil \frac{n-2}{4} \rceil - 1$ , and  $f(x) = \emptyset$  otherwise, is an M2RDF of weight  $\lceil \frac{n+1}{2} \rceil + 1$  and hence  $\gamma_{mr}(P_n) \le \lceil \frac{n+1}{2} \rceil + 1$ . Thus  $\gamma_{mr}(P_n) = \lceil \frac{n+1}{2} \rceil + 1$  for odd *n* and the proof is complete.

**Proposition 15.** For  $n \ge 3$ ,  $\gamma_{mr}(C_n) = \gamma_{r2}(C_n)$  if  $n \equiv 2 \pmod{4}$  and  $\gamma_{mr}(C_n) = \gamma_{r2}(C_n) + 1$  if  $n \equiv 0, 1, 3 \pmod{4}$ .

**Proof.** Let  $C_n = (v_1, v_2, ..., v_n)$  be a cycle on *n* vertices. If  $n \equiv 2 \pmod{4}$ , then the function  $f : V(C_n) \rightarrow \mathcal{P}(\{1, 2\})$  defined by  $f(v_n) = 1$ ,  $f(v_{4i+1}) = \{1\}$  for  $0 \le i \le \lceil \frac{n}{4} \rceil - 1$ ,  $f(v_{4i+3}) = \{2\}$  for  $0 \le i \le \lceil \frac{n-2}{4} \rceil - 1$ , and  $f(x) = \emptyset$  otherwise, is obviously an M2RDF of  $C_n$  of weight  $\gamma_{r2}(C_n)$  implying that  $\gamma_{mr}(C_n) = \gamma_{r2}(C_n)$ .

Now let  $n \neq 2 \pmod{4}$ . It is easy to see that  $\gamma_{r2}(C_n - v_i) = \gamma_{r2}(P_{n-1}) = \lceil \frac{n}{2} \rceil = \gamma_{r2}(C_n)$  for each *i*. It follows from Theorem 11 and (1) that  $\gamma_{mr}(C_n) \geq \gamma_{r2}(C_n) + 1$ .

If  $n \equiv 0 \pmod{4}$ , then define  $f : V(G) \rightarrow \mathcal{P}(\{1, 2\})$  by  $f(v_n) = \{1\}$ ,  $f(v_{4i+1}) = \{1\}$  for  $0 \le i \le \frac{n}{4} - 1$ ,  $f(v_{4i+3}) = \{2\}$  for  $0 \le i \le \frac{n}{4} - 1$  and  $f(x) = \emptyset$  otherwise. Obviously, f is an M2RDF of G of weight  $\gamma_{r2}(C_n) + 1$  which implies that  $\gamma_{mr}(C_n) = \gamma_{r2}(C_n) + 1$ .

If  $n \equiv 1 \pmod{4}$ , then define  $f: V(G) \to \mathcal{P}(\{1, 2\})$  by  $f(v_2) = \{1\}$ ,  $f(v_{4i+1}) = \{1\}$  for  $0 \le i \le \lfloor \frac{n}{4} \rfloor - 1$ ,  $f(v_{4i+3}) = \{2\}$  for  $0 \le i \le \lfloor \frac{n}{4} \rfloor - 1$  and  $f(x) = \emptyset$  otherwise. Clearly, f is an M2RDF of G of weight  $\gamma_{r2}(C_n) + 1$  which implies that  $\gamma_{mr}(C_n) = \gamma_{r2}(C_n) + 1$ .

Let  $n \equiv 3 \pmod{4}$ . Define  $f : V(G) \to \mathcal{P}(\{1, 2\})$  by  $f(v_2) = \{1\}$ ,  $f(v_{4i+1}) = \{1\}$  for  $0 \le i \le \lceil \frac{n}{4} \rceil - 1$ ,  $f(v_{4i+3}) = \{2\}$  for  $0 \le i \le \lceil \frac{n}{4} \rceil - 1$  and  $f(x) = \emptyset$  otherwise. It is easy to see that f is an M2RDF of G of weight  $\gamma_{r2}(C_n) + 1$  and so  $\gamma_{mr}(C_n) = \gamma_{r2}(C_n) + 1$ .

### References

- [1] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [2] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
- [3] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc., 2000.
- [4] V.R. Kulli, B. Janakiram, The maximal domination number of a graph, in: Graph Theory Notes of New York, vol. XXXIII, New York Academy of Sciences, 1997, pp. 11–13.
- [5] V.R. Kulli, B. Janakiram, A note on maximal domination number of a graph, in: Graph Theory Notes of New York, vol. XXXIII, New York Academy of Sciences XXXIII, 2000, pp. 35–36.
- [6] V.R. Kulli, Theory of Domination in Graphs, Vishwa International Publications, 2010.
- [7] C.S. ReVelle, K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594.
- [8] I. Stewart, Defend the Roman empire, Sci. Amer. 281 (1999) 136–139.
- [9] H. Abdollahzadeh Ahangar, A. Bahremandpour, S.M. Sheikholeslami, N.D. Soner, Z. Tahmasbzadehbaee, L. Volkmann, Maximal Roman domination numbers in graphs, Util. Math. (2016) in press.
- [10] H. Abdollahzadeh Ahangar, M. Chellali, D. Kuziak, V. Samodivkin, On maximal Roman domination in graphs, Int. J. Comput. Math. 93 (7) (2016) 1093–1102.
- [11] B. Brešar, M.A. Henning, D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 213–225.
- [12] B. Brešar, T.K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394–2400.
- [13] G.J. Chang, J. Wu, X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010) 8–12.
- [14] T. Chunling, L. Xiaohui, Y. Yuansheng, L. Meiqin, 2-rainbow domination of generalized Petersen graphs P(n, 2), Discrete Appl. Math. 157 (2009) 1932–1937.
- [15] N. Dehgardi, S.M. Sheikholeslami, L. Volkmann, The k-rainbow bondage number of a graph, Discrete Appl. Math. 174 (2014) 133–139.
- [16] N. Dehgardi, S.M. Sheikholeslami, L. Volkmann, The rainbow domination subdivision numbers of graphs, Mat. Vesnik 67 (2015) 102–114.
- [17] M. Falahat, S.M. Sheikholeslami, L. Volkmann, New bounds on the rainbow domination subdivision number, Filomat 28 (2014) 615–622.
- [18] D. Meierling, S.M. Sheikholeslami, L. Volkmann, Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph, Appl. Math. Lett. 24 (2011) 1758–1761.
- [19] S.M. Sheikholeslami, L. Volkmann, The k-rainbow domatic number of a graph, Discuss. Math. Graph Theory 32 (2012) 129–140.
- [20] G. Xu, 2-rainbow domination of generalized Petersen graphs P(n, 3), Discrete Appl. Math. 157 (2009) 2570–2573.
- [21] C.D. Godsil, B.D. McKay, A new graph product and its spectrum, Bull. Aust. Math. Soc. 18 (1) (1978) 21–28.