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Abstract

We consider the problem of decomposing tensor powers of the fundamental level 1 highest weight
representatiofV of the affine Kac—Moody algebrg(Eg). We describe an elementary algorithm for
determining the decoposition of thesubmodule of ®" whose irreducible direct summands have
highest weights which are maximal with respect to the null-root. This decomposition is based on Lit-
telmann’s path algorithm and conforms with thefanin combinatorial behavior recently discovered
by H. Wenzl for the seriegy, N # 9.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

While a description of the tensor product degmositions for irreducible highest weight
modules over affine algebras can be found inlitezature (see, e.g., [1]), effective algo-
rithms for computing explicit tensor productstiplicities are scarceSome partial results
in this direction have been obtained by computing characters (see, e.g., [2]) and by em-
ploying crystal bases (see, e.g., [5]) or the equivalent technique of Littelmann paths. In
this note we look at the particular case of the affine Kac—Moody algebra associated to the
Dynkin diagramEg, with any eye towards extending the results of [6].

Let V be the irreducible highest weight representation ofgttfey), N > 6, with high-
est weightA; corresponding to the vertex in the Dynkin diagram furthest from the triple
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Table 1

Notation

o ith simple root

[0) root lattice

A ith fundamental weight

P weight lattice

Py dominant weights

Py dominant weightgmods)
13+ (n) level n dominant weightgmod?)
n(\) level of A

P(Ayp) weights ofV

W-Aq maximal weights o4,

ko) set of straight weights

P (VO dominant weights o/ ®”
[X]3 least residue of (1) (mod 3
), patht — tA

w (affine) Weyl group

Sk) level k initial weights
A= straight weight path

point. ForN # 9, H. Wenzl [6] has found uniform combinatorial behavior for decompos-
ing a certain submodulg® of V®" using Littelmann paths [4]. These submodules have
the property that each irreducible summand/gf;, appears iV ®" for the first time (for

N < 8) or last time (forN > 10). The degeneracy of the invariant form was an obstacle to
including the affineN =9 case.

We extend Wenzl's combinatorial description to the cA'se 9 by finding submodules
M, analogous to hi&/&. Specifically, we look at the (full multiplicity) direct sum of
those submodules df®” whose highest weights have maximal null-root coefficient. Not
surprisingly, these summands appeaty in V®*. The particular utility of considering
this submodule is that whereas decomposing the full tensor pb\wérinto its simple
constituents would require an infinite path basis, only a finite sub-basis (consisting of 200
straight paths) is needed to determine the decompositiovi pf Although this note was
inspired by the results of [6], the modul,, appears so naturally that this case may shed
some light on the combinatorial behavior described by Wenzl.

This paper is organized in the following way. In Section 2 we give the data and standard
definitions for the Kac—Moody algebgg Eg). Section 3 is dedicated to summarizing the
general technique of Littelmann paths, while in Section 4 we apply this technique to the
present case and present some new definitions. Table 1 gives a glossary of notation for the
reader’s convenience. All the lemmas weye are contained in Section 5, and the main
theorem and algorithm they lead to is described and illustrated in Section 6. We briefly
mention a possible application and a generalization in Section 7, as well as connections to
Wenzl's results.

2. Notation and definitions

We begin by fixing a realization of the generalized Cartan matrig(&%) sometimes
denoted in the literature by(Eél)). Observe that our realization is different than that of
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Fig. 1. Dynkin diagram ofqg.

Kac [3]. In particular, the vertex Kac labels with a 0 we label with a 1 in our Dynkin
diagram (Fig. 1). This is done to conform with the notation of [6].

Definition 2.1. Let {eo, 8, €1, . . ., g} be an ordered basis f&°, with symmetric bilinear
form (,) such that(e;, ¢;) = §;; for 1 <i, j < 8 and(s, eo) = 1 with all other pairings 0.
The simple roots ofi(Eg) are defined by

& — &it1, if1<i<7,
£7+ €s, if i =8,

@ =94 ;
5(54-88— Zé‘,’), if i =0.

i=1
The simple roots generate the root latti@e= span,{«; }, and we define coroots

2
o = o;.
(o, ;)

As g(E9) is simply-laced, we abuse notation aitténtify each coroot with the corre-
sponding root. Since we are only concerned with the combinatorics, we refer the reader
to Chapter 6 of the book [3] for the full description of the Kac—Moody algejife).

Definition 2.2. We define the fundamental weights by

(i,0;1,...,1,0,...,00iones ifl<i<6,

1
Z@8.0:1.....1, 1), ifi =7,
A=12
=11
5(6.0:1.....1), if i =8,
(2.0:0,....0). if i =0.

Note that(c;, A ;) = §;;, and the fundamental weights gfEg) are determined up to
a multiple of § by this relation. The set of dominant weigh#s. is the N-span of the
fundamental weights plu€s, and theZ-span P is called the weight lattice. It will be
useful to denote by?Jr those dominant weights whose second coordinate is 0.

Definition 2.3. We define the Weyl group in the usual way:= (s;: i =0, ..., 8) where
si(v) =v — (v, )y for v e RO,
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The simple reflection‘gs,'}?:1 generate a finite subgrouf acting on the last eight co-
ordinates by permutations and an even number of sign changes. Fomathy(i, ag) > 0
the vectorsg(r) has a strictly smalles-coefficient, and by applying elements &f to
arrange(A, ag) > 0 one can construct an infinite sequence of vectors with strictly decreas-
ing 5-coefficients. Thus one sees th#tis an infinite group.

3. Littelmann paths

To decompose the tensor powersibfve use the Littelmann path formalism (see [4]).
For this section we consider general Kac—Moody algebras

Littelmann considers the space of piecewise linear pathg, 1] — Pg beginning at
0 and ending at some point in the weight lattieeHe definesoot operatorson the space
of all such pathg; and f; for each simple roat;, which, when applied repeatedly to the
straight pathr; from 0 to a dominant weight give apath basis;, for the corresponding
irreducible highest weight modulé, . The operatorg; are defined on paths as follows
(see [4] for full details): leth; (1) = (7 (¢), ;), andm; = min(h; (¢)). If h; (1) —m; > 1,
split the intervalO, 1] into three pieced0, ro] U [to, 1] U [#1, 1] wheretg is the maximat
such that:; (r) = m; andzy is the minimals such that:; (1) =m; + 1. Then

7 (t) on|O0, o],
fim =1 si(7@) onlrw,nl,
m(t) —a; onftg, 1].

If h;(1) —m; < 1thenf;m =0. The operatorg; are defined similarly. Since all paths
begin at the weight 0, we may concatenate paths in the usual way. Far @y define
the pathr, : [0, 1] — Pg by r — rA. We denote concatenation byi.e.,, * 7, passes
throughi and terminates at + .

Let » andu be dominant weights of a Kac—Moody algebra afndV,, the correspond-
ing irreducible highest weight modules. Welleot together those of Littelmann’s results
that we will need in:

Proposition 3.1.

(@) B, C {f1, f2; -~ fs;m}s that is, every path in the basiS, is obtained fromr;, by
applying a finite sequence of the root operatgys
(b) The decomposition rules for the tensor product given as follows

Vi® VW= @ V@),
T

wherer = 7, * m; with ; € B, and the image ofr contained in the closure of the
dominant Weyl chamber.

(c) The multiplicity ofV,, in VA®” is equal to the number of paths whose image is contained
in the closure of the dominant Weyl chamber that terminate and are obtained by
concatenating basis paths.
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4. Lietype Eq

Now we consider the sét(A1) of weights ofV . Following Kac [3], we call the weights
in the Wey!l group orbi¥ - A; maximaland note that

P(A)= |J fo—18:1eN}
weW-Aq

Any V, s that appears in somié®” must be of the form

A—s56= Z w;

w;€P(Ay)

with s € %N. Itis well known that the maximal weights appear in the multi®éti1) with
multiplicity one (for example, see [1]).

The second coordinate (essentially determined by the number of tgraurs in a
minimal expression) provides a gradationWwn A; which motivates the following lemma,
the proof of which is a computation.

Lemma4.1. Everyw € W - A1 is of one of the followind forms

() Typel: (1,0; £&;).
(I Typell: %(2, -1, 41, ..., £1) with an even number of minuses among the last eight
coordinates.
(1 Typelll: (1, -1; w(1,1,1,0,...,0)) wherew € Sg, the group of permutations o

symbols.
(IV) TypelV: all others, i.e.,(1,—j;v) wherej > 1 and if j =1, v ¢ Sg{(1,1,1,0,
0
The weights of types I-lll will be particularly useful and we will call thestraight

weightsand denote the set of straight weights®y|t is a simple but tedious computation

to show that for anw € £2, the straight line patlr,, from O tow is in the path basi8 4, .

The idea of the computation is to start with the path and inductively apply only those
operatorsf; for which the height functiom; (r) = ¢ so that two of the three intervals in

the definition of the operatof; are degenerate, and the image of the paths remain straight
lines. Types | and Il weights are in faall maximal weights with second coordinate 0 or
—%, while there are maximal weights with second coordinatebesides those of type lll.
Observe that sincé; is the unique level one dominant weight (modd)o all paths ob-
tained from concatenation of basis paths whose image lies in the dominant Weyl chamber
must pass through .

Definition 4.2. Theleveln(i) of a weighta is theeg coordinate. Note that all weights in
P(Ay) are level 1, thug has leveh iff A — 15 appears i/ ®" for somer sincei will be a
sum of weights inP(A1). Denote byP, (n) the set of levek dominant weights moduld.
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The following definition appears in [6] and is critical in the sequel.
Definition 4.3. We define the functiok : Q — Z in one of the following equivalent ways:

(@) k(w) = —(w, 240), Whereao = ap — ¢s.
(b) If o=Y"8 ) M; A;, thenk(w) = Mg — M7 — 2Mo,.

We will also need the quantityr)]3 defined to be the remainder &ti.) upon division
by 3.

We compute these values for the maximal weights and record them in the following
lemma.

Lemma 4.4. The values of the functidnfor the maximal weights of typesl-Ill and IV
(asin Lemmat.1) satisfy

(1) Typel: k(w) € {0, —2}.
(I Typell: k(w) € {3,1, -1, —3, —5}.
() Typelll: k(w) = 2.
(IV) TypelV: k(w) < (6 — 6) wherew = (1, —j; v) and1 < j € 3Z.

The dominant weights are only defined up to a multiplé dbut we are interested in
those that appear iR, (V®*) which motivates:

Definition 4.5. A level n dominant weight. — m, § is calledinitial if m; is minimal such
thatVi_,, s appears iV ",

Remark 4.6. It is easy to see that there are finitely many initial weights of a fixed leyel
since there is a one-to-one correspondence between the finite @@tand initial weights.
The terminitial comes from the fact that i —m, § € 13+ (n) so ish — (m; +1)8. Moreover,
it is clear thatm,, is always a non-negative half-integer, since the coefficiertfof any
weightw € P(A1) is a non-positive half integer.

We will eventually show that ther, is computed from the value &@{) via the function:

Definition 4.7. Let A € Py.:

o, if k(A) <0 and even,
1 .

A =17 if k(A) <1andodd, 4.1)
é(k(k) +2[M]3), if k() >1.

Observe that wheh() = 1 we haveg k(%) + 2[A]3) = 5 S0 A is well-defined.
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Definition 4.8. Define M,, to be the largest submodule &®" such that all irreducible
direct summands have highest weights of the farmm, § (i.e., initial weights).

We illustrate this definition with an example.

Example 4.9. The highest weight modul€,, does not appear i ®3 as it is not a sum of
3 type | weights. Howevel/,_s,> does appear iv®3 as

8 1 1
A8—§=Ao+§(2,—1; 1,...,)=(1,0¢e1) + (1,0 —81)+§(2,—1; 1,...,0).

Notice also thatVs,_;s/2 Will also appear invV®3 for any+ > 1, but only Vag—sy2 Will
appear inMs.

The complete reducibility o¥ ®" (see, e.g., [1]) allows us to write:
V®n g Mﬂ @ Zna

whereZ, consists of those simple submoduldsogse highest weights are not initial.

5. Lemmas

In this section we describe the combinatorial rules for decomposing the motitjes
The first two lemmas show that, = A()), while the two that follow show that one may
determineM,, ;1 from M,, and the (finitely many) straight weights.

Lemmab5.1. Let ) € ﬂ so thath — A(2)$ is a leveln dominant weight. TheW,_ A.)s
appears inv ®", Moreover, there is a straight weight path frdhto A passing through only
weights of the form — A(w)d with € Py

Proof. Since we are not concerned with computing multiplicities, it suffices to construct

a piecewise linear straight weight path from Qite- A(1)38 contained entirely within the
dominant Weyl chamber. Assume= Z?:o M; A;. We will construct the required path in
reverse by starting from the weight- A(1)8 and removing path segments until we reach

the weight 0. By concatenating the paths we remove in reverse order we obtain the desired
path. The first set of useful paths are the sub-paths of

71:0—> A1 —> A —> A3 —> Ag—> A5 — Ag — (A7+ Ag) = (Apg+ 2Ag)

constructed by concatenating straight pathserminating atw = (1,0; &), i =1,..., 8.
We denote byr{’) theith sub-path ofr;. In a similar fashion we construct

72:0—> A1— Ag and 73:0— A1 — -+ — (A7+ Ag) > 2A7
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again using only paths with type | straight weight segments. The affect of removing these
path segments on the valueigh) is as follows (where the value of a path at .)s

(1) k(r * nii)(l)) =k( (1)), i.e., deleting sub-paths af; has no affect on the value of
k().

(2) k(w xm2(1)) = k(7w (1)) — 2 so deleting the pathy increases the value &f{)) by 2.

(3) k(r xm3(1)) =k( (1)) — 2 so deleting the pathg increases the value &f{)) by 2.

Casel. k(L) = Mg — M7 — 2Mp < 0 is even.

In this caseA (i) = 0. Sincek (1) does not depend oi;, 1 < i < 6, we can reduce
the caseM; =0, 1< i < 6, using sub-paths of;. For A with Mg = M7 = My =0 we are
done. If not, we observe thaf; and Mg have the same parity. Again using the sub-path
of 71 terminating atA7 + Ag as many times as is necessary, we may assume ather0
or Mg =0.

Case 1.1.M7 =0. In this case we havéfg < 2Mp and Mg even. So by removing path
segmentsr; as many times is as necessary we can reduddgte- 0 with k(1) = —2Mg
unchanged. At this point we are left with the case Mg Ao, to which we remove the path
segmentsro as many times as necessary to reduce to 0.

Case 1.2.Mg = 0. Here we have thaM7; > —2My and M7 is even, so we reduce by
3 until M7 = 0 and then reduce by the path until Mo =0 and we are left with the
weight 0. Observe that(,) = —M7 — 2Mp in this case so while deleting path segments
7o Of 3 result in a raised-value, it will always be non-positive and even, regardless.

Casell. k(L) = Mg — M7 —2Mp < 1is odd.

Here Mg and M7 have opposite parity; so, as in Case |, we reduce by sub-paths of
until eitherM7 = 0 or Mg = 0. Then we reduce by paths as in Case | until we are left with
two casesi = A7 — §/2 andr = Ag — §/2. These are achieved by the paths:

) 8
0— A1 —> Ay > A3 — A7—§ and 0— Ay — As_i

using the straight weightg(2, —1; —1,-1,-1,1,...,1,-1) and (2, -1; -1, -1,1,
..., 1), respectively.

Caselll. k(A) = Mg — M7 — 2Mg > 2.

In this caseMg > 2 + M7 + 2Mp, SO we can use sub-pathssef to reduce taVf; =0
and thenMgy = 0 without changing the value df(A) and we are left with the task of
constructing a path terminating at= MgAg — A(MgAg), wherek(A) = Mg > 2. The
weight 34g — §/2 is of the formu — A(w)8 with 11 € P and the path:

T * [(2A8 + Ag) — <3A8 — %>i|
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allows us to reduce tdfg < 2 since:

¢
A((Mg — 30) Ag) = = (Mg — 3¢ + 2[ (Mg — 3¢) Ag| ;) = A(MgAg) — 5 61

ol

so that
)
MgAg — A(MgAg)s — €<3A8 — E) = (Mg —30)Ag — A((Mg — 3E)A8)5.

Now the cased/s = 0,1 were covered in Cases | and Il, respectively, so we need only
construct a path to2g — §. But this is nothing more than a doubling of the path

8
0— A2 — (A8_§)

constructed above. This completes the proaf.
Lemmab.2. A(A) =m;, forall 1 € ID\JF.

Proof. By Lemma 5.1 it is sufficient to show that, > A()) sincer — A(A)S appears in
V@ hencen; < A(L). Again we consider cases.

Casel. k(1) <0 and even.
Sincem; > 0= A()) there is nothing to prove.

Casell. k(1) <1 and odd.

We need only show that, # 0. The only way that this can occur isjifcan be ex-
pressed as a sum of type | weights. Bub) = 0 or —2 for w of type I, so ifA were a sum
of type | weightsk (1) would be even.

Caselll. k(1) > 2.

In this case we will reduce to the case where MgAg — t§ using sub-paths ot as
in the proof of Lemma 5.1. Suppose

8
A=Y M;A;—18
i=0

with ¢+ minimal andr € %N. We computek(r) = Mg — M7 — 2Mg > 2, so thatMg >
M7+ 2Mp. We can reduce to the case whéifg = Mo = - - - = Mg = M7 = 0 using sub-
paths ofr1 and observing that

A = MoAg+ (Mg — M7)Ag — 68
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hask(1") = k(1) ands minimal for A" if and only if 7 is minimal for A. SettingM/, = My
andMg = (Mg — M7) we havek(1') = Mg —2M; > 2. Reducing by the patin and setting
Mg = Mg — 2M, we see that

A= MY Ag — 18

hast minimal if and only ifz is minimal for)’. So we are left with showing that, > A(%)
for A = MgAg. This will follow by an induction argument once we show it for the cases
Mg=1,2,and 3.

Mg =1. This case was already covered in Case Il above.

Mg =2. If 2Ag were a sum of type | weights, we would hak€@Ag) < 0 so we must
have at least one weight of type Il, Ill, or IV. By considering the valueg @in these
weights, we see that= 1 is minimal.

Mg = 3. Again considering the values &f we see that type | weights are not sufficient
and that = 3 is minimal.

Observing thatA((Ms — 3¢) Ag) + 5 = A(MgAs) (see Eq. (5.1)) the caség > 3
follows by induction and we are donen

Remark 5.3. We may now redefinitial weight to be any dominant weight of the form
A =AM, and we denote the set of initial weights of lexdby S(n) ={A — A(V)S: 1 €
Py (n)}.

Lemmab.4. If L — A(L)$ is an initial weight andw € £2 theni — A(A)8 — w is either an
initial weight or not in the dominant Weyl chamber.

Proof. Letyu—t8 =1 — A(X)é —w Whereu € 11. Assume thag is in the dominant Weyl
chamber. We must demonstrate that A(u1). By Lemma 5.2, we have that> A(u) as
t < A(w) would contradict the minimality ofA(x). Using Lemma 4.4, we have
AL, if wis of type I,
1
= A(/\)—E, if wis of type I, (5.2)
A\ —1, if wis of typelll.

It is sufficient to show that (i) > ¢ for all of these cases. We organize them by con-
sidering the value ot (1) as follows:

Casel. k(1) <0 and even.
Here we haveA (1) = 0. SinceA(u) > 0 the only possibility is thad is of type I, for
which it is clear.
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Casell. k(1) <1 and odd.

The only possibilities are of type | or I, sinceA(x) = % in this case and\ () > 0.
If wis of type Il, thenr = 0, henceA(w) > ¢t is obvious. Ifw is of type I, therr = % and
Lemma 4.4 impliek () = k(L) — k(w) < 3 and odd. Ifk(n) < 1 and odd them\ (i) = %
and we are done. Otherwig€u) = 3, and we compute (i) = % as required.

Caselll. k(1) > 2.
Here there are 3 cases depending on the type.dfhe computations are somewhat
tedious, but straightforward.

Case lll.l.wis oftypel. Ifk(w) =0, thenk(u) = k(A) henceA(u) = A(A) and we are
done. Ifk(w) = —2, thenk(u) = k(1) + 2 and we must check the three 3 cases correspond-
ing to the values ofu]3 (depending orir]3) by evaluatingA(u) = %(k(u) + 2[1]3).

Case lll.2wis of type ll. We must show that (u) > A(X) — % Thisis the most involved
case a%(w) € {3, 1, —1, —3, —5} and we must check a total of 15 subcases corresponding
to the 3 values ofA]3 and 5 values ok(w). As an example of what is involved we work
out the cases whef@]z =1 andk(w) = —1. Thenk(u) = k(1) +1,[un]3=2 and

1
(kM) +2)=A0) > AQ) — >

ol

1 1
A = 5 (k) + 1+ 2[uls) = g (kM) +1+4) >

Notice that in this casg is not dominant. The remaining cases are handled similarly.

Case lIl.3.w is of type Ill. We must show that\(u) > A(L) — 1. Herek(w) = 2 so
k(n) = k(1) — 2 and we must again check cases by evaluating). O

Lemmab.5. If A — A(X)6 is an initial weight andh — A(A)§ + w is also initial, thenw is
a straight weight.

Before giving a proof, we mention eaveat the requirement that — A(L)8 + w is
initial is not superfluous. For exampleAg — § is an initial weight and1, 0; —eg) is a
straight weight, but 2g — § + (1, 0; —eg) = A7 + Ag — § is not initial.

Proof. Itis enough to show that — A(A)§ + w is not initial if w is not straight. The key
fact here is from Lemma 4.4(w) < 6 — 6 for the type IV weightv = (1, —j; v) where
Jj = 1lis a half-integer. Lett — s6 = A — A(A)S + w for such a weighty. Observing that
s = A(A) + j we will show thats # A(w).

Casel. k(n) < 1.
Sinces > j > 1 andA(p) < 3, itis clear thats > A(u).
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Casell. k(1) < 1.
Here we have that

6j —1

Alp) = é(k()») + k(@) + 2[k(1) + k(w)],) < %(1+ 6j—6+4) = <j<s
SO once agaim () # s.

Caselll. k(1) > 1 andk(u) > 1.
Computing as above, we have

(k(1)+6j —6+4)

ol

1
A =7 (k) + k(@) + 2[k(V) + k(@)]5) <

1 6j —2
<é(k(k))+ 5

<A+ j=s.

So we see thati () # s in all cases and we are donex

6. Them main theorem and an algorithm
The following theorem is a immediate corollary of the lemmas in the previous section.

Theorem 6.1. If A — A(A)§ € S(n), then any straight weight path frofito A — A(L)§
passes through only iitiel weights. Thus

M, = @ caVi—a0)s
rePy(n)

where the multiplicitieg; are determined by counting the straight weight paths terminat-
ing atx — A(L)S.

Applying the results, we have the following simple inductive algorithm for decomposing
M, as a sum of simple highest weight modules:

Step 1. Initialize withM1 = V.
Step 2. Having determined the multiplicities so that

M, = @ aVicams
rePy(n)

compute the set;, = {A — A(L)J + w: w € 2} for each € I'Z(n).
Step 3. Compute the s&(n + 1). The size ofS(k) is computed from the generating
function:
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1
]_[ — = =14+ x+3x%+5% 410t
1 (4
0<i<8

+15¢° + 27+ 3% + 6%+ O[x°].  (6.1)

Step 4. Foreacp — A(u)8 € S(n+ 1), let B, = { € Py (n): u — A(1)S € A;}. Then

Cu = E Ch.

AEB,

Remark 6.2. The formula in Step 3 is valid since the level of a dominant weiglg
determined by the decompositian= ) ; M; A; and the levels:(A;) of the fundamental
weights A; (see Definition 4.2). One identifies a leveominant weight with a partition
of n into parts whose sizes are in the multi-§etA;)}, and standard combinatorics lead
to Eq. (6.1). For arbitraryv the highest weight modul®, appears inv®"®) where the
formula forn(d) is given in [6, Eq. (3.1)], in cas& # 9. However, his formula breaks
into three cases which depend b(l) in a way that makes the problem of constructing a
generating function valid for alv rather complicatedombinatorially.

As an application we compute the decompositions of the firstféy

MoZVp, @ Va, ® Voyu,,

M3=Vap, @2Va44, D3Vagta, ® Vag @ 2Vag—s)2,

Ma=Vapr, @ Va, ®6Vagr24, B 3Vayr24, B6VA,—52B VA4,
D 3V240 @ 8VAr+45-6/2D VA 443 D 2V24,.

7. Connectionsand further directions
7.1. Ey series

Wenzl introduces a generic labeling sEt,for the dominant integral weights gtEy),
N # 9, consisting of triplesn, i, i) wheren € N, u a Young diagram withi| < » and
i €{0,1, 2}, subject to some further conditions (see$@ction 2]). The labeling is realized
via a mapd assigning an element éf to each integral dominanteight. The ambiguity in
the dominant weights due to the null-root precludes extendirdjrectly to the excluded
case; however, the set of integral dominant weightg(@fs) whose image undep is in
I' is precisely the set of initial weights! Thus one sees that our submadijlenust be
the “missing link” replacing/, & required to extend Wenzl's riracombinatorial result [6,
Proposition 3.10] for théy, N > 6, series to thev =9 case:

Proposition 7.1. AssumeN > n. Then the branching rules fofnew C V32, C --- C V&,
do not depend oW
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This proposition implies that when< 9 andN > k the combinatorial formula given is
Step 3 of the algorithm holds.

7.2. Braid representations

For generigy, the tensor product rules for the quantum gréyp(E y) are the same as
those of the Kac—Moody algebgdE v ). Wenzl was also able to show that, for=£ 9, the
centralizer algebra of the corresponditigg(E v )-moduleV, 2% is generated by the image
of the braid groupB, (acting by R-matrices) and one more operator called thmsi-
Pfaffian It should be possible to extend this result to ffie= 9 case using the quantum
group version of the module®t,, together with the specific knowledge of the decomposi-
tion rules.

7.3. Other Lie types

It may be possible to use the same approach to derive a similar algorithm for decom-
posing the tensor powers of low-level highest weight modules for any affine Kac—Moody
algebra. By defining the submodules analogoustp one would just need to determine
the subset of maximal weights corresponding to thexef straight weights.
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