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Abstract

In this paper, we consider a class of pseudo monotone semiflows, which only enjoy some weak
monotonicity properties and are defined on product-ordered topological spaces. Under certain
conditions, several convergence principles are established for each precompact orbit of such a
class of semiflows to tend to an equilibrium, which improve and extend some corresponding
results already known. Some applications to delay differential equations are presented.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years the study of the convergence of precompact orbits as an important
subject of the theory of monotone dynamical systems has received amazing achieve-
ments. Hirsch[11] established that most orbits of a strongly monotone semiflows on
a strongly ordered space tend to the set of equilibria, which extends earlier work of
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Hirsch [9,10] for ordinary differential equations to infinite-dimensional semiflows, and
applied this result to parabolic partial differential equations. Those results in [11] were
later improved by Matano [15,16], Pd@i& [17], and Smith and Thieme [22,23].

The generic convergence principles in the aforementioned work imply that precom-
pact orbits of monotone dynamical systems have a strong tendency to converge to an
equilibrium, which therefore inspires many researchers to try to find sufficient con-
ditions for every precompact orbit of monotone dynamical systems convergent to an
equilibrium. For instance, Taka[24] introduced the subhomogeneous hypotheses to
establish the global convergence for strongly monotone discrete-time semiflows. Later,
the authors in [12,13,26] studied the global convergence for monotone and subhomoge-
neous systems from different points of view. Some other well-known conditions such
as the orbital stability, the first integral, etc. were also utilized by many investigators
to prove the global convergence in continuous- and discrete-time monotone dynamical
systems (see, e.g., [1,5,8,14,18,20,25,28]). For related work, we refer to the monograph
by Zhao [29]. When significantly enriching the theory of monotone dynamical systems,
the convergence principles in the above-mentioned literature fail to apply to many dif-
ferential equations without enjoying a comparison principle. However, it is possible that
some differential equations still possess some slightly weaker monotonicity properties
and in this case, we might even combine monotonicity arguments with dynamical sys-
tems ideas to obtain convergence to equilibrium for precompact orbits. We know that
very little has been accomplished in this direction. For instance, Haddock et al. [7]
recently introduced a class of eventually strongly pseudo monotone semiflows defined
on a function subspack € C(M, R') which has a topology making its inclusion into
C(M, RY) continuous, wherd/ is a compact topological space afd denotes the set
of all real numbers, and proved that each precompact orbit tends to a constant function
whenever each constant function is an equilibrium point for such semiflows.

Even though the convergence principle in [7] has been successfully applied to neutral
functional differential equations and semilinear parabolic partial differential equations
with Neumamn boundary condition, its requirements on the phase space, the set of
equilibria and even the monotonicity properties are still too restrictive and therefore,
its limitations seem natural. In fact, the convergence principle in [7] cannot be applied
to some important examples like the following scalar delay differential equation:

xX'(t) = —=Fx@) + G(x(t —r)), (1.1)

wherer is a positive constantF, G € C(RY), F is nondecreasing, and eithér(x) >

F(x) for all x € RY or G(x)<F(x) for all x € RY. Indeed, (i) if G # F, then

the set of equilibria of (1.1) cannot contain all the constant functions on the space
C([-r, 0], RY); (i) if G = F, then the semiflow generated by (1.1) does not enjoy

the monotonicity properties considered by Haddock ef7l.It should be pointed out

that the convergence principle in [27] cannot be applied to (1.1) either for the similar
reasons. Variants of system (1.1) have been used as models for various phenomena such
as some population growth, the spread of epidemics, the dynamics of capital stocks,
etc. (see, for example, [3,4,6] and the references cited therein).
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Motivated by the above discussion and example, we will consider a class of essen-
tially semi-strongly sup-pseudo (sub-pseudo) monotone semiflows (see Section 2 for
more details on this definition) defined on product-ordered topological spaces. Under
certain conditions, by combining monotonicity arguments and the basic properties of the
w-limit set of precompact orbits (i.e., nonempty, compact, invariant and connected), we
obtain several convergence principles, that is, each precompact orbit of such a class of
semilows tends to an equilibrium, which extend and improve earlier work of Haddock
et al. [7].

The paper is organized as follows. In Section 2, we define several class of pseudo
monotone semiflows and establish several convergence principles. In Section 3, some
applications of the results obtained in previous section to certain systems of delay
differential equations are given.

2. Convergence principles

In this section, we prove several convergence principles. For simplicity here, we
begin by introducing some notations and definitions.

Let X; be a topological space endowed with a closed partial order relatjon
wherei = 1,2, and(X;, R;) is also called an ordered topological space. The ordered
topological spac&X, R) defined byX = X3 x X2 and R = {(x1, x2, y1, y2) € X x X :

(xi, yi) € R;,i = 1,2} is called the product ordered topological space of the ordered
topological space$Xi, R1) and (X2, R2). For anyx;, y; € X;, A; C X;, the following
notations will be usedx; <;y; iff (x;,y;) € R, x; <; y; iff x;<;y; and x; # y;,

xi K yi 0ff (x;, y) € IntR;, x; <;A; iff x; <;y; for any y; € A;, x <; A; iff x; <; yi

for any y; € A;, x; < A; iff x; «; y; for any y; € A;, wherei = 1,2, and IntR;
denotes the interior oR; in X; x X;. For anyx,y € X and A C X, we writex <y

(x < y) iff x;<;yi (x; <; y;) for i =1,2. Notations such as<y, x < A and so
forth, can be defined similarly. In what follows, we shall writel”, “ <” and “«” for
“<" Y <, and “«;”, respectively, when no confusion results, where 1, 2.

Let R denote the set of all nonnegative real numbabs, X x R — X be a
semiflow onX, that is,® is continuous andb;(x) = ®(x, t) which satisfies:

(i) Do(x) =x for all x € X;
(i) @ (Dy(x)) = D,4(x) for all x € X andr,s € RY.

We write O(x) = {®;(x) : t € Ri} for the positive semi-orbit through the point
X. The w-limit set of O(x) is defined byw(x) = [ O(®;(x)). Let E = {e € X :
teRi
®;(e) = e, t € R} be the set of equilibria of.
We now make the following key definitions:

Definition 2.1. Assume that) < X and ® is a semiflow onX. The semiflow® is
said to be sup-pseudo monotone with respecBioif for any e € >, there exists
T = T, >0 such that for any € X with x >e¢, we have®,(x) >e for all t >T. Points
of such a)_ are called sup-pseudo equilibria. The semifidvis said to be sub-pseudo
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monotone with respect td_ if for any e € ), there existsT = T, >0 such that for
any x € X with x <e, we have®,(x)<e for all t >T. Points of such & are called
sub-pseudo equilibria. The semiflo® is said to be pseudo monotone with respect to
> if @ is both sup-pseudo and sub-pseudo monotone with respegt.t®oints of
such a)_ are called pseudo equilibria.

Remark 2.1. Note that if ) = E and the semiflond is monotone in the sense of
Hirsch [11], then ® is pseudo monotone with respect }o.

Definition 2.2. Assume that) ' € X and ® is a semiflow onX. The semiflow® is
said to be essentially semi-strongly sup-pseudo monotone with respéct ifo® is
sup-pseudo monotone with respectXd and for anye € > there existsT =T, > 0
such that for anyx € X with x >e, one of the following holds:

() Orx) =e;

(i) D7(x) > e;
(iii) (@7 (x))1 > e1 and (D7 (x))2 = ez;
(iv) (O7(x))1 =e1 and (O7(x))2 > e>.

Definition 2.3. Assume that)’ € X and ® is a semiflow onX. The semiflow® is
said to be essentially semi-strongly sub-pseudo monotone with respéct ifo® is
sub-pseudo monotone with respectXd and for anye € > there existsT =T, > 0
such that for anyx € X with x <e, one of the following holds:

(i) Or(x) =e;

(i) Orx) K e;
(i) (Dr(x))1 < e1 and (Pr(x))2 = e2;
(iv) (®r(x))1 =e1 and (Pr(x))2 K e2.

A semiflow @ is said to be essentially semi-strongly pseudo monotone with respect
to > if ® is both essentially semi-strongly sup-pseudo and essentially semi-strongly
sub-pseudo monotone with respectXo

We will always assume that the mdp: Rt — X; is continuous and satisfies that
Ii(o) < Ii(o) for all o > o; and that for anyx; € X;, there existo;, o € R!
such thatZ; (o) <x; <I; (o)), wherei = 1,2. Let F : Rt — R be continuous and
nondecreasing. Also, let

Dy = {(oc, B) e R2: F(a) = F(ﬁ)},
Dr = {(i(®, () € X : (o, f) € Dr},

sF(®) = supf e R*: F(f) = F(a)},
ir(0) = inf{f e RY: F(B) = F(w)}.

Remark 2.2. We cannot rule out the possibility thag(x) = +co andip(a) = —o0.
In fact, if F is a constant function, thesy () = +o0 andip(x) = —oo.
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It is further assumed thaf)} cyY CX.

For the sake of simplicity, we introduce the following assumptions:

(H1) Let the semiflow® be essentially semi-strongly sup-pseudo monotone with
respect to)_, the setQ be the w-limit set of some precompact positive semi-orbit
of @, and (a1, a2) € Dp with (I1(o1), I2()) < Q. If there existsi € {1, 2} such
that I;(¢;) <« ¢; for all ¢ € Q and o; = sp(o;), then there existg € Q such that
(I1(01), I2(22)) K q.

(H2) Let the semiflow® be essentially semi-strongly sub-pseudo monotone with
respect to)_, the setQ be the w-limit set of some precompact positive semi-orbit
of @, and (a1, a0) € D with (I1(o1), Io(2)) > Q. If there existsi € {1,2} such
that I;(o;) > ¢; for all ¢ € Q and o; = ir(%;), then there existgy € Q such that
(I1(02), I2(02)) > q.

(H3) Let the semiflow® be essentially semi-strongly sup-pseudo monotone with
respect to) , and assume thatx, «2) € Dr and o; = sp(o;) for somei € {1, 2}.

If x € X with (I1(1), I2(02)) <x and I;(«;) < x;, then there exist§ > 0 such that
(I1(01), I2(02)) < D (x).

(Hy) Let the semiflow® be essentially semi-strongly sub-pseudo monotone with
respect toy_, and assume thatu, o2) € Dr ando; = ip(o;) for somei € {1, 2}. If
x € X with (I1(o1), I2(02)) >x and I; (o) > x;, then there exist§" > 0 such that
(11(21), I2(02)) > D7 (x).

Remark 2.3. By the invariance ofw-limit set, we know that(Hs) implies (H1), and
(Hy) implies (Ho).

Lemma 2.1. Suppose thatH1) holds and thatx € X is a given point such tha® (x)
is precompact. Letd, = {(«, §) € Dr : (I1(2), I2(f)) <w(x)}. Then A, contains the

maximum element*, %) € A,, which satisfies that/1(o*), I>(f*)) € ﬁ;ﬂw(x) and
that for anyq € w(x) \ (I1(a*), I>(f")), we have either

L") < q1 and L% =q2
or
L") =¢q1 and DL(f") < q2.

Proof. We first prove thatA, contains the maximum element.
By the compactness ab(x) and the definition ofl;, there existo/, f/ € R! such
that

(1)), (o)) <o) < TP, ().
Let

Al =1, p) e Ay o/ <a<< B, d BB



434 T. Vi, L. Huang / J. Differential Equations 214 (2005) 429-456

We will show thatA’, contains the maximum element. Singé is a compact subset
in R2, it follows that A’ must contain the maximal elemeqt*, f*). We claim that
(o*, p*) is the maximum element oft.. By way of contradiction, we assume that,
without loss of generality, there exists™, /™) € A/, such thats** > «* and f** <
B*. Then, from the fact thaF is nondecreasing, it follows that («**) = F(f*) and
hence, (o**, f*) € Dp. By the choice ofe™ and f*, we have(«**, f*) € A’.. This
contradicts the fact that:*, f*) is the maximal element ofl’,, and thus, the claim is
proved. Therefore, by the definition of/, (o*, ) is also the maximum element of
Ay.
In the remainder of the proof, we first prove that for apye w(x), one has
(U (%), I(B*)), q) ¢ Int R. Otherwise,(I («*), I(f*)) < g. Thus, by the definition of
w(x), there existy; > 0 such that

(1), (I2(")) K Dy (x).
Again, by the definition ofDf, there exist/, f such that
(I1(o"), (I2(f%)) < (1), I2(f) < Dy (x).
Since the semiflowd is sup-pseudo monotone with respectfb\@, we have
(I1(o), (f) <o(x),

a contradiction to the definition afx*, f*).

We next prove thatli(«*), I2(8%)) € w(x).

Otherwise,(I1(a*), I>(f")) < w(x). From the above discussion and the fact that the
semiflow @ is essentially semi-strongly sup-pseudo monotone with respeﬁ;t,oit
follows that there existg” = Ty pry > 0 such that for any; € w(x), we have either

I(e") < (@r(9)1 and (") = (Pr(g))2
or
L") = (Dr(g))2 and I(¢") < (P1(g))2-
Let
Ar={g e o) : (") < q1} and Az ={g € o(x): (") K g2}.

By the above discussion and the invariancecatfr), we haveA; U A2 = w(x) and
A1 N Az = ¢. Owing to the compactness of(x), A1 and A2 are closed sets. Again,



T. Vi, L. Huang / J. Differential Equations 214 (2005) 429-456 435

since w(x) is connected, it follows that eithed; = ¢ or A2 = ¢. Without loss of
generality, we assume that; = w(x). We want to show that

o = sp(o*).
Otherwise,
o < sp(o*).
By the definition of A1, there existsx** > o* such that
(@™, p*) € DF and (I1(«™), I2(f*)) <A1 = o(x).

This contradicts the definition ofx*, ). Thus, by (H,), there existsy € w(x) such
that (11(*), I2(8%)) < ¢, a contradiction to the above discussion. Therefore, we obtain

(1), I2(B")) € o(x).
Assume thaty € w(x)\{(I(o*), I(f*))}. From the above discussion and the fact that

the semiflow® is essentially semi-strongly sup-pseudo monotone with respeﬁF\to
it follows easily that either

L") < q1 and (B%) =q2
or

L") =q1 and L(f") < q2.
This completes the proof.[]

Remark 2.4. By Remark 2.3, if assumptiofHs) is satisfied, the result of Lemma 2.1
continues to hold.

Lemma 2.2. Suppose thatH>) holds and thatx € X is a given point such tha® (x)
is precompact. Letd, = {(«, f) € Dr : (I1(2), I2(f)) > w(x)}. Then A, contains the

minimum elemento*, f) € A, which satisfies that/y(o*), I>(f*)) € l/)F Nw(x) and
that for anyq € w(x) \ (I1(a*), I2(f*)), we have either

I(a*) > g1 and L(f*) = g2
or

I(0") = g1 and L(f") > qo.
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Proof. Let
R ={(xi,yi) € Xi x Xi : (i, xi) € Ri}

and I/(x) = I;(—a) for « € R%. ReplaceR; and I; by R] and I/, respectively, where
i =1, 2. The conclusion follows immediately from Lemma 2.1.]

Remark 2.5. By Remark 2.3, if assumptiofH,) is satisfied, the result of Lemma 2.2
continues to hold.

Theorem 2.1. Let F be a constant function and the semifldwbe essentially semi-
strongly sup-pseud¢or sub-pseudpmonotone with respect tp_. Suppose that € X
is a given point such tha© (x) is precompact. Then there exist, f* € R! such that

w(x) = {1, ()}

Proof. Without loss of generality, we assume that the semifibvis essentially semi-
strongly sup-pseudo monotone with respectio Using the fact thaF is a constant
function, we havesr(x) = +oo for all « € R. It then follows that® satisfies(H1),
and hence Lemma 2.1 implies that there existf* € R such that

(I(o%), (")) € w(x) and (I1(«"), L2(f) < w(x).

Now we will show thatwm(x) \ {(I1(o*), I2(8"))} = ¢. Otherwise, by Lemma 2.1, we
may assume, without loss of generality, that there existsw(x) such thatyy > I1(o*)
and g; = IL(f*). Choosef’ < f* ando’ > o* such that

g1 > (o).
Then,
q > (I(), I()).

SinceF is a constant function, it follows that’, ') € Dr. By the definition ofw(x),
there existy1 > 0 such that

Dy, (x) = (1), I(B)).

Hence, from the fact that the semiflofv is sup-pseudo monotone with respect)}q
it follows that there exists, > 1 such that

O, (x) = (I1(), I2(f)) forall t>t1,.
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Therefore, we have
w(x) =11, L(B)).

But this contradicts the choice a@f*, *). This completes the proof.(]

Theorem 2.2. Let the function F be strictly increasing and assume that eitli&y) or
(Hs) holds. Suppose that € X is a given point such thad (x) is precompact. Then
there existz* € R! such thatw(x) = {(I1(o), Io(a*))}.

Proof. Without loss of generality, we assume th@tz) is satisfied. By Remark 2.4
and the fact thaF is strictly increasing, there exists" € R! such that

(I1(0"), I2(0%)) € w(x) and (Iy(a*), I2(*)) < w(x).

Now we will show thatw(x) = {(I1(a*), I2(a*))}. Otherwise, without loss of generality,
we may assume that there exigtse w(x) such that/i(o¢*) <« g1 and I>(o*) = go. It
follows from (H3) that there existy” > 0 such that

(110", I2()) < @1 (q) € (x),

which is a contradiction to Remark 2.4. This completes the proif.

Generally speaking, assumpti@f/;) does not imply that thes-limit set of precom-
pact orbits is a singleton, whete= 1, 2, 3, 4. But, if both (H1) and (H>) hold, then
we can get the following:

Theorem 2.3. Let (H1) and (H2) hold. Suppose that € X is a given point such that
O(x) is precompact. Then there existg", f*) € R? such that

ox) = {(I1(2"), ()}
Proof. By Lemmas 2.1 and 2.2, there exist, *, «**, ** € R* such that

(I(o%), (™)), (I1(&™), I(B™)) € w(x) and
(I, I2(f) < () < (In(&™), I2(B™)).

Hence,o* = o** or f* = f**. Without loss of generality, we assume thét= o**. If
B* = B**, then the proof is complete. Otherwisg; < f**. We next distinguish two
cases to finish the proof.

Casel: o* > ff*.
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Chooseo’ € R! such thatp* < o« < min{o*, ). Then

(1), I2(2) < (I1(o™), (™)) € o(x).

By the definition ofw(x) and the fact that the semiflo® is sup-pseudo monotone
with respect toy_, we have

(I1(o), I (o)) < w(x),

a contradiction to the choice af*, §7).
Case2: a* < f".
Choosex € R such thatf* < o < . Then

(I(2%), (%)) < (I(&), I2(2!)).

Thus, we have, by the definition of(x) and the fact that the semiflo® is sub-pseudo
monotone with respect td°,

o (x) < (1)), I2(e)).

This is a contradiction to the choice of**, ). The proof is complete. O

Remark 2.6. The result of Theorem 2.3 continues to hold if we replétk) by (H3)
or replace(H2) by (Hy) in Theorem 2.3.

The following example is given to illustrate that if exactly one of assumptidhg
and (H») holds, then the result of Theorem 2.3 does not necessarily continue to hold.

Example 2.1. Let to, = 2k(k + 1) and to+1 = 2(k + 1)2, wherek is a nonnegative
integer. Clearlyfo=0<rn <fo <--- <t <--- and lim_ 1 tx = +oo. Define the
functiona : R} — R! by setting

t _ 2 12k +12k+1
_2(k+1) *+1° 12k <t < -2
tok+t top 1+t
ait)y = | — (k-:l) +2, 2% 22k+1 << 2k+12 242
o 2kt2)  tkgationg2
k+1)2 k+1 ° 2 <t<t2k+2-

Thena(r) is continuous onR_{ and satisfies that

(i) 0<a(t)< gk for t € [tk taga], and — k7 <a(t) <O for ¢ € [taq1. taq2], Where

k is a nonnegative integer;
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(i) [2**a(s)ds =1 and f;ﬁz a(s)ds = —1, wherek is a nonnegative integer;

Define the mapping¢, /., g : R* — R® by

x—l—%—4, x< -1
4

e’

Fx) = BN TEE -1<x <0,
O’ 0<x<15
x —1, x=>1;
a(0), x< —1,
gx) =1 a(=In(—x)), -1<x <0,
fx), x=0;
and
X, x <0,
h(x) =10, 0<x <1,
x—1 x=>1

We can observe thaf, g, h € C(RY), f and h are nondecreasing; > f, and for any
x € RY, there existe > 0 and L > 0 such that— f(y) + f(x)> — L(y — x) for any
ye[x,x+e¢l

Let us now consider the following system:

x1(1) = — f(xa(®) + glxa(t — 1)),

(2.1)
xo(t) = —h(x2(t)) + h(x1(t — 1)).

In this example, for the sake of convenience, we introduce the following notation:

Let X; = Xo = C([—1, 0], RY) be the Banach spaces equipped with supremun norms,
and defineX] = X5 = C([-1,0], R}). Then X;" induces a closed partial ordered
relation onX;, wherei = 1, 2. For anyx € R%, let us definex(0) = o, 0 € [—1,0]. It
follows that@ € X;. Definel;(0) =@, o € R, i = 1,2. Assume thatp € X = X1 x X»
and usex, (@) to denote the solution of (2.1) with the initial data(¢) = ¢. Using a
similar argument as that of Lemma 3.3 below, we know théip) exists and is unique
on Ri. Let ®,(¢) = x,;(¢), t € RY, ¢ € X. Then® is a semiflow onX.

Now we want to show tha® actually satisfiegH;). For that purpose, we will first
prove the following several claims.

Claim 1. If (o, ) € Dy and ¢ € X with (I1(x), (12(f)) < ¢, then

(I1(@), I(P) <xi(p) for teRY.

Note thatD; = D;,. It is easily verified that Claim 1 is true.
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Claim 2. If « <0 and ¢ € X with (I1(%), I2(2)) < ¢, then
(I1(®), I2(2)) < x (@) for =3.

Indeed, we may assume that there exi$tse (—1, 0] such thate(01) > «o. Let
f1 = 1+ 01. Thenxz(t1, @) > o. Otherwise, by Claim 1x2(t1, @) = a. It follows from
Claim 1 thatx/z(rl, @) = 0. On the other hand, from (2.1), we have

x5(11, @) = —h(e) + h(p4(01))
> —h(a) + h(x) =0,

which yields a contradiction. Thus, from (2.1), we obtain

x5t @) = —h(xa(t, @) + h(x1(t = 1, 9))
2 —h(x2(t, ) + h(e)
= —(x2(t, @) — o).

It follows that
x2(t, @) Z o+ (x2(11, @) —o)e' = for all t>n.

Hence,xa(t, @) > o for all t >11.

We will show thatxi(¢, ) > « for all 1> + 1. Otherwise,r, = inf{t>r + 1 :
x1(t, @) = o} < 4+o00. Using a similar argument as above, we can know that; +
1, @) > o. Thus, we obtain that, > 11 4+ 1, x1(r2, @) = o and x;(r2, ¢) = 0. Again
from (2.1), we have

glx2(r2 — 1, ) = f(x1(r2, 9)) = f ().

Since xa(t2 — 1, @) > «a, it follows that g(x2(t2 — 1, @)) > f(2), which yields a
contradiction. Therefore, the Claim 2 is true.

Claim 3. If o« > 1 and ¢ € X with (I1(2), I2(2)) < ¢, then xa(¢p) > (I1(2), I2(x)).

Claim 4. If o, f € [0,1] and ¢ € X with (I1(2), I2(f)) < ¢, then one of the following
holds

(i) (I1(0), I2(B)) = xa(@);

(i) xa(@) > (I1(0), I2(B));
(iii) x1(¢, @) = o for r € [3, 4], and x2(z, @) > p for t € [3, 4];
(iv) x1(t, @) > o for r € [3, 4], and x2(z, @) = p for t € [3, 4].
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Moreover we have the following

(i) If «=1and ¢@q(0) > 1 for all 0 € [-1,
(i) If f=1andy(0) > 1for all 0€[-1,

o

], thenxa(p) > (I1(2), I2(B));
1, then xa(@) > (I1(x), 12(f)).

(@]

Remark 2.7. Arguing as that in the proof of Lemma 3.4 below, we can prove the
Claims 3 and 4.

From the above Claims 1-4, we can know tkdasatisfies(H1) but does not satisfy
(H»). In fact, let

_ fé a(s)ds, t>0,
xl(’)_{o, ~1<1<0

and

x2(t) = —e_t_l, t>—1

Then we can verify that (1) = (x1(¢), x2(¢)) satisfies (2.1). Since lip, ;o x1(t2k+1) =
1 and lim,_ 400 x1(f2x) = 0, it follows thatx () does not tend to a constant vector as
t — oo. Therefore, assumptiotH1) cannot guarantee that the result of Theorem 2.3
remains valid.

Let Z be a topological space endowed with a closed partial ordered rel&tion
Z xZ. For anyz,z7”,7” € Z and any subsed C Z, the following notations will
be used:z’<z7" iff (z/,7") € Rz, 7/ < 7" iff (Z,7") € Rz andz? # 7", 7/ « 7" iff
Z,7YelIntRz, A 7"iff a7 foracA, 777 <« Aiff 7 < a fora e A,
Agz/// (A < Z///) Iff agz/// (a < Z///) for ac A, Z///SA (Z/// < A) Iﬂ: Z///ga (Z/// < a)
for a € A.

Assume thatd is a semiflow onZ and the mapping : R — Z is continuous and
satisfies that

I() < I(p) forany o< f
and that for any; € Z, there exist/, ' € R such that
1) <z<I(f).

It is further assumed tha}_, is a subset oZ and I(RY) € 3.

Definition 2.4. The semiflow® is said to be essentially strongly sup-pseudo (sub-
pseudo) monotone with respect }o, if the semiflow ® is sup-pseudo (sub-pseudo)
monotone with respect td_, and for anye € ), there existsI = T, > 0 such that
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for any z € Z with e<z (e>z), we have eitheldr(z) = e or e <« ®r(z) (either
DOr(z)=e or e>» Or(z)).

Theorem 2.4. Let the semiflond be essentially strongly sup-pseuflr sub-pseudp
monotone with respect td . Suppose that € Z is a given point such thad(z) is
precompact. Then there exists € R! such that

w(z) = {1}

Proof. Without loss of generality, we assume that the semiflovg essentially strongly
sup-pseudo monotone with respect)d,. Let X1 =Z, R1 = Ry, Xo = Rl and R, =
{(0, p) € R? : p—a>0}. Also, let W;(x1,x2) = (D;(x1), x2) for t € R}, x1 € Xa,
x2 € Xp. It follows that ¥ is a semiflow onX; x X,. Let 3 = Y, xR Then
the semiflow¥ is essentially semi-strongly sup-pseudo monotone with respegt.to
Suppose thaiy(z) = I () and I»(x) = o, whereo € RL. Let F = 0. Thenﬁ; c >
Thus, by Theorem 2.1, there exist, f* € R such that

() U Wiz 0) = (U ), 1(F)).

s=>0t>s

By the definition of¥, we have

BIVEIGERUCH)E

t>0t>s
that is, w(z) = {I(«*)}. This completes the proof.[]

Theorem 2.4 improves and extends the convergence princifdlg].ofo see this, we
state the convergence principle of [7] and use Theorem 2.4 to prove it. Suppose that
X C C(M, RY) has a topology making its inclusion int6(M, R') continuous, where
M is a compact topological space. For amyv € X, the following notations will be
used: u<v iff u(x)<v(x) foranyx e M, u < v iff uv andu # v, u << v iff
u(x) < v(x) for anyx € M. For anya € R, let us definei(x) = a, x € M. Let ® be
a semiflow onX. Moreover, we introduce the following assumptions:

(Cy) If ue X anda, f e R with &<u<ﬁ thenBR(D,(uHE for all r>0.
(C2) There exists' > 0 such that for any: € X ando € R with u < (@ < u), we
have @7 (1) << o (@ << O (u)).

Corollary 2.1. Let (C1) and (C2) hold. Then each precompact orbit tends to a constant
function

Proof. Let /(o) =2 for all « € RY, andR = {(u, v) € X x X : u(x)<v(x) for x € M}.
If u,v e X with u << v, then (u, v) € Int R, sinceX € C(M, RY) has a topology
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making its inclusion intoC (M, RY) continuous, wherdnt R denotes the interior oR

in X x X. It follows from assumptiongC1) and (C2) that @ is a essentially strongly
pseudo monotone semiflow oX. Thus, by Theorem 2.4, we can conclude that the
conclusion of Corollary 2.1 is true.

Remark 2.8. In fact, if exactly one of assumption€1) and (C») is satisfied, then the
conclusion of Corollary 2.1 continues to hold. We refer[1d for a detailed descrip-
tion of the applications of Corollary 2.1 to neutral functional differential equation and
semilinear parabolic partial differential equation with Neumamn boundary condition.

Remark 2.9. Let J be a subinterval oR? such as [0,1], [0,1) and so forth. We assume
that the mapl; : / — X; is continuous and satisfies thato;) < /; (o)) for all o > o;
and that for anyx; € X;, there existo;, o € J such thatl; () <x; </I; (%), where

i =12 Let F: Rl - R be continuous and nondecreasing. Also, let

sp(@) = SUHB € J : F(B) = F(®)},
if(o) = inf{f e J:F(B)=F(),
D = {(p) € J xJ:F@=FPp),
D} = (@, 2(B)) € X : (. f) € Dy},
Assume thatgz C > C X. If sp(y), ip(x;) and D in (H1)—(Ha) are replaced by
the abovesy.(x), i1(;) and Dy, respectively, then the results of Lemmas 2.1-2.2 and

Theorems 2.1-2.3 continue to hold. Clearly, Theorem 2.4 can also be improved in a
similar way.

3. Applications to delay differential equations

As some applications of the convergence principles in Section 2, we consider several
systems of delay differential equations.

3.1. Consider the following system of delay differential equations

dxq(t)

= —F1(x1(t)) + F1(x2(t —r2)),

dxgt(t) 3.1)
el —Fa(x2(1)) + Fa(x1(r — r1)),

whererq, r» > 0 are constants anfly, F» € C(RY) is nondecreasing.
System (3.1) can be used to model a compartmental system with two pipdé]jsee
Let T = min{ry, r2} andr = maxry, r2}.
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Lemma 3.1. Let F € C(RY) be nondecreasing oR!. For any constants Krg and xo,
the initial value problem

x'(t) = =F(x(1) + K,

3.2
{X(to) ~ xo (3.2)

exists a unique solutior(z, 7o, xg) ON [fg, 00).

Proof. From the Peano theorem, we know that the solutions of the initial value problem
(3.2) locally exist. Again, sinc& is nondecreasing, it follows frorf2] that right-hand
solutions of the initial value problem (3.2) are also unique. Hencge,zg, xg) exists

and is unique orirg, 1) for some positive constamt, where[rg, #) denotes the maximal
right-interval of existence ok (z, ro, x0). We will show thaty = +o0. Otherwise,n <

+oo andlim,_,,-|x(t, to, x0)| = +o0. We next distinguish several cases to finish the
proof. [

Casel: There exists; € [f0, 1) such that—F (x(t1, to, x0)) + K = 0. Let

() = {x(t, to, xo) for to<t <11,

x(11, to, xo) for r>11.
It follows that X(r) satisfies (3.2) and henceyz, r0, xo) = X(¢), which contradicts
1N < +oQ.

Case2: —F(x(t,t9,x0)) + K < O for ¢t € [tg,n). Then x(t, tg, xo) is strictly de-
creasing on[r, n) and thus,x(z, 1o, xo) < x(to, to, x0) for all ¢+ € [tp, n). It follows
that —F (x(z, 19, x0)) + K> — F(x(to, 10, x0)) + K for all r € [r,n), and hence,
x(t, to, x0) = (K — F (x(to, to, x0)))t +x (to, to, xo) for all ¢ € [to, 7). Therefore, lim_, -
|x (¢, to, x0)| < 400, Which yields a contradiction.

Case3: —F(x(t,19,x0)) + K > 0 for ¢t € [to,n). Then x(t, ro, xo) is strictly in-
creasing on[r, n) and thus,x (¢, to, xo0) = x (fo, t0, xo) for all ¢t € [r0, 7). It follows
that —F (x(z, 19, x0)) + K< — F(x(f0, 10, x0)) + K for all r € [r,n), and hence,
x(t, to, x0) < (K — F (x(to, to, x0)))t +x (to, to, xo) for all ¢ € [z, 7). Therefore, lim_, -
|x (¢, to, x0)| < 400, Which yields a contradiction.

The proof of the lemma is completel]

Lemma 3.2. Let s be a given positive constant € C([to, 10 + s], RY), F € C(RY)
and F be nondecreasing oR®. Then the initial value problem

{x’(t) = —F(x() +d(),

x(to) = xo
exists a unique solutior(z, 7o, xg) oOn [fo, fo + s].

Proof. Lemma 3.2 follows by applying the standard technique of differential inequali-
ties and Lemma 3.1.00
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Lemma 3.3. Let x(z, ¢) be the solution 0of(3.1) with the initial valuep € C =
C([—r, 0], R?). Thenx, (p) exists and is unique ov‘i’i.

Proof. We only need to prove that (¢) exists and is unique of0, t]. We now show
that x1(¢, @) exists and is unique ofD, t]. Let

81(t) = F1(ga(t —r2)), 1t €[0,1].

Obviously, g1 € C([0, 7], RY). From Lemma 3.2, we know that(z, @) exists and is
unigue on[0, 7]. Similarly, we can show thaty(z, ¢) exists and is unique ofD, z].
The proof is now complete.

Lemma 3.4. Let Fi, F» € C(RY) be nondecreasing oR'. Then there exists a non-
decreasing functionF € C(RY) such thatDp = Dpr, ( DF,. Moreover we have the
following:

(i) If o* € RY with o = sp(a*), then there exists$ € {1, 2} such thata* = sE (0%);
(i) If o e RY with o* = ip(a*), then there exists € {1, 2} such thato* = iF (o).

Proof. Let F(x) = Fi(x) + Fa(x), for x € RL. It is easily verified thatF € C(RY) is
nondecreasing okl and Dy = Dp, () DF,. Next, we will show conclusion (i). The
proof of conclusion (ii) can be dealt with similarly and thus, it is omitted. Suppose,
by contradiction, that there exists' € R! such thata* = sp (o), o* < sFy (o) and

o* < sp,(a*). Settingf* = min{sg, (¢*), sr,(¢*)}, we can conclude from the definitions
of sp, andsg, that

F1(o) = Fi(f") and F(a) = F2(BY).

Hence, F(«*) = F(f*). But the definition ofsr implies that F(«*) < F(B*), which
yields a contradiction. This completes the proofl]

In this subsection, we introduce the following notation:

Let C1 = C([—r1, 0], RY) and C2 = C([—r2, 0], RY) be the Banach spaces equipped
with supremun norms, and defir@" = C([—r1,0], RY) and C; = C([—r2, 0], RY).
Then C;r induces a closed partial ordered relation 6p wherei = 1,2. Define
I; : RY — C; by settingl;()(0) = o, « € RY, 0 € [—r;,0], i = 1,2. Assume that
@ € C = C1 x C2 and usex;(¢) to denote the solution of (3.1) with the initial data
xo(p) = ¢@. By Lemma 3.3, we know that,(¢) exists and is unique orR_{. Let
O, (p) =x,(p), t € RY, ¢ eC. Then® is a semiflow onC.

Define

D={0,p) eR? F(o)=Fi(f).,i=12} and D={feC:x e D}.

By Lemma 3.4, we know thab = Dp and D= 5;



446 T. Vi, L. Huang / J. Differential Equations 214 (2005) 429-456

To proceed further, we assume the following hypotheses are satisfied:

(C1) For anya € R, there exist > 0 andL > 0 such that-F; (x)+ F; (o) > — L (x —o)
for any x € [o, o + €], wherei =1, 2.

(C2) For anya € RY, there exist > 0 andL > 0 such that-F; (x)+ F; (o) < — L (x — o)
for any x € [o — ¢, o], wherei =1, 2.

Lemma 3.5. Let ¢ € C andd € D with ¢ >d. Thenx,(¢)>d for all r>0. Further-
more we have one of the following

(i) x:(@) =d for t>5r;

(i) x,(¢) > d for 1 >5r;
(i) x1(x, @) > d1 and x2(¢, @) = do for t >5r;
(iv) x2(t, ) = d1 and x2(t, @) > do for t >5r.

Proof. Since F; and F» are nondecreasing, it follows frofi9, Proposition 1.1] that
x(p)=d forall 1>0.

We next distinguish four cases to finish the proof.
Casel: x;(¢) =d for anyt € [0, 4r]. Then, we havex;(¢) =d for all t>r.
Case2: x1(t, ) = d1 for any ¢ € [0, 4r] and x2(t2, @) > d2 for somer; € [0, 4r].
From (3.1) and the above discussion, we obtain

dxa(t, @)

" = —Fo(x2(t, @) + Fa(x1(t —r1, @)

WV

—F(x2(t, @) + Fa(d1)
= —F2(x2(t, @) + Fa(d2).

Now, we will prove thatxx(z, ) > dy for all t>r. Otherwise,r3 = inf{t>1, :
x2(t, ) = d2} < +00. Hence,t3 > o and xz(3, ¢) = d». By assumption(Cy), there
existo > 0 andL > 0 such that3—9d > 12 and—Fa(x2(t, @)+ F2(d2) > — L(x2(t, @) —
do) for all 1 € [t3— 0, t3]. SO, we havexa(rz, @) >d2 + (x(t3 — J) —do)e L9 Therefore,
x2(t3, @) > do, which yields a contradiction.

Next, we will show thatxi(z, ¢) = dyi for ¢t € [0, 4r + 1]. Indeed, from (3.1), it
follows that

x5(t, @) = —Fa(xa(t, ) + Fa(da) for 1 € [ry, 4r].
Thus, x5(t, ¢) <0 for 7 € [r1, 4r]. Again from (3.1), we have

x1(t, @) = —F1(x1(t, ) + Fi(x2(t — r2, ¢)) for 1>0.
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It follows that
F1(d1) = F1(x2(t —r2, @)) for t € [0, 4r].
Thus,
F1(x2(t, ) < F1(dy) for ¢ € [0, 4r].
Therefore, from (3.1), we obtain
x1(t, 9) < — F(dy) + Fi(xa2(t — ra, @) for t € [r2,4r +r2],
that is,
x1(t, @) <0 for ¢ € [rp, 4r + ral.
Hence, fromx,(q))}z? and x1(r2, ) = d1, we have
x1(t, @) =dy for t € [r2, 4r + r2].
Therefore,
x1(t, @) =dy for € [0, 4r + 1].

So, by induction, we getv1(t, ¢) = d1 for all r>0, and thus, conclusion (iv) is
established.
Case3: x1(r1, @) > dy for somer; € [0, 4r] and x2(¢, @) = do for all ¢ € [0, 4r].

Using a similar argument as that of Case 2, we can prove that conclusion (iii) is

true.
Case4: x1(t1¢) > d and xa(t2, @) > do for somery, 12 € [0, 4r].

Using a similar argument as that of Case 2, we can prove that conclusion (ii) is

true. O
Arguing as in the proof of Lemma 3.5, we can get the following result:

Lemma 3.6. Let ¢ € C andd € D with ¢p<d. Thenx,(¢)<d for all +>0. Further-
more we have one of the following

() x;(p)=d for 1 >5r;

(i) x:(@) < d for 1 >5r;
(i) x1(x, @) < dy and x2(¢t, ¢) = do for t >5r;
(iv) x2(t, ) = d1 and xa(t, @) < dp for t >5r.
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Lemma 3.7. Suppose thaA C C is a compact subset such that(A) = A for r >0.
Let (a*, B*) € Dr with (o*, f*) < A. Then we have the following

) IfA={peA:a* < @) for any 0 € [—r, 0]} and o* = sp(a®), then there

existsp* € A such that(o*, f*) < ¢*;
() If A={p e A: S < @y(0) for any 0 € [-r, 0]} and f* = sp(a*), then there

existsp* € A such that(a*, f*) < ¢*.

Proof. We will only prove conclusion (i). The proof of conclusion (ii) is similar. By
Lemma 3.4, there exists somies {1, 2} such that

o = SF; (OC*)

We next distinguish two cases to finish the proof.
Casel: a* = sp,(a").
Let ¢ € A and x;(¢) = x; (¢, @), i € {1, 2}. By the invariance oA, we have that

x1() > o forall > —r.

From (3.1), one obtains

—Fo(x2(t)) + Fo(x1(t — r1))
—Fo(x2(1)) + F2(o™)
Fo(x2(1)) + F2(B").

x5(1)

\Y

Hence,x2(t) > f* for + >0. Therefore, we obtain, (¢) > (W).
Case2: o* = sp (o) and o* < sp,(o*). Suppose that conclusion (i) is not true.
Then, by Lemma 3.5 and the invariance Afwe have

Po(0) = f* for e [—rp, 0] and ¢ € A.

Let o* = sup{p,(0) : ¢ € A, 0 € [—r1,0]}. By the invariance and compactness of
A, there existsp™ such thate™ = ¢7*(0). Again, by the invariance of, there exists
¢ € A such thatx,(p) = @**. Let y;(t) = x;(t, ¢),i = 1,2. Then, by the Fermat's
theorem, we get; () = 0. From (3.1), it follows that- F1(y1(r)) + F1(y2(r —r2)) = 0.
That is, F1(8") = Fi(y1(r)). That is, F1(a*) = F1(y1(r)). On the other handyi(r) =
@17 (0) = o™ > o*, which contradicts the choice of*. This completes the proof.[]

Using a similar argument as that in the proof of Lemma 3.7, we can obtain the
following:
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Lemma 3.8. Suppose thaA C C is a compact subset such that(A) = A for r >0.
Let (a*, B*) € Dp with (o*, f*) > A. Then we have the following

() IfA={peA:a" > @0 for any 0 € [—r,0]} and o* = ip(a*), then there

existsp* € A such that(o*, %) > ¢*;
(i) If A={p € A: " > @y0) for any 0 € [—r, 0]} and S*

existsp* € A such that(a*, f*) > ¢*.

ir(a*), then there

Theorem 3.1. Let ¢ € C. Then there exist*, f* ¢ R such thatlim,_ « x(t, Q) =

(%, B).

Proof. Let ® be the solution semiflow generated by system (3.1). By Lemmas 3.5
and 3.6, we know that all orbits @b are bounded, and are thus precompact. Lemmas
3.5-3.8 implies that assumptiori¢/1) and (H») are satisfied. It then from Theorem
2.3 that Theorem 3.1 holds. This completes the proai.

3.2. Consider a class of so-called pseudo cooperative and irreducible systems. More
precisely, we consider the following system:

x'(t) = fx), (3.3)

where f € C(U, R"), U € C([—r,0], R"), r > 0.

In this subsection, we introduce the following notation. Cet C([—r, 0], R") be the
Banach space endowed with the usual supremum norm. Défine: C([—r, 0], R),
where R denotes the set of all nonnegative vectorsRf. For x € R", we write
x for the element ofC satisfyingx(6) = x, 0 € [—r, 0]. We tacitly assume that the
initial value problem (3.3) globally exists a unique solution, denotedoy) (x(z, ¢)),
satisfyingxo(¢) = ¢ € U. SetN = {1,2,...,n}. For anyx,y € R", the following
notations will be usedx<y iff y —x € R}, x < y iff x<y andx # y,x <y
ifft y—xelIntR}.Foranyp,y e C,o<yiff y—¢eCy o <iff <y and
OAY, oL Piff y—pelntCy. LetEy ={xeU: f(x)=20andE_ ={x e U :
f(x)<0}. It is easy to observe tha, N E_ is the set of equilibria of system (3.3).

Assume that € E,, we introduce the following assumptions:

(P;5) If ¢ € U with p>é, then f;(¢) > (¢)(¢;(0) —e;), wherei € N andw; : U —
R is continuous.

(I;5) Assume thatp € U with ¢ >¢. DenoteDt = {i € N : ¢;(0) > ¢;, 0 € [—r, 0]}
andD = {i e N : ¢;(0) = e, 0 e[-r,0]). If DV'JD = N,Dt # ¢ and
D # N, then there exists ¢ N \ D' such thatf; (¢) > 0.

Assume that € E_, then we make the following assumptions:

(P,7) If @ € U with p<eé, then fi(¢p) <o (@)(@;(0) —¢;), wherei e N ando; : U —
R' is continuous.
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(I;) Assume thatp € U with p<e. DenoteD* ={i € N : ¢,;(0) < e;, 0 € [—r,0]}
andD ={i € N: ¢,;(0) = ¢, 0 €[—-r,0}. If DV\JD = N, Dt # ¢ and
D # N, then there exists € N \ D' such thatf;(¢) < 0.

Lemma 3.9. Let ¢ € E; and (P,}) hold. If ¢ € U with <&, thenx,(¢)<e for all
t >0. Moreover if @;(0) > ¢; for somei € N, thenx;(z, ) > ¢; for all r>0.

Proof. From (P,") and Remark 2.1, Chapter 5 of Smi{21], we obtain thatx,(¢) >é
for 1>0. Again, from (P,"), we get

JiCer (@) = 0 (e () (xi (2, ) — ;) for 1>0.
Thus, from (3.3), it follows that

d(xi (7, @) — ei))

ar Z o (x (@) (x; (t, @) —e;) for t>0.

Therefore,
(i (1, @) — e1) >l 5@ (0. (0) — ) > 0 for 130,
that is,
xi(t, ) > ¢; for t=0.

This completes the proof.[]

Lemma 3.10.Let ¢ € E4 and assume thatP,") and (1;") are satisfied. Ifp € U
with ¢ >e¢, then either

x(p) > e for t=2m+2r
or
x(p)=e¢ for =+ 2)r.
Proof. We distinguish two cases to finish the proof.
Casel: x(t, ¢) = e for all r € [0, r].
It follows that f(e) = 0. Hencex;(¢) =¢ for t>r.
Case2: x(11, ¢) > e for sometr; € [0, r].
Let M, ={i € N : x;(t, ¢) > ¢;}, t >0. It follows that M;, # ¢. Thus, by Lemma
3.9, it follows that

Mg € M;, 0<s<t.
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Claim. If #* € RY and M« ¢ {¢, N}, then My« # My,

If the claim is not true, therM, = M, for all ¢ € [¢*, t* +r]. It follows from (7,5)
that there exist$ € N \ M+, such thatf; (x;+1,(¢)) > 0. Thus, from (3.3), we get

x{(t* 41, @) = fi(xpir (@) > 0.
Therefore, there exists > 0 such that

d(x;(t, @) — e;)

% >0 for te[t"+r—et*+r]

Sincex; (@) >e for anyt >0, we havex; (t*+r, ¢) > ¢;. So, it follows thati € M+,
which yields a contradiction. This completes the proof of the claim.
Now, we will show thatM,,—1» = N. Otherwise, by the above claim, we have

¢ #* Mt1 < Mt1+r c--- < Mt1+(nfl)r - Mt1+nr and Mt1+ir b Mt1+(ifl)ra
i=12,...,n.

But this contradictsM,; € N for 1 >0. This completes the proof.[]
Arguing as in the proof of Lemma 3.10, we can get the following result:

Lemma 3.11.Let ¢ € E_ and assume thatP,”) and (I;) are satisfied. Ifp € U
with ¢ <e, then either

x(p) ke for r=>2m+2r
or
x(p)y=e¢ for t>mn+2r.

Assume that the mapping: Rt — U is continuous and satisfies that

(i) I(x) < I(B), for o < B;
(i) For any ¢ € U, there existx*, f* € R such that

1)< Q<1 ().

Definition 3.1. System (3.3) is said to be sup-pseudo cooperative and irreducible with
respect tol if 7(RY) € E, and for anyé € I(RY), assumptiong P,") and (I,") are
satisfied. System (3.3) is said to be sub-pseudo cooperative and irreducible with respect
to | if 7(RY) € E_ and for anyé e I(RY), assumptiongP,”) and (I;7) are satisfied.
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Theorem 3.2. Let systen{(3.3) be sup-pseud¢sub-pseudpcooperative and irreducible
with respect to I. Ifp € U is given such thatO(¢) is precompactthen there exists
o* € R such that

(@) ={I1(M)}.

Proof. Without loss of generality, we assume that system (3.3) is sup-pseudo cooper-
ative and irreducible with respect 1o Let ®;,(¢) = x;(¢), t € RL, ¢ € U. Then, by
Lemma 3.10, the semiflowp is essentially strongly sup-pseudo monotone with respect
to I(RY). Theorem 3.2 follows immediately from Theorem 2.4]

Example 3.1. Consider the following compartmental system with three pijégs

dx;(f) = —F1(x1(t)) + G1(x2(t — r2)),
dx;(f) = —Fa(x2(1)) + Ga(x3(r — r3)), (34)
dx(jt(t) = —F3(x3(1)) + G3(x1(t —r1)),

wherer; is a positive constantF;, G; € C(RY), and F; is strictly increasing onkl,
i=123.
Corollary 3.1. Assume one of the following conditions is satisfied

(i) Gi>F; and for anyx € R, there exists a continuous functidn: [«, co) — RY
such thatF;(x) — F;(2) <L(x)(x — o) for all x € [, 00);

(i) G;<F; and for anyax € R%, there exists a continuous functidn: (—oo, o] — R}
such thatF;(x) — F;(a) > L(x)(x — o) for all x € (—o0, a].

Then each bounded solution of systé3m) tends to a constant as—> oo.

Proof. Without loss of generality, we assume that condition (i) is satisfied.rLet
max(r1, 2, r3} and X = C([—r, 0], R®). Define the mappingg : X — R® and I :
R! - X as

gi(p) = —Fi(0;(0) + Gi(®11ymod (—Tri+hmodd), @ € X,
and
(I())(0) = (o, o, 00), o€ R 0e[—r0]

Then, from condition (i), we can see thgtis sup-pseudo cooperative and irreducible
with respect tol. Therefore our conclusion follows from Theorem 3.2
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Remark 3.1. If G; is not strictly increasing for somee {1, 2, 3}, then system (3.4)
in Corollary 3.1 is not cooperative and irreducible in the sense of Sfaith

3.3. Consider the following well-known system of delay differential equations
x'(t) = F(x(t), x(t —r)), (3.5

wherer > 0 is a constant an@ : R> — R! is continuous.

System (3.5), based on certain conditions, have been widely studied by many re-
searchers (see, for exampl8,4,6,7]). In this subsection, we introduce the following
notations and assumptions. L&t= C([—r, 0], RY) be the Banach space of continuous
mappings from[—r, 0] into R, equipped with the usual supremum norm. Define

Cy =C(-r,01, RY).

Then Cy is an order cone i, and thus, induces a partial order relatioq™, which
can be defined as that in Section 3.2. kpe C, by x;(¢) we denote a solution of
(3.5) with the initial dataxg(¢p) = ¢@. We assume that,(¢) exists and is unique on
RY for eachg € C.

We need the following assumptions:

(Hy) Fora € RY, M > 0, there existe = e(a, M) > 0 andL = L(x, M) > 0 such
that F(x,y)> — L(x — o) for anyx € [0, a + ¢] and y € [0, & + M].

(H_) Foro € RY, M > 0, there existe = (o, M) > 0 andL = L(z, M) > 0 such
that F(x,y) < — L(x —a) foranyx € [a —¢,a] and y € [« — M, a].

Lemma 3.12. Let (H,) hold and assume thap € C and « € R with ¢ >%. Then
either

x (o) >u for t>2r
or
x(p)=a for t>2r.

Proof. Define f : C — R as f() = F(y(0), y(—r)). It then follows from (H)
that for anyx € R with ¢ >% and ¢(0) = «, we obtain f () >0. Hence, by Remark
2.1 in Chapter 5 of Smitli21], we getx;(¢) >4 for all #>0. We next distinguish two
cases to finish the proof.

Casel: x(t,p) =a, t € [0, r].

For this case, we havé(a, o) = 0, and hencex(z, ¢) = « for all +>0.

Case2: x(11, @) > o for somer; € [0, r].
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We will show thatx(z, ¢) > o for all >¢. Otherwise, we have, = inf{r># :

x(t, ) = o} < +oo. Hence,r» > 11 and x(r2, ) = o. By (Hy) and the above
discussion, there exigt > 0 andL > 0 such thatt, — ¢ > 11 and

Fx(t, @), x(t —r,¢)= —L(x, @) —a) forall el —e 1]
From (3.5), we obtain
x'(t,9)>= — L(x(t, p) — o) for all t € [t2 — ¢, 12].

Thus,

x(t, @) =+ (x(t2 — &, @) — e 2779

It follows that

&

x(t2, @) =0+ (x(t2 — &, @) — e L2,

Therefore, we obtain(z2, ) > «, which yields a contradiction. This completes the
proof. [

Arguing as in the proof of Lemma 3.12, we can get the following result:

Lemma 3.13. Let (H_) hold and assume thap € C and « € R! with ¢ <@. Then
either

x () <o for t>2r
or
x (@) =a for t>2r.

Theorem 3.3. If either (Hy) or (H-) holds then each bounded solution of system
(8.5) tends to a constant as— oo.

Proof. Without loss of generality, we may assume tliat,) holds. Then by Lemma
3.11, the semiflow generated by (3.5) satisfies the conditions of Theorem 2.4, and thus
the conclusion of the theorem is truell

Example 3.2. As an application of Theorem 3.3, we consider the following scalar
delay differential equation:

X)) = —=Fx(®) + Gt —r)), (3.6)
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wherer is a positive constantF, G € C(RY), and F is nondecreasing o®’. In the
case wher&; = F, Eq. (3.6) has been used as a model for some population growth, the
spread of epidemics, and the dynamics of capital stocks[Gée] for more details).

Corollary 3.2. Assume one of the following conditions is satisfied

() G=F and for anya € R, there existe > 0 and L > 0 such that—F(x) +
F(a)> — L(x —a) for all x € [o, ax+ €];

(i) GF and for anya € RY, there existe > 0 and L > 0 such that—F(x) +
Fo)< — L(x —a) for all x € [a — ¢, a].

Then each bounded solution of E®.6) tends to a constant as— oo.

Proof. Without loss of generality, we assume that assumption (i) is satisfied. Clearly,
by assumption (i) and the fact th&t is nondecreasing, we know th&#) holds.
Therefore, Theorem 3.3 can then be applied to get the result of the corollary.
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