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a b s t r a c t

This survey reviews the large and growing literature on copula-basedmodels for economic
and financial time series. Copula-basedmultivariatemodels allow the researcher to specify
the models for the marginal distributions separately from the dependence structure that
links these distributions to form a joint distribution. This allows for a much greater
degree of flexibility in specifying and estimating the model, freeing the researcher
from considering only existing multivariate distributions. The author surveys estimation
and inference methods and goodness-of-fit tests for such models, as well as empirical
applications of these copulas for economic and financial time series.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

This survey reviews some of the methods, models, and results for copula-based time series models, with an emphasis
on economic and financial applications. Recall from Sklar [136] that an n-dimensional joint distribution can be decomposed
into its n univariate marginal distributions and an n-dimensional copula. To be specific, let Y = (Y1, . . . , Yn)

⊤ be a random
vector with cumulative distribution function F and, for i ∈ {1, . . . , n}, let Fi denote the marginal distribution of Yi. Then
there exists a copula C : [0, 1]n → [0, 1] such that, for all y = (y1, . . . , yn) ∈ Rn,

F(y) = C {F1 (y1) , . . . , Fn (yn)} . (1)

A copula C of the random vector Y is thus a function that maps the univariate marginal distributions F1, . . . , Fn to the joint
distribution F , and we write Y ∼ F = C (F1, . . . , Fn).

For continuous random variables, the copula is unique. It is the joint distribution of the ‘‘probability integral
transforms’’ (PITs) of the original variables, which are defined, for i ∈ {1, . . . , n}, as Ui = Fi (Yi). Then U = (U1, . . . ,Un)

⊤ ∼
C . It is well known (see, e.g., [58]) that if Yi is continuous, thenUi ∼ U (0, 1), and in this case a copula is any joint distribution
function with U(0, 1) margins. In this paper, we will assume that the variables of interest are continuous, simplifying some
of the descriptions; see [67] for issues that arise when considering copulas for discrete random variables.

Whatmakes the representation in (1) particularly useful for applied researchers is the converse of Sklar’s theorem: given
any collection of univariate distributions F1, . . . , Fn and any copula C , the function F defined by (1) above defines a valid
joint distribution with marginal distributions F1, . . . , Fn. For example, one might combine a Normally distributed variable
with an Exponentially distributed variable via a Clayton copula, and obtain an unusual but valid bivariate distribution. The
ability to combine marginal distributions with a copula model allows the researcher to directly draw on the large body of
research on modeling univariate distributions, leaving only the task of modeling the dependence structure.
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One particularly useful feature of this decomposition is that different estimation methods can be used for the different
components of the model. The leading example of this is the use of a nonparametric estimator of the marginal distributions
(usually the empirical distribution function) and amaximum likelihood estimator of the unknown parameter of a model for
the copula. This semiparametric approach is considered in Genest et al. [66] and Shih and Louis [135] for i.i.d. data, and by
Chen and Fan [25], Chen and Fan [26] and Rémillard [125] for time series data. Below we will review both fully parametric
and semiparametric copula-based models.

Copula-based models have been considered for both univariate time series processes and for multivariate time series
processes. In the former case, the structure in (1) generates a stationary Markov chain of order n, under certain conditions.
See [39,26,29,95,10,139] for this and related results.

In multivariate time series applications, we use a version of Sklar’s theorem for conditional joint distributions presented
in Patton [120], where we consider some information set Ft−1 (for example, that generated by {Yt−j, j = 1, 2, . . .}), and
decompose the conditional distribution of Yt given Ft−1 into its conditional marginal distributions and the conditional
copula. For t ∈ {1, . . . , T }, let

Yt |Ft−1 ∼ F (·|Ft−1) , Yit |Ft−1 ∼ Fi (·|Ft−1) .

Then

F (y|Ft−1) = C {F1 (y1|Ft−1) , . . . , Fn (yn|Ft−1) |Ft−1} . (2)

Note that the same information set must be used in each of the marginals and for the copula in order for the resulting
function to be a multivariate conditional joint distribution. When different information sets are used, the resulting function
F (·|·) is not generally a joint distribution with the specified conditional marginal distributions; see Fermanian and
Wegkamp [57].

Several other surveys of copula theory and applications have appeared in the literature to date. Nelsen [112] and Joe [98]
are two key textbooks on copula theory, providing clear and detailed introductions to copulas and dependence modeling,
with an emphasis on statistical foundations. McNeil et al. [110] contains an overview of copula methods in the context of
risk management, as does Denuit et al. [43]. Cherubini et al. [32] present an introduction to copulas using methods from
mathematical finance, updated in [30] along with new results for convolution-based copulas. Choros et al. [34] provide a
concise survey of estimation methods, both parametric and nonparametric, for copulas for both i.i.d. and time series data.
Genest and Favre [65] present a description of semiparametric inference methods for i.i.d. data with a detailed empirical
illustration, and Patton [122] reviews copula-based methods for economic forecasting, and includes detailed empirical
examples illustrating some commonly-used methods.

In the sections that follow, we first consider estimation and inference for copula models for time series, covering both
fully parametric and semiparametric models. We then review goodness-of-fit tests for copula-based models, and finally we
present a brief survey of some of the numerous applications of copula-based models that have appeared in the economics
and finance literature.

2. Estimation and inference

This section describes estimation and inference methods for copula-based models that have been proposed in the
literature. We will specialize to the bivariate case for ease of exposition, and note any instances where the generalization to
arbitrary n is not immediate. When considering copula-based models for multivariate time series, we will assume that the
marginal distributions are of the form

Yit = µi

Zt−1; φi


+ σi


Zt−1; φi


εit ,

where, for i = 1, 2,

Zt−1 ∈ Ft−1, εit |Ft−1 ∼ Fit ,
εt ≡ (ε1t , ε2t)

⊤
|Ft−1 ∼ Fεt = Ct (F1t , F2t) .

That is, we will allow each series to have potentially time-varying conditional mean and variance, each parametrically
modeled, and we will assume that the standardized residual, εit , has a conditional distribution Fit (with mean zero and
variance one, for identification). When the distribution of the standardized residuals, Fit , is modeled parametrically, it may
bemodeled as time-varying; howeverwhen it is estimated nonparametrically it is assumed constant, and so Fit = Fi for all t .
Following Chen and Fan [26,125], we assume that the marginal distribution parameters, φi, are

√
T -consistently estimable.

This is a mild assumption and allows for a wide variety of models for the conditional mean and variance. The estimated
standardized residuals are then obtained, for i = 1, 2, as

ε̂it ≡
Yit − µi(Zt−1; φ̂i)

σi(Zt−1; φ̂i)
,

where φ̂i is the vector of estimated parameters for the models of the conditional mean and conditional variance. We will
consider both parametric and nonparametricmodels for Fit , and in the parametric case these parameters will become part of
the vector φi. Many choices are possible for the parametric model for Fit , including the Normal, the standardized Student’s t
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(as in Bollerslev [17]), the skewed t (as in Patton [118]), and others. For the nonparametric estimate of Fit , wewill assume that
Fit = Fi, for all t , and use the empirical distribution function (EDF), and obtain the estimated probability integral transform
variable, Ûit , viz.

F̂i (ε) ≡
1

T + 1

T
t=1

1

ε̂it ≤ ε


, Ûit = F̂i


ε̂it


. (3)

2.1. Dependence summary statistics

Prior to the specification and estimation of a copula model, it is often of interest to compute some simple measures
of dependence. Inference on estimated dependence measures can be conducted quite easily using a bootstrap. In the
case of i.i.d. data, the validity of an i.i.d. bootstrap approach is presented in Fermanian et al. [55]. In multivariate time
series applications when the conditional copula is constant, Rémillard [125] shows that the estimated parameters from
the conditional mean and variance do not affect the asymptotic distribution of estimated dependence measures such as
Spearman’s rank correlation and Kendall’s tau. This is a surprising result, and, under the conditions stated in [125], implies
that we can ignore the error resulting from the estimation of the marginal distribution parameters. It further implies that
we can use an i.i.d. bootstrap, applied to the estimated standardized residuals, ε̂it , for inference in time series applications.
When the conditional copula is time-varying, the parameter estimation error from themodels for the conditional mean and
variance cannot generally be ignored (see [125]) and so an i.i.d. bootstrap cannot be used. To our knowledge, this case has
not (yet) been considered in the literature.

For univariate copula-based time series models, one may be interested in such measures as rank autocorrelation.
Ferguson et al. [54] and Genest and Rémillard [70] consider rank-based tests of independence for serially dependent data.
Under stationarity, Gaißer et al. [62] suggest a block bootstrap approach to conduct inference on dependence measures
for serially dependent data, and Ruppert [130] proposes a block multiplier technique for inference on the empirical copula
process of time series data.

2.1.1. Time-varying dependence
The econometrics literature contains a preponderance of evidence that the conditional volatility of economic time

series changes through time; see Andersen et al. [5] for example. This motivates us to consider whether the conditional
dependence structure also varies through time. Before specifying a functional form for a time-varying conditional copula
model (examples of which are reviewed in Section 4.4), it is informative to test for the presence of time-varying dependence.

As usual, tests for time-varying dependence will maintain a constant conditional copula under the null, and thus the
asymptotic distribution theory from Rémillard [125] may be used to obtain the limiting distribution of the test statistics.
Rémillard [125] considers a test for a one-time change (or ‘‘structural break’’) in the copula at some time in the sample
period, and his test statistic is similar to a Kolmogorov–Smirnov statistic comparing the empirical copula before and after a
conjectured break date. The break date can be known or unknown in this framework. Gaißer et al. [62] consider testing for
a change in the dependence structure by looking for a change in Hoeffding’s Φ2 dependence measure. One could naturally
also consider testing for a change using alternative dependence measures, such as rank correlation.

2.1.2. Empirical illustration
Consider the daily returns on two equity indices: the S&P 100 index of the largest US firms and the S&P 600 index of small

firms, over the period 17 August 1995–30 May 2011. An AR(2) model was found to be adequate for the conditional mean
of the S&P 100 index, while simply a constant (AR(0)) was used for the S&P 600 index. For both indices, the GJR-GARCH
model of Glosten et al. [78] was used to estimate the conditional volatility, and obtain the estimated standardized residuals.
See Patton [122] for a more detailed description of this data and for more discussion of the steps involved in building a
copula-based model for the conditional joint distribution.

The rank correlation between these two series of standardized residuals is estimated at 0.781, and a 90% i.i.d. bootstrap
confidence interval is [0.769, 0.793], indicating that the dependence between these to series is positive and relatively
strong. The upper panel of Fig. 1 presents the estimated ‘‘quantile dependence’’ plot, for q ∈ [0.025, 0.975], along with
90% (pointwise) i.i.d. bootstrap confidence intervals. Lower quantile dependence is given by λ

q
L = Pr (U1 ≤ q,U2 ≤ q) /q,

for q ∈ (0, 0.5] and the upper quantile dependence is given by λ
q
U = Pr (U1 > q,U2 > q) / (1 − q), for q ∈ [0.5, 1). The

lower panel of Fig. 1 presents the difference between the upper and lower portions of this plot, along with a pointwise
confidence interval for this difference. As expected, the confidence intervals are narrower in the middle of the distribution
(values of q close to 1/2) and wider near the tails (values of q near 0 or 1). This figure shows that observations in the lower
tail are somewhat more dependent than observations in the upper tail, with the difference between corresponding quantile
dependence probabilities being as high as 0.1. The confidence intervals show that these differences are borderline significant
at the 0.10 level, with the upper bound of the confidence interval on the difference lying around zero for most values of q.

In univariate copula-based time series models, one may be interested in quantities such as rank autocorrelations, to
measure the strength and sign of serial dependence of the series. As an illustration, Table 1 presents rank autocorrelations
for the returns and squared returns on these two equity indices. The stationary block bootstrap of Politis and Romano [124],
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Fig. 1. The upper panel shows the estimated quantile dependence between the standardized residuals for the S&P 100 index and the S&P 600 index along
with 90% bootstrap confidence intervals. The lower panel presents the difference between corresponding upper and lower quantile and tail dependence
estimates, along with a 90% bootstrap confidence interval for this difference.

Table 1
Rank autocorrelation in returns and squared returns.

S&P 100 S&P 600
Levels Squares Levels Squares

1 −0.0506
(0.0196)

0.1313
(0.0449)

0.0312
(0.0253)

0.1473
(0.0539)

2 −0.0345
(0.0285)

0.2003
(0.0835)

−0.0327
(0.0203)

0.1878
(0.0670)

3 −0.0153
(0.0317)

0.1730
(0.0282)

0.0227
(0.0192)

0.1850
(0.0348)

4 0.0056
(0.0258)

0.1885
(0.0566)

0.0005
(0.0285)

0.1877
(0.0672)

5 −0.0224
(0.0249)

0.2160
(0.0531)

−0.0256
(0.0249)

0.1741
(0.0534)

6 −0.0055
(0.0247)

0.1864
(0.0686)

−0.0345
(0.0277)

0.1838
(0.0468)

7 −0.0230
(0.0262)

0.1923
(0.0515)

−0.0110
(0.0224)

0.1743
(0.0603)

8 −0.0125
(0.0361)

0.1810
(0.0356)

−0.0011
(0.0269)

0.1647
(0.0277)

9 0.0037
(0.0205)

0.1671
(0.0665)

−0.0111
(0.0184)

0.1555
(0.0512)

10 0.0317
(0.0243)

0.1985
(0.0581)

−0.0106
(0.0226)

0.1633
(0.0507)

Notes: This table presents sample rank autocorrelations, for lags 1–10, for daily returns and squared daily
returns on the S&P 100 and S&P 600 equity indices. A block bootstrap with block length of 30 observations
is used to obtain the standard errors reported in parentheses below the estimates.

with an average block length of 30 observations, is used to obtain the standard errors on each of these estimates. We find
significant negative rank autocorrelation at the first lag for the SP100 index, but no significant rank autocorrelations for the
SP600 index. Consistent with a large literature on volatility clustering in asset returns, we find strongly significant positive
rank autocorrelations in squared returns, for all lags between 1 and 10.

A time series plot of rolling 60-day rank correlation, along with pointwise bootstrap standard errors (correct only under
the null that this correlation is not changing), is presented in Fig. 2. This figure shows that the rank correlation hovered
around 0.6–0.7 in the early part of the sample, rising to around 0.9 during the financial crisis of 2008–09. Having no a priori
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Fig. 2. This figure shows the rank correlation between the standardized residuals for the S&P 100 index and the S&P 600 index over a 60-day moving
window, along with 90% bootstrap confidence intervals.

Table 2
Testing for time-varying dependence.

Break date (t/T ) Anywhere
0.15 0.50 0.85

p-val 0.667 0.373 0.045 0.269

Notes: This table presents bootstrap p-values from
tests for a change in the rank correlation between
the standardized residuals for the S&P 100 index and
the S&P 600 index.

dates to consider for the timing of a break, for illustration we consider three tests for a break at three different points in
the sample, namely at t∗/T ∈ {0.15, 0.50, 0.85}, which correspond to the dates 23-Dec-1997, 7-July-2003, and 8-Jan-2009.
Table 2 presents p-values from these tests, based on a bootstrapmethod proposed by Rémillard [125]. Only for the latter date
is evidence of a break in rank correlation found, with a p-value of 0.045. Thus it appears that the rank correlation towards the
end of the sample is different from that during the earlier part of the sample. However, given a lack of a reason for choosing
a break date of 8-Jan-2009, a more appropriate test is one where the break date is treated as unknown and estimated, and
using that test the p-value is 0.269, indicating no evidence against a constant rank correlation in the direction of a one-time
break.

2.2. Estimating copula-based multivariate time series models

The majority of applications of copula models for multivariate time series build the model in stages, with the models for
the marginal distributions (means, variances, and distribution of the standardized residual, εit ) estimated separately from
the copulamodel. The conditional distribution of εit is treated in one of twoways, either parametrically or nonparametrically.
In the former case, this distributionmay vary through time as a (parametric) function ofFt−1-measurable variables (e.g., the
time-varying skewed t distribution of Hansen [86]), or may be constant. In the nonparametric case, the majority of the
literature assumes that the conditional distribution is constant and estimable via the empirical distribution function (EDF).
The choice of a parametric of nonparametric model for the distribution of the standardized residuals leads to different
inference procedures for the copula parameters.

2.2.1. Fully parametric
When all components of the multivariate model are parametric, the most efficient estimation method is maximum

likelihood. Under regularity conditions, seeWhite [145] for example, standard results for parametric time series models can
be used to show that the MLE is

√
T -consistent and asymptotically Normal, and a consistent estimator of the asymptotic

covariance matrix can also be obtained using standard methods. The drawback of this approach is that even for relatively
simple bivariate models, the number of parameters to be estimated simultaneously can be large, creating a computational
burden. This burden is of course even greater in higher dimensions.

A more common approach is to estimate the model in stages. This requires that the parameter vector can be separated
in parameters for the first margin, second margin, and the copula, which is often satisfied for models used in practice. In
this case one can estimate the parameters of themarginal distributions separately, and then estimate the copula parameters
conditioning on the estimatedmarginal distribution parameters, greatly simplifying the estimation problem. This estimation
method is sometimes called ‘‘inference functions for margins’’ in this literature, see Joe [98] and Joe and Xu [99], though



A.J. Patton / Journal of Multivariate Analysis 110 (2012) 4–18 9

more generally this is known as multi-stage maximum likelihood (MSML) estimation. Clearly, MSMLE is asymptotically less
efficient than one-stage (full) MLE (except in the special case that the variables are independent). Simulation studies in
Joe [97] and Patton [119], however, indicate that this loss is not great in many cases. As for one-stage MLE, under regularity
conditions, seeWhite [145] or Patton [119], theMSMLE is asymptotically normal but the asymptotic covariancematrix now
takes a non-standard form. See Patton [119,122] for details on how to estimate this matrix. Newey and McFadden [113]
discuss a one-step adjustment of the MSMLE that achieves full efficiency, and Song et al. [140] present an iterative multi-
stage estimation procedure that achieves full efficiency.

2.2.2. Semiparametric
An attractive feature of the copula decomposition of a joint distribution is that it allows the marginal distributions

and copula to be estimated separately, potentially via different methods. Semiparametric copula-based models exploit this
feature and employ a nonparametric model for the marginal distributions and a parametric model for the copula. In such
cases, the estimation of the copula parameter is usually conducted via maximum likelihood and in this case this estimator is
sometimes called ‘‘canonical maximum likelihood’’ in this literature. It has also been called ‘‘pseudo maximum likelihood’’,
see [66,102], though their use of this phrase is different from its use in the econometrics literature; see [80]. The asymptotic
distribution of this estimatorwas studied byGenest et al. [66] and Shih and Louis [135] for i.i.d. data and by Chen and Fan [25]
and Chen and Fan [26] for time series data.

The difficulty relative to the parametric case is that the copula likelihood depends on the infinite-dimensional parameters
F1, . . . , Fn, as well as the marginal distribution parameters α. Standard maximum likelihood methods cannot be applied.
Chen and Fan [25] provided conditions under which an asymptotic normal distribution is obtained, and provide a method
for estimating the asymptotic covariance matrix. See Chen et al. [23] for a detailed proof.

A surprising feature of the result of Chen and Fan [25] is that the asymptotic variance of the MLE of the copula parameter
depends on the estimation error in the EDF but not on the estimated parameters in the marginal distributions. Thus in this
case the researcher can estimate the models for the conditional means and variances, compute the standardized residuals,
and then ignore, for the purposes of copula estimation and inference, the estimation error from the mean and variance
models.

Two important caveats are worth noting here: Firstly, this only applies for constant conditional copula models; if the
conditional copula is time-varying, then Rémillard [125] shows that the estimation error from themodels for the conditional
mean and variance will affect the asymptotic distribution of the copula parameter estimate. Second, this only applies
when the marginal distributions of the standardized residuals are estimated nonparametrically; with parametric marginal
distribution models the estimation error from the models for the conditional mean and variance will, in general, affect
the distribution of the copula parameter estimate, and methods from Section 2.2.1 should be used. Chen et al. [27] show
that efficient estimation of this semiparametric copula-based model can be obtained by using the method of sieves for the
marginal distributions and estimating these along with the copula parameter in a single estimation step.

2.2.3. Nonparametric
Fully nonparametric estimation of the copula in the i.i.d. case was studied by Genest and Rivest [73] and Genest et al. [69]

for Archimedean copulas, and by Genest and Segers [74] for extreme value copulas. Nonparametric copula estimation
using time series data is studied by Fermanian and Scaillet [56], Fermanian et al. [55], Sancetta and Satchell [132] and
Ibragimov [95].

2.2.4. Other estimation methods
While maximum likelihood estimation is the most prevalent in the literature, other methods have been considered.

Method of moments-type estimators, where the parameter of a given family of copulas has a known, invertible, mapping
to a dependence measure (such as rank correlation or Kendall’s tau) are considered in [64,75,125,68], among others.
Generalized method of moments estimation, where the number of dependence measures may be greater than the number
of unknown parameters, and an analogous simulation-based method, are considered in Oh and Patton [115]. Minimum
distance estimation is considered by Tsukahara [143]. Bayesian estimation of copula models is considered in [111,123,139,
138]; see Smith [137] for a review.

2.2.5. Empirical illustration, continued
To illustrate some of the different estimation methods described above, we consider now the problem of estimating a

parametric model for the copula of the standardized residuals on the SP100 and SP600 indices, described in Section 2.1.2.
To illustrate a fully parametric model we combine the AR–GARCH models described above with the skewed t distribution
of Hansen [86] for the marginal distributions. For the semiparametric model we will use the EDF to estimate the marginal
distributions.

A variety of different standard errors are computed for the estimated parameters, implementation details of which are
presented in Patton [122]. For both the parametric and semiparametric cases, we will consider (i) naïve standard errors,
where the estimation error from the earlier stages of estimation (AR, GARCH and marginal distributions) is ignored; (ii)
multi-stage MLE or multi-stage semiparametric MLE (MSML) standard errors, using the asymptotic distribution theory
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Table 3
Standard errors on estimated copula parameters—multivariate model.

Parametric Semi-parametric
Naïve MSML Boot Sim. Naïve MSML Boot

Normal ρ̂ 0.7959 0.7943
s.e. 0.0046 0.0106 0.0099 0.0062 0.0046 0.0061 0.0065
lnL 1991.8 1978.3

Clayton κ̂ 2.0279 2.0316
s.e. 0.0451 0.0951 0.0862 0.0664 0.0449 0.0545 0.0580
lnL 1720.5 1723.1

Rotated κ̂ 2.3715 2.3673
Gumbel s.e. 0.0310 0.0603 0.0595 0.0386 0.0309 0.0421 0.0344

lnL 2013.6 2008.4

Student’s t ρ̂ 0.8019 0.8005
s.e. 0.0053 0.0100 0.0096 0.0070 0.0053 0.0055 0.0054
ν̂−1 0.1455 0.1428
s.e. 0.0172 0.0202 0.0222 0.0186 0.0172 0.0182 0.0169
lnL 2057.4 2041.9

Note: This table presents the estimated parameters of four different copula models for the standardized residuals for
the S&P 100 index and the S&P 600 index, when the marginal distributions are estimated parametrically (left panel) or
nonparametrically (right panel). For the parametric model four different estimators of the standard error on the estimated
parameter are presented, and for the semiparametric model three different standard errors are presented. For all models
the log-likelihood at the estimated parameter is also presented.

for these estimators in Patton [119] or Chen and Fan [25], respectively; (iii) bootstrap standard errors, based on either a
stationary block bootstrap Politis and Romano [124] of the original returns and estimation of all stages on the bootstrap
sample (parametric case), based on Gonçalves and White [79] (Joe [98], suggests a jackknife method for this), or an i.i.d.
bootstrap of the standardized residuals and estimation only of the EDF and the copula (semiparametric case), based on Chen
and Fan [25] and Rémillard [125].

For the parametric case we can consider one further type of standard error, namely a simulation-based standard error,
where the model is simulated many times using the estimated parameters, and on each of the simulated samples the
parameters are re-estimated. With a sufficient number of simulations, this latter approach yields correct finite-sample
standard errors, unlike the other approaches which are all based on asymptotic arguments. For the bootstrap and the
simulation-based standard errors 1000 replications are used. For the parametric model, the computation times for these
(usingMATLAB R2011a, on a 3 GHzmachine) were 1.5 and 9.4 h respectively. The semiparametricmodel bootstrap standard
errors had computation time of 11 min. The results are presented in Table 3.

Table 3 shows that the naïve standard errors are too small relative to the correct MSML standard errors, a predictable
outcome given that naï ve standard errors ignore the additional estimation error arising from the estimation of marginal
distribution parameters. In the parametric case the naïve standard errors are on average about half as large as the MSML
standard errors (average ratio is 0.54), while for the semiparametric case the ratio is 0.84. The relatively better performance
in the semiparametric case is possibly attributable to the fact that the MSML standard errors in that case can, correctly,
ignore the estimation error coming from the AR–GARCHmodels for the conditional mean and variance; only the estimation
error from the EDF needs to be accounted for. In the fully parametric case, the marginal distribution shape parameters and
the parameters of the AR–GARCH models must be accounted for.

In both the parametric and the semiparametric cases, the bootstrap standard errors are very close to the MSML standard
errors, with the ratio of the former to the latter being 0.98 and 0.97 respectively. This is what we expect asymptotically, and
confirms that the researchermay use either ‘‘analytical’’MSML standard errors ormore computationally-intensive bootstrap
standard errors for inference on the estimated copula parameters.

In the parametric case, where simulation-based standard errors can be computed, we see that these are smaller than the
MSML and bootstrap standard errors, with the average ratio being around 0.7. Asymptotically we expect this ratio to go to
1, but in finite samples this value of ratio will depend on the particular model being used. While Table 3 shows the ratio to
be less than 1 for all four models considered, this is not a general result and need not hold in other applications.

2.3. Estimating copula-based univariate time series models

Consider the following model for a stationary first-order Markov process:

(Yt , Yt−1)
⊤ ∼ F = C(F , F).

Fully parametricmodels of this sort are considered in Chapter 8 of Joe [98], and under regularity conditions on the copula the
estimation of suchmodels is straightforward usingmaximum likelihoodmethods. Chen and Fan [26] consider the estimation
of semi-parametric copula-based Markov models, where the marginal distributions are estimated nonparametrically while
the copula is assumed to belong to some parametric family and estimated in a second stage via ML. With an estimate
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Table 4
Standard errors on estimated copula parameters—univariate model.

Naïve MSML Sim.

Normal ρ̂ −0.0566
s.e. 0.0159 0.0159 0.0153
lnL 6.3758

Half Rotated κ̂ 0.1292
Clayton s.e. 0.0189 0.0174 0.0197

lnL 30.6174
Half Rotated κ̂ 1.0665
Gumbel s.e. 0.0100 0.0089 0.0106

lnL 38.8145
Student’s t ρ̂ −0.0534

s.e. 0.0180 0.0160 0.0175
ν̂−1 0.2070
s.e. 0.0194 0.0244 0.0249
lnL 76.8829

Note: This table presents the estimated parameters of four different copula
models for a semiparametric first-orderMarkovmodel of daily returns on the
S&P 100 index. Three different standard errors are presented. For all models
the log-likelihood at the estimated parameter is also presented.

of the copula parameter and the marginal CDFs, it is then possible to compute (and conduct inference on) functionals of
these, such as conditional moments and conditional quantiles. Chen and Fan [26] present conditions on the copula under
which the above Markov process is β-mixing, and, with further regularity conditions, establish the asymptotic Normality of
the estimated copula parameter. Other work on the dependence properties of copula-based Markov processes includes
Beare [10], Beare [11], Beare and Seo [12], Bouyé and Salmon [20], Chen et al. [28], Chen et al. [29], Gagliardini and
Gouriéroux [61], Ibragimov [95], and Ibragimov and Lentzas [96].

Papers that consider both the temporal and the cross-sectional dependence via copulas include Abegaz and Naik-
Nimbalkar [2], Yi and Liao [146] and Rémillard et al. [126]. Papers that consider copula-based models for longitudinal data
include Frees and Wang [59], Sun et al. [141], and Smith et al. [138]. Bonhomme [18] use copulas to model the dynamics in
an earnings panel data set.

2.3.1. Empirical illustration, continued
Consider now the estimation of a semiparametric first-order Markov copula model for the S&P 100 index returns

described in Section 2.1.2. As in Chen and Fan [26], we use the EDF to estimate the marginal distribution of these returns.
Given the rank autocorrelation estimates presented in Table 1, it is clear that we should allow for negative dependence
between consecutive returns. This is accommodated easily by some copula models (such as the Normal and Student’s t ,
where the correlation parameter can be either positive or negative) but requiresmorework for other copulamodels, such as
the commonly-used Clayton and Gumbel–Hougaard copulas. To accommodate negative dependence with a Clayton copula,
one may consider a ‘‘half rotation’’ of the copula (where we ‘‘flip’’ just the first variable) so that

(1 − Ut ,Ut−1)
⊤ ∼ CClayton (κ) .

Larger values of κ in this model imply stronger negative dependence, and with this rotation it implies tail dependence in
the second quadrant (i.e., as ut−1 → 0 and ut → 1) rather than the third quadrant as for the usual Clayton copula. The
other ‘‘half rotation’’ of this copula also implies negative dependence, but with tail dependence in the fourth quadrant (as
ut−1 → 1 and ut → 0). Estimating both of these on the data indicated strongly that the first rotation is preferred (log-
likelihood of 30.6 vs 2.2), and both of these are preferred to the original Clayton copula. A similar rotation improves the fit of
the Gumbel–Hougaard copula on this data, though given that the original Gumbel–Hougaard copula implies tail dependence
in the joint upper tail (rather than the joint lower tail for the Clayton copula) a rotation of the ut−1 variable provides the
better fit. That is,

(Ut , 1 − Ut−1)
⊤ ∼ CGumbel (κ) .

These two copulas, along with the Normal and Student’s t copulas, are estimated on the S&P 100 returns and the results are
presented in Table 4. The values of the log-likelihood indicate that the Student’s t copula is preferred, with a log-likelihood
of 76.9, compared with the next best model, the ‘‘half-rotated’’ Gumbel–Hougaard with a log-likelihood of 38.8.

Table 4 also presents three different estimates of the standard errors for the copula parameters. The first is a
‘‘naïve’’ estimate based solely on the inverse Hessian of the copula likelihood, where the estimation error from the use
of the EDF in the first stage is ignored. The second estimate is that of [26], which does account for the estimation error due
to the EDF. The third estimate is based on 1000 simulations of this copula model, and which also incorporates the impact of
estimation error from the EDF. (The computation time for these standard errors was 2.3 h.) Unlike the naïve standard errors
in themultivariate application considered in Section 2.2.5, which were found to be too small relative to the correct standard
errors, in this univariate application the naïve standard errors are not very different from the correct standard errors.
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Of course, it should be noted that this need not be true in other applications, and the current application is perhaps special in
that the overall dependence between consecutive returns is relatively weak (first order rank autocorrelation of just −0.05).

3. Goodness-of-fit tests

In this section we consider the problem of goodness-of-fit (GoF) testing. A GoF test looks for evidence that the copula is
misspecified, i.e., different in some way from the unknown true copula. As for parameter estimation, inference for GoF tests
differ depending on whether the model under analysis is parametric or semiparametric, and we will consider these two
cases separately. We will focus on in-sample (full sample) tests of GoF; see Chen [24] for analysis of out-of-sample GoF
tests.

Two tests that are widely used for GoF tests of copula models are the Kolmogorov–Smirnov (KS) and the Cramér–von
Mises (CvM) tests, see Rémillard [125], both of which are based on comparing the fitted copula CDF to the empirical copula

ĈT (u) ≡
1
T

T
t=1

n
i=1

1(Ûit ≤ ui),

where Ûit is defined in Eq. (3). An alternative, related, GoF test is based on Rosenblatt’s transform, which is a multivariate
‘‘probability integral transformation’’; see [45,125]. In this approach the data are first transformed so that, if the model
is correct, the data are independent U (0, 1) random variables, and then KS and CvM tests are applied to the transformed
data. GoF tests that use the empirical copula of the data rely on the assumption that the true conditional copula (defined in
Eq. (2)) is constant, and so are inappropriate for time-varying copula models. GoF tests based on the Rosenblatt transform
can be used to test both constant and time-varying copula models, as well as copula-based Markov models.

Genest et al. [72] provide a comprehensive review of the many copula GoF tests available in the literature, and compare
these tests to tests of their own via a simulation study. Across a range of data generating processes, they conclude that
a Cramér–von Mises test (applied to the empirical copula or to the Rosenblatt transform of the original data) is the most
powerful, a finding that is supported by Berg [14] who considers some further tests. Berg and Quessy [15] study the local
power of copula GoF tests.

3.1. Fully parametric

For fully parametric copula-based models, GoF testing is a relatively standard problem, as these models are simply
non-linear time series models; see the review article on evaluating predictive densities by Corradi and Swanson [37], and
Bontemps et al. [19] and Chen [24] on GoF tests for multivariate distributions via moment conditions.

A difficulty in obtaining critical values for GoF test statistics, such as the KS and CvM test statistics, is that they depend
not only on the estimated copula parameter, but also on the estimated marginal distribution parameters. As discussed in
the context of obtaining standard errors on estimated copula parameters, the parameter estimation error coming from the
marginal distributions cannot in general be ignored. GoF tests can be implemented in various ways, but for fully parametric
models a simple (computationally intensive) procedure is always available, based on simulating from themodel, estimating
theparameters of themarginal distributions and the copula on the simulateddata, and then computing theGoF test statistics.
Repeating this many times provides the distribution of the test statistic under the null that the model is correct, and from
this distribution a p-value can be obtained; see Genest and Rémillard [71] for example.

3.2. Semi-parametric

Rémillard [125] considers GoF tests for semi-parametric copula-basedmultivariatemodels for time series, and shows the
surprising and useful result that the asymptotic distributions of GoF copula tests are unaffected by the estimation ofmarginal
distribution parameters (as was the case for the asymptotic distribution of the estimated copula parameters, shown by Chen
and Fan [26]). The estimation error coming from the use of the empirical distribution functions doesmatter, and he proposes
a simple simulation-based method that is similar, but simpler, than the simulation for the fully parametric case described
above. Chen and Fan [26] describe a similar simulation-based method that can be used to obtain critical values for GoF tests
of semi-parametric copula-based Markov models.

3.3. Empirical illustration, continued

In Table 5 we present the results of GoF tests applied to the four copula models estimated on the standardized residuals
of the S&P 100 and S&P 600 stock index returns, described in Section 2.2.5. The subscripts ‘‘C’’ and ‘‘R’’ on the column
headings indicate whether the test was applied using the empirical copula directly or the empirical copula of the Rosenblatt
transforms. In all cases a simulation-based approach was used, as described above, with 100 simulations. For the fully
parametric models we see that the Clayton copula is rejected by all four tests. The Normal copula is rejected by both tests
using a Rosenblatt transform, while the rotated Gumbel–Hougaard and Student’s t copulas are each rejected by one out of
the four tests. For the semiparametric models all four copulas are strongly rejected by all four tests. Thus we do not find
empirical support for any of these copulas.
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Table 5
Goodness-of-fit tests for multivariate copula models.

KSC CvMC KSR CvMR

Parametric

Normal 0.10 0.09 0.00 0.00
Clayton 0.00 0.00 0.00 0.01
Rot. Gumbel 0.09 0.02 0.09 0.06
Student’s t 0.00 0.13 0.04 0.07

Semi-parametric

Normal 0.00 0.00 0.00 0.00
Clayton 0.00 0.00 0.00 0.01
Rot. Gumbel 0.00 0.00 0.02 0.00
Student’s t 0.00 0.00 0.02 0.00

Note: This table presents the p-values from various tests of goodness-of-
fit for four different copula models for the standardized residuals for the
S&P 100 index and the S&P 600 index, when the marginal distributions are
estimated parametrically (top panel) or nonparametrically (lower panel). KS
and CvM refer to the Kolmogorov–Smirnov and Cramér–von Mises tests,
respectively. The subscripts C and R refer to whether the test was applied to
the empirical copula of the standardized residuals, or to the empirical copula
of the Rosenblatt transform of these residuals. The p-values are based on 100
simulations.

Fig. 3. This figure shows the sample quantile dependence between the standardized residuals for the S&P 100 index and the S&P 600 index and 90%
bootstrap confidence intervals (shaded), as well as the quantile dependence implied by four copula models. The vertical axis measures the probability of
one variable lying below (for q < 0.5), or above (for q > 0.5), its q quantile, given that the other variable also lies below/above its q quantile.

It is at this point that a drawback of ‘‘blanket’’ tests, such as KS and CvM tests, becomes clear: these tests are consistent (in
that they have power against all possible deviations from the null of correct specification), but upon rejecting a model they
provide no guidance on the direction inwhich themodelmight be improved. An alternative approach to GoF testing involves
looking for misspecification in particular directions, such as tests based on particular moments or measures of dependence
(see Bontemps et al. [19] for example), which may be more informative but are not consistent.

To try to see why these models are all rejected, one might look at the quantile dependence plot implied by each of these
models, compared with the sample quantile dependence plot. This is presented in Fig. 3. From this figure we can see that
the Clayton copula is too asymmetric compared with the data, and this is also the case for the rotated Gumbel–Hougaard
copula. The Normal and Student’s t copulas appear to fit the sample upper quantile dependence estimates, but are (slightly)
too low in the lower tail. Thus it appears that a more flexible copula, allowing for some asymmetry but not imposing too
much, may be required for this data.

In Table 6 we report GoF tests for the copula models of semiparametric first-order Markov copula model for the S&P 100
index returns described in Section 2.3.1. In this case we focus only the KS and CvM tests based on the Rosenblatt transform,
given the time series nature of the model. We again use a simulation-based method to obtain critical values, based on 100
simulations. Table 6 shows that the Normal and ‘‘half rotated’’ Clayton copulas are both rejected, while neither the ‘‘half
rotated’’ Gumbel–Hougaard nor the Student’s t copula models can be rejected using either test.
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Table 6
Goodness-of-fit tests for univariate copula models.

KSR CvMR

Normal 0.02 0.07
HRot. Clayton 0.01 0.03
HRot. Gumbel 0.13 0.11
Student’s t 0.22 0.42

Note: This table presents the p-values from various tests of
goodness-of-fit for four different semiparametric first-order
Markov copula models for daily returns on the S&P 100
index. KS and CvM refer to the Kolmogorov–Smirnov and
Cramér–von Mises tests, respectively. The p-values are based
on 100 simulations.

4. Applications of copula methods for economic time series

The past decade has witnessed an ever-growing array of applications of copula methods in empirical economic research,
driven by wide-ranging evidence against the assumption of a Normal copula (a benchmark model) for many economic
variables, particularly financial asset returns. For example, without actually drawing on copula theory, Erb et al. [53], Longin
and Solnik [106], Ang and Chen [6] and Bae et al. [8] all document evidence against the Normal copula. In this section we
briefly review someof the applications of copulas for economic time series, divided into broad groups according to the nature
of the application, and then review two of the frontiers of research on copulas for economic time series, namely models for
time-varying conditional copulas, and models for high-dimensional copulas.

4.1. Risk management

One of the first areas of application of copulas in economics and financewas riskmanagement. The focus of riskmanagers
on Value-at-Risk (VaR), and other measures designed to estimate the probability of large losses, leads to a demand for
flexible models of the dependence between sources of risk. See Komunjer [103] for a recent review of VaR methods. Hull
andWhite [94], Cherubini and Luciano [31], Embrechtset al. [50], Embrechts et al. [49] and Embrechts and Hoing [48] study
the VaR of portfolios. Rosenberg and Schuermann [129] use copulas to consider ‘‘integrated’’ risk management problems,
where market, credit and operational risks must be considered jointly. McNeil et al. [110] and Alexander [4] provide clear
and detailed textbook treatments of copulas and risk management.

4.2. Derivative contracts

Another early application of copulas was to the pricing of credit derivatives (credit default swaps and collateralized debt
obligations, for example), as these contracts routinely involve multiple underlying sources of risk. Li [105] was first to use
copulas in a credit risk application (and is behind the headline of ‘‘the formula that killed Wall Street’’). See also [60,133,
77,92] for applications to default risk. Duffie [47] argues that copulas are too restrictive for certain credit risk applications.
Applications of copulas in other derivativesmarkets includeCherubini et al. [32], Rosenberg [128], Bennett andKennedy [13],
van den Goorbergh et al. [144], Salmon and Schleicher [131], Grégoire et al. [82] and Taylor and Wang [142].

4.3. Portfolio decision problems

Considering a portfolio decision problem in its most general form involves finding portfolio weights that maximize
the investor’s expected utility, and thus requires a predictive multivariate distribution for the assets being considered.
Applications of copulas in portfolio problems include Patton [118], who considers a bivariate equity portfolio problem
using time-varying copulas; Hong et al. [93] consider an investment decision involving eleven equity portfolios under
‘‘disappointment aversion’’ preferences; Christoffersen and Langlois [36] consider portfolio decisions involving four
common equity market factors; and Garcia and Tsafack [63] consider portfolio decisions involving stocks and bonds in two
countries.

4.4. Time-varying copula models

As noted earlier in this survey, the econometrics literature contains a wealth of evidence that the conditional volatility
of economic time series changes through time, motivating the consideration of models that also allow the conditional
copula to vary through time. Various models have been proposed in the literature to date. Patton [117,118,120], Jondeau
and Rockinger [100], Ausin and Lopes [7], Christoffersen et al. [35] and Creal et al. [38] consider models of time-varying
copulas where the copula functional form is fixed and its parameter is allowed to vary through time as a function of lagged
information, similar to the famous ARCHmodel for volatility, see Engle [51] and Bollerslev [16]. ‘‘Stochastic copula’’ models,
analogous to stochastic volatilitymodels, see Shephard [134], were proposed byHafner andManner [84] and further studied
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inManner and Segers [108]. ‘‘Locally constant’’ copulamodels are considered byGiacomini et al. [76], Guégan andZhang [83],
Dias and Embrechts [44], Harvey [87], Rémillard [125] as well as in Busetti and Harvey [22]. Regime switching models, as in
Hamilton [85], for the conditional copula allow the functional form of the copula to vary through time and are considered
by Rodriguez [127], Okimoto [116], Chollete et al. [33], Markwat et al. [109], Garcia and Tsafack [63]. See Manner and
Reznikova [107] for a survey specifically focused on time-varying copula models.

4.5. High-dimension copula applications

Early applications of copulas in economics were almost all bivariate in nature, however much recent work has focused
on how to handle higher dimension applications of copulas. While bivariate and low dimension (d < 10) applications are
still prevalent, many authors now consider dimensions greater than this, up to around one hundred variables. For example,
Daul et al. [40] proposed a ‘‘grouped t ’’ copula and show that this copula can be used in applications of up to 100 variables.
Hofert and Scherer [92] and Hering et al. [90] consider nested Archimedean copulas for modeling credit default swaps on
125 companies; see also Hofert et al. [91] for a study of numerical issues associated with estimation in this context. Smith
et al. [138] use a skew t copula tomodel groups of up to 15 variables, and Christoffersen et al. [35] combine the skew t copula
of Demarta and McNeil [42] with DCC Engle [52] dynamics for correlations in their study of 33 developed and emerging
equitymarket indices. Multivariate ‘‘vine’’ copulas (or ‘‘pair copula constructions’’) are constructed by sequentially applying
bivariate copulas to build up a higher dimension copula, see [1,89,111] for example; see Acar et al. [3] for an important
critique of vine copulas. Oh and Patton [114] apply a new class of ‘‘factor copulas’’ to a collection of 100 daily stock returns.

4.6. Other applications

There are several noteworthy economic applications of copulas that do not neatly fit into one of the above categorizations.
Breyman et al. [21] and Dias and Embrechts [44] study the copulas of financial assets using intra-daily data sampled
at different frequencies; Grangeret al. [81] use copulas to provide a definition of a ‘‘common factor in distribution’’ for
macroeconomic time series; Bartram et al. [9] use a time-varying conditional copula model to study financial market
integration between seventeen European stock market indices; Heinen and Rengifo [88] use copulas to model multivariate
time series of counts; Rodriguez [127] uses copulas to study financial contagion; Dearden et al. [41] and Bonhomme and
Robin [18] use copulas to model dynamics in a panel of earnings data; Lee and Long [104] use copulas to model the
(uncorrelated) residuals of a multivariate GARCH model; Patton [121], Dudley and Nimalendran [46] and Kang et al. [101]
apply copulas to study dependence between hedge funds and other assets; and Zimmer [147] studies the role of copulas in
the recent US housing crisis.

5. Conclusion

This survey reviews the growing literature on copula-based models for economic and financial time series. Models
for multivariate time series, where copulas are used to model cross-sectional dependence, and univariate time series,
where copulas model the serial dependence, are discussed. Estimation of these models is commonly conducted
either parametrically, with the marginal distributions and the copula specified as belonging to parametric families, or
semiparametrically, where the marginal distributions are estimated nonparametrically. Inference methods differ according
to this choice, and both cases are reviewed. Goodness-of-fit tests for copula-based models are reviewed, and a brief survey
of the many applications of copulas in the economics and finance literature is provided. Two simple empirical examples
illustrate some of the methods presented.
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