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A model for the computation of quantum billiards
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Abstract

An expansion method for the stationary Schrödinger equation of a three-dimensional quantum billiard system
whose boundary is defined by an arbitrary analytic function is introduced. The method is based on a coordinate
transformation and an expansion in spherical harmonics. The effectiveness is verified and confirmed by a numerical
example, which is a billiard system depending on a parameter.
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1. Introduction

Investigation of quantum mechanical systems whose classical analogs are chaotic has received con-
siderable interest recently. In 1981 Bohigas, Giannoni and Schmit [3] conjectured that the statistical
spectral properties of quantum systems with regular and chaotic classical counterparts are quite differ-
ent. Although not rigorously proved, this conjecture has later been reinforced by a number of numerical
results [5,13,15]. Significant progress was achieved by studying lower-dimensional systems, including
one-dimensional time-dependent and two-dimensional conservative systems. Due to their simplicity,
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the two-dimensional billiard systems were investigated thoroughly [2,8,16,21]. Of particular interest are
billiard families depending on a parameter, the shape of which changes as the parameter varies in some
given range [7,14].

The quantum billiard problem is modeled by the stationary Schrödinger equation for a particle with
zero potential, where the wavefunction disappears on the boundary of the billiard. Such a problem is
known to be exactly solvable only in very few cases in which boundaries are constant in some coordinate
system. However, chaotic motion usually occurs in billiards with odd shapes whose boundary is not
constant. As a result, the mathematical model describing the corresponding quantum billiard system does
not admit an exact analytical solution. On the other hand, in order to perform a reliable statistical spectral
analysis one needs long energy sequences. Unfortunately, finding approximate solutions of the problem
within a reasonable degree of accuracy still remains a very difficult task. Moreover, despite the plentiful
literature about the numerical treatment of the quantum billiard problem in two dimensions, results on
the three-dimensional case are quite few [9–12].

The aim of this study is to propose a quite general three-dimensional quantum billiard model and to
develop a method for its numerical implementation. Thus, the paper is organized as follows: in Section 2
the quantum billiard model and its mapping into the unit ball are introduced. An eigenfunction expansion
which reduces the transformed Schrödinger equation to a system of ordinary differential equations (ODEs)
is presented in Section 3. In Section 4, the resulting system of ODEs is analyzed and converted to a
generalized matrix eigenvalue problem. The method is then applied to a specimen example in Section 5,
where the statistical analysis of the calculated spectra is also performed. The last section is devoted to
concluding remarks.

2. The quantum billiard model

We introduce a three-dimensional axisymmetric quantum billiard model whose boundary is defined by
an analytic function. To be specific, the billiard is described by

D = {(r, �, �) | 0�r �f (�), 0����, 0���2�}, D ⊂ R3, (2.1)

where (r, �, �) are the spherical coordinates. The function f (�) can be identified as a shape function
since it determines the shape of the billiard under consideration. We assume that it is an arbitrary analytic
function of �. A similar shape function has been previously used to determine the Stokes flow past an
arbitrary body [18,19]. Note that, the billiard D in (2.1) may be obtained by rotating a two-dimensional
region

B = {(r, �) | 0�r �f (�), 0����} (2.2)

in the yz-plane about the z-axis (see Fig. 1).
In the spherical coordinates, the Schrödinger equation for a particle moving freely inside such a billiard

D can be written as{
�2

�r2 + 2

r

�

�r
+ 1

r2

�2

��2 + cot �

r2

�

��
+ 1

r2 sin2 �

�2

��2 + E

}
�(r, �, �) = 0, (2.3)

where the wavefunction � disappears on the boundary, i.e.

�(r, �, �) = 0 on �D (2.4)
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Fig. 1. Three-dimensional axisymmetric billiard.

and, in addition, satisfies the square integrability condition∫ ∫
D

∫
|�|2 dV < ∞ (2.5)

arising from the fact that � should belong to the Hilbert space of square integrable functions on D ⊂ R3.
The mathematical and computational treatment of the problem requires an explicit specification of the

boundary of the billiard. It is worth mentioning that the analyticity of f (�) suggests proposing a shape
function of the form

f (�) = 1 +
∞∑

k=1

�k cosk�, �k ∈ R, (2.6)

where �k may be regarded as the shape parameters. It is shown that the condition

1�f (�) < ∞ (2.7)

must hold for all � ∈ [0, �] in order to have a bounded geometrical region, and that the particular case, in
which �k =0 for all k ∈ Z+, corresponds to the well-known exactly solvable spherical billiard. By means
of the flexible parameters �k in (2.6), it is possible to construct various billiards. In fact, even very simple
choices of f (�) like finite sums containing a few terms can generate several shapes.

In practice, we deal with a truncated series representation of the shape function, say F(�),

F(�) = 1 +
K∑

k=1

�k�
k , (2.8)

which is a polynomial of degree K in the new variable �,

� = cos �, � ∈ [−1, 1] (2.9)

provided that K is large enough. Furthermore, if we make use of the unusual substitution

� = r

F (�)
, � ∈ [0, 1] (2.10)
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billiard (2.1) with an arbitrary shape is reduced to a unit ball

Du = {(�, �, �) | 0���1, −1���1, 0���2�} (2.11)

in the (�, �, �) coordinate system.
Unfortunately, this standardization has been accomplished at the cost of transforming the Schrödinger

equation (2.3) into a quite complicated form{
G1(�)

�2

��2 + [2G1(�) + G2(�) − G3(�)]1

�

�

��
− 1

��
(1 − �2)G2(�)

�2

����

+G0(�)

[
1

�2 T + EG0(�)

]}
�(�, �, �) = 0, (2.12)

where T stands for the second-order differential operator

T = (1 − �2)
�2

��2 − 2�
�

��
− 1

1 − �2

�2

��2 (2.13)

and Gi(�) denote the following polynomials of degree 2K in �:

G0(�) := [F(�)]2, G1(�) := [F(�)]2 + (1 − �2)[F ′(�)]2, G2(�) := 2�F ′(�)F (�),

G3(�) := (1 − �2)F ′′(�)F (�) (2.14)

introduced for the sake of brevity. As shown, the shape effects are now characterized completely by
the partial differential equation (PDE) in (2.12), which cannot be treated by the method of separation
of variables.

3. Eigenfunction expansion

In the new coordinates, the square integrability condition (2.5) takes the form∫ 2�

0

∫ 1

−1

∫ 1

0
|�(�, �, �)|2[F(�)]3�2 d� d� d� < ∞, (3.1)

where the shape function appears as a weight. However, on using (2.7) we have∫ 2�

0

∫ 1

−1

∫ 1

0
|�(�, �, �)|2�2 d� d� d� < ∞ (3.2)

implying the boundedness of the integral∫ 2�

0

∫ 1

−1
|�(�, �, �)|2 d� d� < ∞ (3.3)

as well, for all fixed � ∈ (0, 1]. In what follows, (3.3) suggests that �(�, �, �) can also be regarded as
a square integrable function over the region [−1, 1] × [0, 2�] with the unit weight for a fixed �. In fact,
such a region is nothing but a sphere of radius �.
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Consider now the differential operatorT in (2.13). The eigenvalue problem associated with this operator
generates the orthogonal sequence of the spherical harmonics

Yn
m(�, �) = P |n|

m (�)ein�, 0�m�∞, −m�n�m (3.4)

corresponding to the eigenvalues −m(m+1), in which P n
m stands for the associated Legendre functions. It

is well known that the spherical harmonics form an orthogonal basis for the space of the square integrable
functions over a sphere [17]. Therefore, we may propose an expansion in spherical harmonics for the
transformed wavefunction �(�, �, �) in the form

�(�, �, �) =
∞∑

m=0

m∑
n=0

[�n
m(�) cos n� + 	n

m(�) sin n�]P n
m(�), (3.5)

where �n
m and 	n

m are the Fourier coefficients, for which the superscript n is used merely as a notation in
accordance with that of P n

m so that it does not mean the power. In fact, n may be regarded as an azimuthal
quantum number. It is important to note that the axial symmetry of the region allows the separation of
(3.5) into two parts containing even and odd eigenfunctions in �. Without loss of generality, we then
consider only the even eigenfunctions. More precisely, we deal with the expansion

�e(�, �, �) =
∞∑

m=0

m∑
n=0

�n
m(�)P n

m(�) cos n� (3.6)

which converges to the function �e(�, �, �) in the mean, for every fixed � ∈ (0, 1]. Substituting �e into
(2.12), reordering the double sums as

∑∞
n=0

∑∞
m=n and using the orthogonality of the cosine functions

over � ∈ (0, 2�), we obtain

∞∑
m=n

{
G1P

n
m�2 d2

d�2 +
[
(2G1 − mG2 − G3)P

n
m + (m − n + 1)

G2

�
P n

m+1

]
�

d

d�

− m(m + 1)G0P
n
m + En�2G2

0P
n
m

}
�n

m(�) = 0 (3.7)

for n�0, where we have dropped the �-dependence of the Gi and P n
j for simplicity. Observe that the

differential–difference relation of the associated Legendre functions [1]

(1 − �2)
d

d�
P n

m(�) = (m + 1)�P n
m(�) − (m − n + 1)P n

m+1(�) (3.8)

has been used to eliminate of the terms proportional to the first derivative of P n
m(�).

An eigenfunction expansion of type (3.6) makes it possible to reduce the PDE to a system of ODEs in
the Fourier coefficients �n

m(�) [6,20]. To this end, first note that the polynomials Gi(�) in (3.7) may be
written as

Gi(�) =
2K∑
k=0

gi,k�
k, i = 0, 1, 2, 3, (3.9)
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where the coefficients gi,k can easily be calculated in terms of the shape parameters �k . Likewise, [G0(�)]2

is of the form

[G0(�)]2 =
4K∑
k=0

g4,k�
k , (3.10)

where g4,k are certain combinations of the g0,k . Thus, it is shown that the �-dependency of Eq. (3.7)
solely comprises the products �kP n

j (�) with j = m and m + 1. Then we expand the �kP n
j (�) into a series

of associated Legendre functions

�kP n
j (�) =

∞∑
l=n


n
ljkP

n
l (�) (3.11)

in which the coefficients 
n
ljk ,


n
ljk =

∫ 1

−1
�kP n

l (�)P n
j (�) d�, 
n

ljk = 
n
jlk (3.12)

can be evaluated recursively by means of the functional equation [1]

�P n
m(�) = m − n + 1

2m + 1
P n

m+1 + m + n

2m + 1
P n

m−1· (3.13)

Therefore, it suffices to compute only the 
n
lj 0 from the orthogonality relation of the associated Legendre

functions, i.e.


n
lj0 =

∫ 1

−1
P n

j (�)P n
l (�) d� = 2

2j + 1

(j + n)!
(j − n)! �lj , (3.14)

where �lj is the Kronecker delta.
Next we define the matrices An := [an

lm], Bn := [bn
lm], Cn := [cn

lm] and Dn := [dn
lm] having the

general elements

an
lm =

2K∑
k=0

g1,k

n
lmk , (3.15a)

bn
lm =

2K∑
k=0

(2g1,k − mg2,k − g3,k)

n
lmk + (m − n + 1)

2K−1∑
k=0

g2,k+1

n
l(m+1)k , (3.15b)

cn
lm =

2K∑
k=0

g0,k

n
lmk (3.15c)

and

dn
lm =

4K∑
k=0

g4,k

n
lmk , (3.15d)
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respectively. Once again, note that in the definition of the matrices, 
, and the eigenvalue parameter E, the
superscript n is just a notational convenience. Now substituting (3.9) and (3.10) into (3.7) and making
use of (3.11) and (3.15), it follows that

∞∑
l=n

∞∑
m=n

[
an
lm�2 d2

d�2 + bn
lm�

d

d�
− m(m + 1)cn

lm + En�2dn
lm

]
�n

m(�)P n
l (�) = 0 (3.16)

implying that

∞∑
m=n

[
an
lm�2 d2

d�2 + bn
lm�

d

d�
− m(m + 1)cn

lm + En�2dn
lm

]
�n

m(�) = 0 (3.17)

for l =n, n+1, . . . , since the set {P n
n (�), P n

n+1(�), P
n
n+2(�), . . .} is linearly independent for each fixed n.

Hence we arrive at an infinite system of coupled ODEs for the determination of the Fourier coefficients
�n

m(�). In matrix-vector form, system (3.17) is given by(
An�2 d2

d�2 + Bn�
d

d�
+ �Cn + En�2Dn

)
�n = 0, (3.18)

where � := diag{−m(m+1)} is a diagonal matrix containing the eigenvalues of the operator T. Clearly,
�n stands for the unknown vector-valued function

�n = [
�n

n(�), �n
n+1(�), �n

n+2(�), . . .
]T (3.19)

whose entries are the Fourier coefficients.
For a complete reformulation of the problem, we need to redefine the boundary and square integrability

conditions in accordance with the vector differential equation just obtained. With expansion (3.6) the
boundary condition (2.4) is altered to

�n(1) = 0, n = 0, 1, . . . (3.20)

by the orthogonality of the spherical harmonics. Similarly, the square integrability condition (3.3)
reads as∫ 1

0

∞∑
n=0

∞∑
m=n

[�n
m(�)]2�2 d� < ∞ (3.21)

which becomes
∞∑

n=0

∫ 1

0
�2[�n(�)Q�n(�)] d� < ∞ (3.22)

on formally interchanging the first summation and integration, where the dot denotes the usual scalar
product of two vectors. So we may impose the boundedness of the integral∫ 1

0
�2‖�n(�)‖2 d� < ∞ (3.23)

for each n = 0, 1, . . . as a necessary condition for (3.22) to hold.



234 İ.M. Erhan, H. Taşeli / Journal of Computational and Applied Mathematics 194 (2006) 227–244

Amongst the axisymmetric billiards defined by the general shape function F(�), the sphere is the only
exactly solvable model. Therefore, in practice, we seek approximate solutions of the system in (3.17)
over finite-dimensional subspaces, for l = n, n + 1, . . . , N and n = 0, 1, . . . , N , where N is a sufficiently
large positive integer. An important point to bear in mind is that the dimension of the N-truncated system
is not the same for each n. Indeed, it decreases as n increases from 0 to N, i.e. we have N + 1 equations
when n = 0, N equations when n = 1, and finally a single equation when n = N .

4. Analysis of the ODE system and reduction to a matrix eigenvalue problem

A careful inspection of the coefficient matrices defined by (3.15) shows that they possess special
structures. These structures become apparent when the integral forms of the general entries of the matrices
in (3.15) are introduced. Actually, the matrices may be written as

an
lm =

∫ 1

−1
G1(�)P

n
l (�)P n

m(�) d�, (4.1)

bn
lm = 2an

lm +
∫ 1

−1

{
[G2(�) − G3(�)]P n

m(�) − 1

�
(1 − �2)G2(�)[P n

m(�)]′
}

P n
l (�) d�, (4.2)

cn
lm =

∫ 1

−1
G0(�)P

n
l (�)P n

m(�) d� (4.3)

and

dn
lm =

∫ 1

−1
[G0(�)]2P n

l (�)P n
m(�) d� (4.4)

with l, m = n, n + 1, . . . for a fixed n. Now we can prove the statements below.

Proposition 1. The matrices An, Cn and Dn are symmetric positive definite.

Proof. The symmetry of the matrices follows from their definitions. Let u=[un, un+1, . . . ]T be a nonzero
vector and consider the quadratic forms QA, QC and QD

QA = uTAnu, QC = uTCnu, QD = uTDnu (4.5)

associated with the matrices An, Cn and Dn, respectively. Using the integral representations of the matrix
elements in (4.1), (4.3) and (4.4) we find that

QA =
∫ 1

−1
h(�)G1(�) d�, QC =

∫ 1

−1
h(�)G0(�) d�, QD =

∫ 1

−1
h(�)[G0(�)]2 d�, (4.6)

where we have defined the function h(�) as

h(�) =
[ ∞∑

m=n

umP n
m(�)

]2

, (4.7)
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which is evidently positive valued. Moreover, recalling that G0(�) and G1(�) take on positive values
for � ∈ (−1, 1), we conclude that the quadratic forms in (4.6) are all positive implying the positive
definiteness of the matrices An, Cn and Dn and, hence, the proof is complete. �

Proposition 2. The matrix Bn can be written as the sum of matrices

Bn = 2An + Bn,1 + Bn,2 (4.8)

such that Bn,1 and Bn,2 are symmetric positive semidefinite and skew symmetric, respectively.

Proof. First we perceive the identity

d

d�

[
1

2�
(1 − �2)G2(�)

]
= G3(�) − G2(�) + G1(�) − G0(�) (4.9)

valid between the polynomials Gi(�) in (2.14). Then using this identity and adding and subtracting the
integral

∫ 1
−1[G1(�) − G0(�)]P n

l (�)P n
m(�) d� on the right-hand side of (4.2), we have

bn
lm = 2an

lm + b
n,1
lm + b

n,2
lm , (4.10)

where b
n,1
lm and b

n,2
lm stand for

b
n,1
lm =

∫ 1

−1
[G1(�) − G0(�)]P n

l (�)P n
m(�) d� (4.11)

and

b
n,2
lm = −

∫ 1

−1

{[
1

2�
(1 − �2)G2(�)

]′
P n

m(�) + 1

�
(1 − �2)G2(�)[P n

m(�)]′
}

P n
l (�) d� (4.12)

which can be regarded, respectively, as the general entries of the matrices Bn,1 and Bn,2. It is clear that
the term 2an

lm in (4.10) generates the matrix 2An. On the other hand, the positive semidefiniteness of Bn,1

can be shown easily by the method of the proof of Proposition 1. Indeed

uTBn,1u�0, (4.13)

where the equality holds only when F(�) = 1, corresponding to the exactly solvable case of a spherical
billiard for which G0(�) = G1(�) and G2(�) = 0 for all �.

Now setting U = P n
l (�)P n

m(�) and dV = [(1 − �2)G2(�)/(2�)]′d� and applying integration by parts to

evaluate the first term of integral (4.12), we see that the entries b
n,2
lm are expressible as

b
n,2
lm =

∫ 1

−1

1

2�
(1 − �2)G2(�)W(P n

m, P n
l )(�) d�, (4.14)

where W(f, g)(x) = f (x)g′(x) − f ′(x)g(x) is the Wronsky determinant of the functions f and g. Since
W(f, g) = −W(g, f ) the matrix Bn,2 is skew symmetric, which completes the proof. �
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The positive definiteness of An suggests the Cholesky decomposition An = LLT, where L is a lower
triangular matrix with positive diagonal entries. Hence, we may introduce a new vector-valued function
Zn(�) = [Zn

n(�), Zn
n+1(�), . . . ]T of the form

Zn(�) = LT�n(�) (4.15)

and transform (3.18) to

LnZn(�) = En�2TnZn(�), Ln := −I�2 d2

d�2 − Qn�
d

d�
+ Rn, (4.16)

where the matrix coefficients Qn := [qn
lm], Rn := [rn

lm] and Tn := [tnlm] in the differential operator
Ln := [Ln

lm] are defined by

Qn = L−1BnL−T, Rn = −L−1�CnL−T, Tn = L−1DnL−T. (4.17)

Note that the coefficient of the highest derivative term in Ln has been reduced to the identity matrix I.
In other words, now the second-order derivatives appear only on the main diagonal of Ln. Clearly, the
transformed variable Zn(�) satisfies the same conditions as �n(�), i.e.

Zn(1) = 0 (4.18)

and ∫ 1

0
�2‖Zn(�)‖2 d� < ∞ (4.19)

for n = 0, 1, . . . , N . The following propositions are necessary for further analysis.

Proposition 3. The diagonal entries of the matrix Qn satisfy 2�qn
ll < 3 for all l = n, n + 1, . . . , N .

Proof. By Proposition 2, the matrix Qn may be written as

Qn = 2I + Qn,1 + Qn,2, (4.20)

where Qn,1 = L−1Bn,1L−T and Qn,2 = L−1Bn,2L−T stand for symmetric positive semidefinite and
skew-symmetric matrices, respectively. Because q

n,1
ll �0 the qn

ll satisfy

qn
ll = 2 + q

n,1
ll �2. (4.21)

On the other hand, it is easy to see from (4.11), (4.1) and (4.3) that An = Bn,1 + Cn and that

I = Qn,1 + L−1CnL−T. (4.22)

Since the matrix L−1CnL−T is also positive definite by Proposition 1, we must have 0�q
n,1
ll < 1. There-

fore, the two-sided bounds for qn
ll

2�qn
ll < 3, l = n, n + 1, . . . , N (4.23)

are proved. �
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Proposition 4. The diagonal entries rn
ll of the matrix Rn are nonnegative.

Proof. Recalling the definition of the diagonal matrix � in (3.18), � := [−m(m + 1)�lm], we find from
(4.17) that the rn

ll are expressible as

rn
ll = l(l + 1)r

n,1
ll , (4.24)

where the r
n,1
ll denote the diagonal entries of the matrix Rn,1 = L−1CnL−T. The positive definiteness

of this matrix implies r
n,1
ll > 0, so that rn

ll �0. If we take into account that the fixed parameter n changes
from 0 to N, the equality rn

ll = 0 holds only when l = n = 0. �

The dominant second-order differential operators Ln
ll on the main diagonal of the coefficient matrix

of system (4.16) are closely related to the operator provided by the Bessel differential equation. Actually,
transforming the entries of Zn(�) from Zn

l (�) to Xn
l (�), where

Zn
l (�) = ��n

l Xn
l (�) (4.25)

with

�n
l = 1

2 (1 − qn
ll), l = n, n + 1, . . . , N (4.26)

we see that the highest order term Ln
llZ

n
l (�) on the left-hand side of each equation of the system (4.16)

takes the form

Ln
llZ

n
l (�) = −��n

l

[
�2 d2

d�2 + �
d

d�
− (�n

l )
2 − rn

ll

]
Xn

l (�). (4.27)

If 
n
l denotes a positive parameter defined by


n
l =

√
(�n

l )
2 + rn

ll (4.28)

then (4.27) suggests the consideration of the eigenvalue problem which consists of the Bessel equation

−
[
�2 d2

d�2 + �
d

d�
− (
n

l )
2
]

y = �2�2y (4.29)

with accompanying appropriate conditions. Specifically, the sequence {J
n
l
(�l,j�)}j=1,2,... of the Bessel

functions of the first kind is available as the square integrable eigensolutions of (4.29) over (0, 1) relative
to the weight �, where the �l,j stand for the positive zeros of J
n

l
(z) = 0. In what follows, we infer from

the square integrability condition in (4.19) that the functions Xn
l (�) should behave similarly. Indeed we

must have∫ 1

0
�|Xn

l (�)|2 d��
∫ 1

0
�2+2�n

l |Xn
l (�)|2 d� < ∞, (4.30)

where the first inequality follows from Proposition 3, which implies that the exponents 2 + 2�n
l = 3 − qn

ll

satisfy 0 < 2 + 2�n
l �1. Furthermore, if we expand each function Xn

l (�) into a Fourier–Bessel series

Xn
l (�) = lim

M→∞

M∑
j=1

xn
l,j J
n

l
(�l,j�), l = n, n + 1, . . . , N (4.31)
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the boundary condition (4.18), equivalent to Xn
l (1)=0, is also satisfied immediately as J
n

l
(�l,j )=0. It is

a well-known fact that the Fourier–Bessel series converges to Xn
l (�) in the mean as M → ∞; however, by

truncating the series we suppose a finite M for computational purposes. Therefore, the only thing which
remains is the determination of the Fourier–Bessel coefficients xn

l,j .
To this end, first note that the dominant second-order terms in (4.27) are replaced by the algebraic

terms proportional to the eigenvalues of (4.29). Second, the first derivative terms in system (4.16)

Ln
lmZn

m(�) = −��n
m

(
qn
lm�

d

d�
+ �n

mqn
lm − rn

lm

)
Xn

m(�) (4.32)

generated by the off-diagonal entries of the matrix operator Ln may also be written as algebraic expres-
sions on using expansion (4.31) and the differential–difference identity

d

dz
J
(�z) = 


z
J
(�z) − �J
+1(�z) (4.33)

for the Bessel functions [1].
We then find, after some manipulation, that the representative lth equation of our system of ODEs

becomes

N∑
m=n

M∑
j=1

��n
m{[qn

lm�m,j�J
n
m+1(�m,j�) − �n

lmJ
n
m
(�m,j�)](1 − �lm)

+ �2
m,j�2J
n

m
(�m,j�)�lm − En tnlm�2J
n

m
(�m,j�)}xn

m,j = 0 (4.34)

containing no derivatives anymore, where �n
lm denotes a new parameter

�n
lm = qn

lm(�n
m + 
n

m) − rn
lm (4.35)

for brevity. Finally, multiplying (4.34) by �−�n
l −1J
n

l
(�l,i�) and integrating with respect to � from 0 to 1

we arrive at algebraic equations of the form

N∑
m=n

(Hn
lm − EnWn

lm)xn
m = 0, l = n, n + 1, . . . , N , (4.36)

where we have used the orthogonality of the Bessel functions∫ 1

0
�J
(�n�)J
(�m�) d� = 1

2
[J
+1(�m)]2�mn. (4.37)

Note that the system in (4.36) is a generalized matrix eigenvalue problem

HnXn = EnWnXn (4.38)

with the block matrices Hn and Wn of order M(N − n + 1) × M(N − n + 1)

Hn =
⎡
⎣ Hn

nn · · · Hn
nN

...
. . .

...

Hn
Nn · · · Hn

NN

⎤
⎦ , Wn =

⎡
⎣ Wn

nn · · · Wn
nN

...
. . .

...

Wn
Nn · · · Wn

NN

⎤
⎦ , (4.39)
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and with the block vector Xn of order M(N − n + 1) × 1

Xn =

⎡
⎢⎢⎣

xn
n

xn
n+1
...

xn
N

⎤
⎥⎥⎦ , xn

m =

⎡
⎢⎢⎣

xn
m,1

xn
m,2
...

xn
m,M

⎤
⎥⎥⎦ (4.40)

including the unknown Fourier–Bessel coefficients in (4.31). Here the entries hn
lm;ij and wn

lm;ij of matrices
Hn

lm := [hn
lm;ij ] and Wn

lm := [wn
lm;ij ] are given in neat forms as

hn
lm;ij = 1

2 �2
l,i[J
n

l +1(�l,i )]2�ij�lm − [�n
lmI
n

l ,
n
m
(�n

m − �n
l − 1, �l,i , �m,j )

− qn
lm�m,jI
n

l ,
n
m+1(�

n
m − �n

l , �l,i , �m,j )](1 − �lm) (4.41)

and

wn
lm;ij = 1

2 tnll[J
n
l +1(�l,i )]2�ij�lm + tnlmI
n

l ,
n
m
(�n

m − �n
l + 1, �l,i , �m,j )(1 − �lm), (4.42)

respectively, where the function I
,�(�, �, �) stands for an integral of the type

I
,�(�, �, �) =
∫ 1

0
��J
(��)J�(��) d� (4.43)

whose integrand contains the product of two Bessel functions.
Thus, in summary, we have established a two-dimensional array of approximations, say [N, M], to

deal with the computational problem. Unfortunately, integrals (4.43) appearing in the definitions of the
elements of the matrices Hn

lm and Wn
lm cannot be evaluated analytically by using recurrence relations

of the Bessel functions, or otherwise. Theoretically, the integral I
,� may be proved to be proper and
finite for the ranges of parameters encountered in this work. However, its numerical evaluation is not an
easy task.

5. A numerical example

As a benchmark application, we deal with a one-parameter family of billiards defined by

f (�) = 1 + � cos2 �, 0�� < 1 (5.1)

which is a special case of the general shape function in (2.6). That is, our billiard is described by
the region

D = {(r, �, �) | 0�r �1 + � cos2 �, 0����, 0���2�}. (5.2)

Despite its simplicity, f (�) reflects various shapes becoming nonconvex for 0.5 < � < 1 and reducing
to the unit ball when � = 0. To our knowledge, it has not been studied earlier either classically or as a
quantum system. Nevertheless, it seems to provide a good testing ground for the present method. Note
that billiard (5.2) is symmetric about the xy-plane and characterized by the transformed shape function
F(�) in (2.8) with K = 2, �1 = 0 and �2 = �, i.e.

F(�) = 1 + ��2, (5.3)
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Fig. 2. The billiards for � = 0.1, 0.5 and 0.9.

representing an even function of �. Therefore, the symmetric (even) and antisymmetric (odd) state eigen-
values En

2i and En
2i+1 corresponding, respectively, to even and odd eigenfunctions of � may be calculated

separately.
We determine six particular spectra numerically, namely, the sets of symmetric and antisymmetric

eigenvalues for three different billiards with � = 0.1, 0.5 and 0.9 (see Fig. 2). Each spectral set contains
about 120 consecutive eigenvalues accurate at least to four digits. We employ Mathematica packages to
determine the zeros of the Bessel functions to a satisfactory accuracy. The most costly part of the numerical
implementation is the computation of the integrals I
,�(�, �, �). Moreover, the non-integral orders of the
Bessel functions appearing in these integrals cause additional problems. In any case, however, the use
of an eigenfunction expansion of Fourier–Bessel type usually increases the cost of the computations,
especially when applied to billiard problems [14]. Hence in the numerical evaluation of integrals (4.43)
and in the solution of the resulting generalized eigenvalue problem (4.38), we make use of the usual
Fortran routines.

In all calculations, we observe that the best converged results are reached on the specific subsequent
of the two-dimensional array [N, M] of approximations for which M = N − n + 1. Hence, in Table 1,
the convergence rates of a few typical symmetric state eigenvalues En

2i are displayed as a function of the
approximation orders [N, N − n + 1] for each �, for illustration. As shown, the tabulated eigenvalues
stabilize to at least four significant digits. Note that E0

0 , E0
2 and E1

0 stand for the smallest three eigenvalues
for each �. On the other hand, for instance at �=0.1, the results E5

0 , E1
18 and E3

20 correspond, respectively,
to the 20th, 50th and 100th eigenvalues ordered in magnitude.

Typical for such approximations is that only a fraction of the eigenvalues of the truncated [N, M]
system is a “good” approximation to those of the infinite system. These fractions depend mainly on the
parameter �. Specifically, when we require a four-digit accuracy, we deduce by numerical experiments
that the fractions lie between 0.29 and 0.32, 0.20 and 0.24 and 0.14 and 0.18 for � = 0.1, 0.5 and 0.9,
respectively.

In the studies concerning statistical properties of quantal spectra, the most common statistics is the
nearest-neighbor spacing (NNS) distribution. It has been observed, in a number of numerical results
[3,5,13], that the NNS distribution of the energy levels of quantum systems with regular classical analogs
resembles the Poissonian distribution

p(s) = e−s , (5.4)

while the spectra of quantum systems with chaotic classical counterparts behave like eigenvalues of a
matrix of the Gaussian orthogonal ensemble (GOE) type

p(s) = 1
2 �se−�s2/4. (5.5)
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Table 1
Convergence rates of a few symmetric state eigenvalues En

2i
(�) as a function of the billiard parameter �, for ascending truncation

orders [N, N − n + 1]
n i N En

2i
(0.1) En

2i
(0.5) En

2i
(0.9)

0 0 3 9.2649242 7.635913 6.591853
4 9.2648530 7.635772 6.591447
5 9.2648641 7.635691 6.591330
7 9.2648682 7.635689 6.591303
9 9.2648682 7.635688 6.591271

0 1 3 29.679738 19.90062 15.12841
4 26.679537 19.90051 15.12828
5 26.679478 19.90028 15.12774
7 26.679451 19.90016 15.12725
9 26.679451 19.90016 15.12724

1 0 4 30.569266 22.88507 17.74454
5 30.569096 22.88401 17.74416
6 30.569045 22.88367 17.74361
8 30.569020 22.88367 17.74346

10 30.569018 22.88367 17.74346

5 0 8 106.20292 90.53120 75.74572
9 106.20270 90.52818 75.74476

10 106.20262 90.52749 75.74456
12 106.20262 90.52730 75.74453

1 9 6 204.74939 149.5363 —
8 204.73433 149.5331 105.5378

10 204.73392 149.5330 105.5364

3 10 8 320.44071 — —
10 320.43716 231.4346 179.8509
12 320.43715 231.4345 179.8447

Finally, for systems in which both types of motion co-exist, the Brody distribution [4]

p(s) = (
 + 1)a
s

e−a
s


+1
, (5.6)

where

a
 =
[
�

(

 + 2


 + 1

)]
+1

(5.7)

is one of the mostly used models. Clearly, the Brody distribution becomes Poissonian for 
 = 0 and GOE
for 
 = 1. By taking the normalized spacings

si = Ei+1 − Ei

〈Ei+1 − Ei〉 , (5.8)

where 〈ci〉 denotes the mean of a sequence {ci}, we thus plot the nearest-neighbor spacing histograms
(NNSH) for each eigenvalue set. The best 
 parameters in the Brody distribution have been obtained by



242 İ.M. Erhan, H. Taşeli / Journal of Computational and Applied Mathematics 194 (2006) 227–244

0.5 1 1.5 2 2.5 3

S

0.2

0.4

0.6

0.8

1
P

(S
)

0.5 1 1.5 2 2.5 3

S

0.2

0.4

0.6

0.8

1

P
(S

)

Fig. 3. NNSH for the even- and odd-state eigenvalues of a billiard with � = 0.1 (solid line: Poisson distribution, dashed line:
Brody distribution, dotted–dashed line: GOE distribution).
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Fig. 4. NNSH for the even- and odd-state eigenvalues of a billiard with � = 0.5 (solid line: Poisson distribution, dashed line:
Brody distribution, dotted–dashed line: GOE distribution).
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Fig. 5. NNSH for the even- and odd-state eigenvalues of a billiard with � = 0.9 (solid line: Poisson distribution, dashed line:
Brody distribution, dotted–dashed line: GOE distribution).

a fitting procedure. For comparison we have also plotted the Poissonian and GOE distributions. Despite
the relatively small number of eigenvalues included in our analysis, we observe a good agreement with
the Brody model (see Figs. 3–5).
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6. Conclusion

In this paper, the three-dimensional axisymmetric quantum billiards are dealt with using a decom-
position in the spherical harmonics. Obviously, the restriction to the axially symmetric cases leads to
an important simplification. Nevertheless, the existing methods in three dimensions also assume certain
cubic symmetries for the shape of the billiard [10–12].

Although the method presented here seems to be a standard expansion technique, it has two very
significant properties. First, it employs an unusual coordinate transformation which standardizes the
billiard. Second, it deals with an expansion in the Bessel functions with real orders which is interesting
from a mathematical point of view. On the other hand, the general form of the shape function allows us
to reproduce several billiard shapes yielding an important tool for a researcher who wishes to study the
quantum chaos.

The efficiency of our approach depends strongly on the choice of the billiard. In order to obtain a faster
algorithm one must consider a shape function whose power series representation is rapidly convergent.
Otherwise, the method requires the use of a great number of coefficients 
n

lmk decelerating the rate of
convergence. Furthermore, since the billiard defined by the shape function f (�) may be regarded as a
perturbation of the unit ball, it is necessary to have

f (�) = 1 +
∞∑

k=1

�k cosk� < 2 (6.1)

so that the perturbation is regular. However, these additional conditions imposed on the shape function
do not considerably restrict the variety of billiards generated by (2.8) in this way.

Acknowledgements

This research was supported by a grant from TUBITAK, the Scientific and Technical Research Council
of Turkey.

References

[1] M. Abramovitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1970.
[2] M.V. Berry, Quantizing a classically ergodic system: Sinai’s billiard and the KKR method, Ann. Phys. 131 (1981)

163–216.
[3] O. Bohigas, M.J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation

laws, Phys. Rev. Lett. 52 (1981) 1–4.
[4] T.A. Brody, Statistical measure for repulsion of energy-levels, Lett. Nuovo Cimento 7 (1973) 482–484.
[5] G. Cassati, T. Prosen, The quantum mechanics of chaotic billiards, Physica D 131 (1999) 293–310.
[6] R. Dutt, R. Gangopadhyaya, U.P. Sukhatme, Noncentral potentials and spherical harmonics using supersymmetry and

shape invariance, Am. J. Phys. 65 (1997) 400–403.
[7] V. Lopac, I. Mrkonjic̀, D. Radic̀, Classical and quantum chaos in the generalized parabolic lemon-shaped billiard, Phys.

Rev. E 59 (1999) 303–311.
[8] D.A. McGrew, W. Bauer, Constraint operator solution to quantum billiard problem, Phys. Rev. E 54 (1996) 5809–5818.
[9] T. Papenbrock, Numerical study of a three-dimensional generalized stadium billiard, Phys. Rev. E 61 (2000) 4626–4628.

[10] H. Primak, U. Smilansky, The quantum three-dimensional Sinai billiard—a semiclassical analysis, Phys. Rep. 327 (2000)
1–107.
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[20] H. Taşeli, İ.M. Erhan, Ö. Uğur, An eigenfunction expansion for the Schrödinger equation with arbitrary non-central

potentials, J. Math. Chem. 32 (2002) 323–338.
[21] E. Vergini, M. Saraceno, Calculation by scaling of highly excited states of billiards, Phys. Rev. E 52 (1995) 2204–2207.


	A model for the computation of quantum billiardswith arbitrary shapes
	Introduction
	The quantum billiard model
	Eigenfunction expansion
	Analysis of the ODE system and reduction to a matrix eigenvalue problem
	A numerical example
	Conclusion
	Acknowledgements
	References


