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Abstract

In this paper, we consider a class of pseudo monotone semiflows, which only enjoy some weak
monotonicity properties and are defined on product-ordered topological spaces. Under certain
conditions, several convergence principles are established for each precompact orbit of such a
class of semiflows to tend to an equilibrium, which improve and extend some corresponding
results already known. Some applications to delay differential equations are presented.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years the study of the convergence of precompact orbits as an important
subject of the theory of monotone dynamical systems has received amazing achieve-
ments. Hirsch[11] established that most orbits of a strongly monotone semiflows on
a strongly ordered space tend to the set of equilibria, which extends earlier work of
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Hirsch [9,10] for ordinary differential equations to infinite-dimensional semiflows, and
applied this result to parabolic partial differential equations. Those results in [11] were
later improved by Matano [15,16], Poláčik [17], and Smith and Thieme [22,23].

The generic convergence principles in the aforementioned work imply that precom-
pact orbits of monotone dynamical systems have a strong tendency to converge to an
equilibrium, which therefore inspires many researchers to try to find sufficient con-
ditions for every precompact orbit of monotone dynamical systems convergent to an
equilibrium. For instance, Takáč [24] introduced the subhomogeneous hypotheses to
establish the global convergence for strongly monotone discrete-time semiflows. Later,
the authors in [12,13,26] studied the global convergence for monotone and subhomoge-
neous systems from different points of view. Some other well-known conditions such
as the orbital stability, the first integral, etc. were also utilized by many investigators
to prove the global convergence in continuous- and discrete-time monotone dynamical
systems (see, e.g., [1,5,8,14,18,20,25,28]). For related work, we refer to the monograph
by Zhao [29]. When significantly enriching the theory of monotone dynamical systems,
the convergence principles in the above-mentioned literature fail to apply to many dif-
ferential equations without enjoying a comparison principle. However, it is possible that
some differential equations still possess some slightly weaker monotonicity properties
and in this case, we might even combine monotonicity arguments with dynamical sys-
tems ideas to obtain convergence to equilibrium for precompact orbits. We know that
very little has been accomplished in this direction. For instance, Haddock et al. [7]
recently introduced a class of eventually strongly pseudo monotone semiflows defined
on a function subspaceX ⊆ C(M,R1) which has a topology making its inclusion into
C(M,R1) continuous, whereM is a compact topological space andR1 denotes the set
of all real numbers, and proved that each precompact orbit tends to a constant function
whenever each constant function is an equilibrium point for such semiflows.

Even though the convergence principle in [7] has been successfully applied to neutral
functional differential equations and semilinear parabolic partial differential equations
with Neumamn boundary condition, its requirements on the phase space, the set of
equilibria and even the monotonicity properties are still too restrictive and therefore,
its limitations seem natural. In fact, the convergence principle in [7] cannot be applied
to some important examples like the following scalar delay differential equation:

x′(t) = −F(x(t)) + G(x(t − r)), (1.1)

where r is a positive constant,F,G ∈ C(R1), F is nondecreasing, and eitherG(x)�
F(x) for all x ∈ R1 or G(x)�F(x) for all x ∈ R1. Indeed, (i) if G /≡ F , then
the set of equilibria of (1.1) cannot contain all the constant functions on the space
C([−r,0], R1); (ii) if G ≡ F , then the semiflow generated by (1.1) does not enjoy
the monotonicity properties considered by Haddock et al.[7]. It should be pointed out
that the convergence principle in [27] cannot be applied to (1.1) either for the similar
reasons. Variants of system (1.1) have been used as models for various phenomena such
as some population growth, the spread of epidemics, the dynamics of capital stocks,
etc. (see, for example, [3,4,6] and the references cited therein).
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Motivated by the above discussion and example, we will consider a class of essen-
tially semi-strongly sup-pseudo (sub-pseudo) monotone semiflows (see Section 2 for
more details on this definition) defined on product-ordered topological spaces. Under
certain conditions, by combining monotonicity arguments and the basic properties of the
�-limit set of precompact orbits (i.e., nonempty, compact, invariant and connected), we
obtain several convergence principles, that is, each precompact orbit of such a class of
semilows tends to an equilibrium, which extend and improve earlier work of Haddock
et al. [7].

The paper is organized as follows. In Section 2, we define several class of pseudo
monotone semiflows and establish several convergence principles. In Section 3, some
applications of the results obtained in previous section to certain systems of delay
differential equations are given.

2. Convergence principles

In this section, we prove several convergence principles. For simplicity here, we
begin by introducing some notations and definitions.

Let Xi be a topological space endowed with a closed partial order relationRi ,
where i = 1,2, and(Xi, Ri) is also called an ordered topological space. The ordered
topological space(X,R) defined byX = X1 ×X2 andR = {(x1, x2, y1, y2) ∈ X×X :
(xi, yi) ∈ Ri, i = 1,2} is called the product ordered topological space of the ordered
topological spaces(X1, R1) and (X2, R2). For anyxi, yi ∈ Xi,Ai ⊆ Xi , the following
notations will be used:xi � iyi iff (xi, yi) ∈ Ri , xi <i yi iff xi � iyi and xi �= yi ,
xi �i yi iff (xi, yi) ∈ Int Ri , xi � iAi iff xi � iyi for any yi ∈ Ai , x <i Ai iff xi <i yi
for any yi ∈ Ai , xi �i Ai iff xi �i yi for any yi ∈ Ai , where i = 1,2, and IntRi

denotes the interior ofRi in Xi × Xi . For anyx, y ∈ X and A ⊆ X, we write x�y

(x � y) iff xi � iyi (xi �i yi) for i = 1,2. Notations such asx�y, x � A and so
forth, can be defined similarly. In what follows, we shall write “�”, “ <” and “�” for
“ � i”, “ <i”, and “�i”, respectively, when no confusion results, wherei = 1,2.

Let R1+ denote the set of all nonnegative real numbers,� : X × R1+ → X be a
semiflow onX, that is,� is continuous and�t (x) ≡ �(x, t) which satisfies:

(i) �0(x) = x for all x ∈ X;
(ii) �t (�s(x)) = �t+s(x) for all x ∈ X and t, s ∈ R1+.

We write O(x) = {�t (x) : t ∈ R1+} for the positive semi-orbit through the point
x. The �-limit set of O(x) is defined by�(x) = ⋂

t∈R1+
O(�t (x)). Let E = {e ∈ X :

�t (e) = e, t ∈ R1+} be the set of equilibria of�.
We now make the following key definitions:

Definition 2.1. Assume that
∑ ⊆ X and � is a semiflow onX. The semiflow� is

said to be sup-pseudo monotone with respect to
∑

if for any e ∈ ∑
, there exists

T = Te�0 such that for anyx ∈ X with x�e, we have�t (x)�e for all t�T . Points
of such a

∑
are called sup-pseudo equilibria. The semiflow� is said to be sub-pseudo
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monotone with respect to
∑

if for any e ∈ ∑
, there existsT = Te�0 such that for

any x ∈ X with x�e, we have�t (x)�e for all t�T . Points of such a
∑

are called
sub-pseudo equilibria. The semiflow� is said to be pseudo monotone with respect to∑

if � is both sup-pseudo and sub-pseudo monotone with respect to
∑

. Points of
such a

∑
are called pseudo equilibria.

Remark 2.1. Note that if
∑ = E and the semiflow� is monotone in the sense of

Hirsch [11], then � is pseudo monotone with respect to
∑

.

Definition 2.2. Assume that
∑ ⊆ X and � is a semiflow onX. The semiflow� is

said to be essentially semi-strongly sup-pseudo monotone with respect to
∑

if � is
sup-pseudo monotone with respect to

∑
, and for anye ∈ ∑

there existsT = Te > 0
such that for anyx ∈ X with x�e, one of the following holds:

(i) �T (x) = e;
(ii) �T (x) � e;

(iii) (�T (x))1 � e1 and (�T (x))2 = e2;
(iv) (�T (x))1 = e1 and (�T (x))2 � e2.

Definition 2.3. Assume that
∑ ⊆ X and � is a semiflow onX. The semiflow� is

said to be essentially semi-strongly sub-pseudo monotone with respect to
∑

if � is
sub-pseudo monotone with respect to

∑
, and for anye ∈ ∑

there existsT = Te > 0
such that for anyx ∈ X with x�e, one of the following holds:

(i) �T (x) = e;
(ii) �T (x) � e;

(iii) (�T (x))1 � e1 and (�T (x))2 = e2;
(iv) (�T (x))1 = e1 and (�T (x))2 � e2.

A semiflow � is said to be essentially semi-strongly pseudo monotone with respect
to

∑
if � is both essentially semi-strongly sup-pseudo and essentially semi-strongly

sub-pseudo monotone with respect to
∑

.
We will always assume that the mapIi : R1 → Xi is continuous and satisfies that

Ii(�i ) � Ii(�′
i ) for all �′

i > �i and that for anyxi ∈ Xi , there exist�i , �′
i ∈ R1

such thatIi(�i )�xi �Ii(�′
i ), where i = 1,2. Let F : R1 → R1 be continuous and

nondecreasing. Also, let

DF =
{
(�,�) ∈ R2 : F(�) = F(�)

}
,

D̂F = {
(I1(�), I2(�)) ∈ X : (�,�) ∈ DF

}
,

sF (�) = sup{� ∈ R1 : F(�) = F(�)},
iF (�) = inf {� ∈ R1 : F(�) = F(�)}.

Remark 2.2. We cannot rule out the possibility thatsF (�) = +∞ and iF (�) = −∞.
In fact, if F is a constant function, thensF (�) = +∞ and iF (�) = −∞.
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It is further assumed that̂DF ⊆ ∑ ⊆ X.
For the sake of simplicity, we introduce the following assumptions:
(H1) Let the semiflow� be essentially semi-strongly sup-pseudo monotone with

respect to
∑

, the set� be the �-limit set of some precompact positive semi-orbit
of �, and (�1, �2) ∈ DF with (I1(�1), I2(�)) < �. If there existsi ∈ {1,2} such
that Ii(�i ) � qi for all q ∈ � and �i = sF (�i ), then there existsq ∈ � such that
(I1(�1), I2(�2)) � q.
(H2) Let the semiflow� be essentially semi-strongly sub-pseudo monotone with

respect to
∑

, the set� be the �-limit set of some precompact positive semi-orbit
of �, and (�1, �2) ∈ DF with (I1(�1), I2(�)) > �. If there existsi ∈ {1,2} such
that Ii(�i ) � qi for all q ∈ � and �i = iF (�i ), then there existsq ∈ � such that
(I1(�1), I2(�2)) � q.
(H3) Let the semiflow� be essentially semi-strongly sup-pseudo monotone with

respect to
∑

, and assume that(�1, �2) ∈ DF and �i = sF (�i ) for some i ∈ {1,2}.
If x ∈ X with (I1(�1), I2(�2))�x and Ii(�i ) � xi , then there existsT > 0 such that
(I1(�1), I2(�2)) � �T (x).
(H4) Let the semiflow� be essentially semi-strongly sub-pseudo monotone with

respect to
∑

, and assume that(�1, �2) ∈ DF and �i = iF (�i ) for somei ∈ {1,2}. If
x ∈ X with (I1(�1), I2(�2))�x and Ii(�i ) � xi , then there existsT > 0 such that
(I1(�1), I2(�2)) � �T (x).

Remark 2.3. By the invariance of�-limit set, we know that(H3) implies (H1), and
(H4) implies (H2).

Lemma 2.1. Suppose that(H1) holds, and thatx ∈ X is a given point such thatO(x)

is precompact. LetAx = {(�,�) ∈ DF : (I1(�), I2(�))��(x)}. ThenAx contains the
maximum element(�∗,�∗) ∈ Ax , which satisfies that(I1(�∗), I2(�

∗)) ∈ D̂F ∩�(x) and
that for anyq ∈ �(x) \ (I1(�∗), I2(�

∗)), we have either

I1(�∗) � q1 and I2(�
∗) = q2

or

I1(�∗) = q1 and I2(�
∗) � q2.

Proof. We first prove thatAx contains the maximum element.
By the compactness of�(x) and the definition ofIi , there exist�′,�′ ∈ R1 such

that

(I1(�′), I2(�′))��(x)�(I1(�
′), I2(�

′)).

Let

A′
x = {(�,�) ∈ Ax : �′ ����′, �′ ����′}.
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We will show thatA′
x contains the maximum element. SinceA′

x is a compact subset
in R2, it follows that A′

x must contain the maximal element(�∗,�∗). We claim that
(�∗,�∗) is the maximum element ofA′

x . By way of contradiction, we assume that,
without loss of generality, there exists(�∗∗,�∗∗) ∈ A′

x such that�∗∗ > �∗ and �∗∗ <

�∗. Then, from the fact thatF is nondecreasing, it follows thatF(�∗∗) = F(�∗) and
hence,(�∗∗,�∗) ∈ DF . By the choice of�∗∗ and �∗, we have(�∗∗,�∗) ∈ A′

x . This
contradicts the fact that(�∗,�∗) is the maximal element ofA′

x , and thus, the claim is
proved. Therefore, by the definition ofA′

x , (�∗,�∗) is also the maximum element of
Ax .

In the remainder of the proof, we first prove that for anyq ∈ �(x), one has
((I (�∗), I (�∗)), q) /∈ Int R. Otherwise,(I (�∗), I (�∗)) � q. Thus, by the definition of
�(x), there existst1 > 0 such that

(I1(�∗), (I2(�
∗)) � �t1(x).

Again, by the definition ofDF , there exist�′,�′ such that

(I1(�∗), (I2(�
∗)) � (I1(�′), I2(�

′)) � �t1(x).

Since the semiflow� is sup-pseudo monotone with respect tôDF , we have

(I1(�′), I2(�
′))��(x),

a contradiction to the definition of(�∗,�∗).
We next prove that(I1(�∗), I2(�

∗)) ∈ �(x).
Otherwise,(I1(�∗), I2(�

∗)) < �(x). From the above discussion and the fact that the
semiflow � is essentially semi-strongly sup-pseudo monotone with respect toD̂F , it
follows that there existsT = T(�∗,�∗) > 0 such that for anyq ∈ �(x), we have either

I1(�∗) � (�T (q))1 and I2(�∗) = (�T (q))2

or

I1(�∗) = (�T (q))2 and I2(�∗) � (�T (q))2.

Let

A1 = {q ∈ �(x) : I1(�∗) � q1} and A2 = {q ∈ �(x) : I2(�
∗) � q2}.

By the above discussion and the invariance of�(x), we haveA1 ∪ A2 = �(x) and
A1 ∩ A2 = �. Owing to the compactness of�(x), A1 and A2 are closed sets. Again,
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since �(x) is connected, it follows that eitherA1 = � or A2 = �. Without loss of
generality, we assume thatA1 = �(x). We want to show that

�∗ = sF (�∗).

Otherwise,

�∗ < sF (�∗).

By the definition ofA1, there exists�∗∗ > �∗ such that

(�∗∗,�∗) ∈ DF and (I1(�∗∗), I2(�
∗))�A1 ≡ �(x).

This contradicts the definition of(�∗,�∗). Thus, by(H1), there existsq ∈ �(x) such
that (I1(�∗), I2(�

∗)) � q, a contradiction to the above discussion. Therefore, we obtain

(I1(�∗), I2(�
∗)) ∈ �(x).

Assume thatq ∈ �(x)\{(I (�∗), I (�∗))}. From the above discussion and the fact that
the semiflow� is essentially semi-strongly sup-pseudo monotone with respect toD̂F ,
it follows easily that either

I1(�∗) � q1 and I2(�
∗) = q2

or

I1(�∗) = q1 and I2(�
∗) � q2.

This completes the proof.�

Remark 2.4. By Remark 2.3, if assumption(H3) is satisfied, the result of Lemma 2.1
continues to hold.

Lemma 2.2. Suppose that(H2) holds, and thatx ∈ X is a given point such thatO(x)

is precompact. LetAx = {(�,�) ∈ DF : (I1(�), I2(�))��(x)}. ThenAx contains the
minimum element(�∗,�∗) ∈ Ax , which satisfies that(I1(�∗), I2(�

∗)) ∈ D̂F ∩ �(x) and
that for anyq ∈ �(x) \ (I1(�∗), I2(�

∗)), we have either

I1(�∗) � q1 and I2(�
∗) = q2

or

I1(�∗) = q1 and I2(�
∗) � q2.
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Proof. Let

R′
i = {(xi, yi) ∈ Xi × Xi : (yi, xi) ∈ Ri}

and I ′
i (�) = Ii(−�) for � ∈ R1. ReplaceRi and Ii by R′

i and I ′
i , respectively, where

i = 1,2. The conclusion follows immediately from Lemma 2.1.�

Remark 2.5. By Remark 2.3, if assumption(H4) is satisfied, the result of Lemma 2.2
continues to hold.

Theorem 2.1. Let F be a constant function and the semiflow� be essentially semi-
strongly sup-pseudo(or sub-pseudo) monotone with respect to

∑
. Suppose thatx ∈ X

is a given point such thatO(x) is precompact. Then there exist�∗,�∗ ∈ R1 such that

�(x) = {(I1(�∗), I2(�
∗))}.

Proof. Without loss of generality, we assume that the semiflow� is essentially semi-
strongly sup-pseudo monotone with respect to

∑
. Using the fact thatF is a constant

function, we havesF (�) = +∞ for all � ∈ R1. It then follows that� satisfies(H1),
and hence Lemma 2.1 implies that there exist�∗,�∗ ∈ R1 such that

(I1(�∗), I2(�
∗)) ∈ �(x) and (I1(�∗), I2(�

∗))��(x).

Now we will show that�(x) \ {(I1(�∗), I2(�
∗))} = �. Otherwise, by Lemma 2.1, we

may assume, without loss of generality, that there existsq ∈ �(x) such thatq1 � I1(�∗)
and q2 = I2(�

∗). Choose�′ < �∗ and �′ > �∗ such that

q1 � I1(�′).

Then,

q � (I1(�′), I2(�
′)).

SinceF is a constant function, it follows that(�′,�′) ∈ DF . By the definition of�(x),
there existst1 > 0 such that

�t1(x)�(I1(�′), I2(�
′)).

Hence, from the fact that the semiflow� is sup-pseudo monotone with respect to
∑

,
it follows that there existst2 > t1 such that

�t (x)�(I1(�′), I2(�
′)) for all t� t2.
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Therefore, we have

�(x)�(I1(�′), I2(�
′)).

But this contradicts the choice of(�∗,�∗). This completes the proof.�

Theorem 2.2. Let the function F be strictly increasing and assume that either(H3) or
(H4) holds. Suppose thatx ∈ X is a given point such thatO(x) is precompact. Then
there exist�∗ ∈ R1 such that�(x) = {(I1(�∗), I2(�∗))}.

Proof. Without loss of generality, we assume that(H3) is satisfied. By Remark 2.4
and the fact thatF is strictly increasing, there exists�∗ ∈ R1 such that

(I1(�∗), I2(�∗)) ∈ �(x) and (I1(�∗), I2(�∗))��(x).

Now we will show that�(x) = {(I1(�∗), I2(�∗))}. Otherwise, without loss of generality,
we may assume that there existsq ∈ �(x) such thatI1(�∗) � q1 and I2(�∗) = q2. It
follows from (H3) that there existsT > 0 such that

(I1(�∗), I2(�∗)) � �T (q) ∈ �(x),

which is a contradiction to Remark 2.4. This completes the proof.�

Generally speaking, assumption(Hi) does not imply that the�-limit set of precom-
pact orbits is a singleton, wherei = 1,2,3,4. But, if both (H1) and (H2) hold, then
we can get the following:

Theorem 2.3. Let (H1) and (H2) hold. Suppose thatx ∈ X is a given point such that
O(x) is precompact. Then there exists(�∗,�∗) ∈ R2 such that

�(x) = {(I1(�∗), I2(�
∗))}.

Proof. By Lemmas 2.1 and 2.2, there exist�∗,�∗, �∗∗,�∗∗ ∈ R1 such that

(I1(�∗), I2(�
∗)), (I1(�∗∗), I2(�

∗∗)) ∈ �(x) and

(I1(�∗), I2(�
∗))��(x)�(I1(�∗∗), I2(�

∗∗)).

Hence,�∗ = �∗∗ or �∗ = �∗∗. Without loss of generality, we assume that�∗ = �∗∗. If
�∗ = �∗∗, then the proof is complete. Otherwise,�∗ < �∗∗. We next distinguish two
cases to finish the proof.
Case1: �∗ > �∗.
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Choose�′ ∈ R1 such that�∗ < �′ < min{�∗,�∗∗}. Then

(I1(�′), I2(�′)) � (I1(�∗∗), I2(�
∗∗)) ∈ �(x).

By the definition of�(x) and the fact that the semiflow� is sup-pseudo monotone
with respect to

∑
, we have

(I1(�′), I2(�′))��(x),

a contradiction to the choice of(�∗,�∗).
Case2: �∗ ��∗.
Choose� ∈ R1 such that�∗ < �′ < �∗∗. Then

(I1(�∗), I2(�
∗)) � (I1(�′), I2(�′)).

Thus, we have, by the definition of�(x) and the fact that the semiflow� is sub-pseudo
monotone with respect to

∑
,

�(x)�(I1(�′), I2(�′)).

This is a contradiction to the choice of(�∗∗,�∗∗). The proof is complete. �

Remark 2.6. The result of Theorem 2.3 continues to hold if we replace(H1) by (H3)

or replace(H2) by (H4) in Theorem 2.3.

The following example is given to illustrate that if exactly one of assumptions(H1)

and (H2) holds, then the result of Theorem 2.3 does not necessarily continue to hold.

Example 2.1. Let t2k = 2k(k + 1) and t2k+1 = 2(k + 1)2, where k is a nonnegative
integer. Clearly,t0 = 0 < t1 < t2 < · · · < tk < · · · and limt−→+∞ tk = +∞. Define the
function a : R1+ → R1 by setting

a(t) =


t

(k+1)2 − 2k
k+1, t2k� t� t2k+t2k+1

2 ,

− t

(k+1)2 + 2, t2k+t2k+1
2 � t� t2k+1+t2k+2

2 ,

t

(k+1)2 − 2(k+2)
k+1 ,

t2k+1+t2k+2
2 � t� t2k+2.

Then a(t) is continuous onR1+ and satisfies that

(i) 0�a(t)� 1
k+1 for t ∈ [t2k, t2k+1], and− 1

k+1 �a(t)�0 for t ∈ [t2k+1, t2k+2], where
k is a nonnegative integer;
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(ii)
∫ t2k+1
t2k

a(s)ds = 1 and
∫ t2k+2
t2k+1

a(s)ds = −1, wherek is a nonnegative integer;

Define the mappingsf, h, g : R1 → R1 by

f (x) =


x + 1

e
− 4, x� − 1

e
,

− 4√− ln(−x)
, −1 < x < 0,

0, 0�x�1,
x − 1, x�1;

g(x) =

a(0), x� − 1,
a(− ln(−x)), −1 < x < 0,
f (x), x�0;

and

h(x) =

x, x�0,
0, 0�x�1,
x − 1, x�1.

We can observe thatf, g, h ∈ C(R1), f and h are nondecreasing,g�f , and for any
x ∈ R1, there existε > 0 andL > 0 such that−f (y) + f (x)� − L(y − x) for any
y ∈ [x, x + ε].

Let us now consider the following system:{
x′

1(t) = −f (x1(t)) + g(x2(t − 1)),

x′
2(t) = −h(x2(t)) + h(x1(t − 1)).

(2.1)

In this example, for the sake of convenience, we introduce the following notation:
Let X1 = X2 = C([−1,0], R1) be the Banach spaces equipped with supremun norms,

and defineX+
1 = X+

2 = C([−1,0], R1+). Then X+
i induces a closed partial ordered

relation onXi , wherei = 1,2. For any� ∈ R1, let us definê�(�) = �, � ∈ [−1,0]. It
follows that �̂ ∈ Xi . DefineIi(�) = �̂, � ∈ R1, i = 1,2. Assume that� ∈ X = X1 ×X2
and usext (�) to denote the solution of (2.1) with the initial datax0(�) = �. Using a
similar argument as that of Lemma 3.3 below, we know thatxt (�) exists and is unique
on R1+. Let �t (�) = xt (�), t ∈ R1+, � ∈ X. Then � is a semiflow onX.

Now we want to show that� actually satisfies(H1). For that purpose, we will first
prove the following several claims.

Claim 1. If (�,�) ∈ Df and � ∈ X with (I1(�), (I2(�))��, then

(I1(�), I2(�))�xt (�) for t ∈ R1+.

Note thatDf = Dh. It is easily verified that Claim 1 is true.
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Claim 2. If � < 0 and � ∈ X with (I1(�), I2(�)) < �, then

(I1(�), I2(�)) � xt (�) for t�3.

Indeed, we may assume that there exists�1 ∈ (−1,0] such that�1(�1) > �. Let
t1 = 1+ �1. Thenx2(t1,�) > �. Otherwise, by Claim 1,x2(t1,�) = �. It follows from
Claim 1 thatx′

2(t1,�) = 0. On the other hand, from (2.1), we have

x′
2(t1,�) = −h(�) + h(�1(�1))

> −h(�) + h(�) = 0,

which yields a contradiction. Thus, from (2.1), we obtain

x′
2(t,�) = −h(x2(t,�)) + h(x1(t − 1,�))

� −h(x2(t,�)) + h(�)

� −(x2(t,�) − �).

It follows that

x2(t,�)�� + (x2(t1,�) − �)et−t1 for all t� t1.

Hence,x2(t,�) > � for all t� t1.
We will show thatx1(t,�) > � for all t� t1 + 1. Otherwise,t2 = inf {t� t1 + 1 :

x1(t,�) = �} < +∞. Using a similar argument as above, we can know thatx1(t1 +
1,�) > �. Thus, we obtain thatt2 > t1 + 1, x1(t2,�) = � and x′

1(t2,�) = 0. Again
from (2.1), we have

g(x2(t2 − 1,�)) = f (x1(t2,�)) = f (�).

Since x2(t2 − 1,�) > �, it follows that g(x2(t2 − 1,�)) > f (�), which yields a
contradiction. Therefore, the Claim 2 is true.

Claim 3. If � > 1 and � ∈ X with (I1(�), I2(�)) < �, then x4(�) � (I1(�), I2(�)).

Claim 4. If �,� ∈ [0,1] and � ∈ X with (I1(�), I2(�))��, then one of the following
holds:

(i) (I1(�), I2(�)) = x4(�);
(ii) x4(�) � (I1(�), I2(�));

(iii) x1(t,�) = � for t ∈ [3,4], and x2(t,�) > � for t ∈ [3,4];
(iv) x1(t,�) > � for t ∈ [3,4], and x2(t,�) = � for t ∈ [3,4].
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Moreover, we have the following:

(i) If � = 1 and �1(�) > 1 for all � ∈ [−1,0], then x4(�) � (I1(�), I2(�));
(ii) If � = 1 and �2(�) > 1 for all � ∈ [−1,0], then x4(�) � (I1(�), I2(�)).

Remark 2.7. Arguing as that in the proof of Lemma 3.4 below, we can prove the
Claims 3 and 4.

From the above Claims 1–4, we can know that� satisfies(H1) but does not satisfy
(H2). In fact, let

x1(t) =
{ ∫ t

0 a(s)ds, t�0,
0, −1� t�0

and

x2(t) = −e−t−1, t� − 1.

Then we can verify thatx(t) = (x1(t), x2(t)) satisfies (2.1). Since limk→+∞ x1(t2k+1) =
1 and limk→+∞ x1(t2k) = 0, it follows thatx(t) does not tend to a constant vector as
t −→ ∞. Therefore, assumption(H1) cannot guarantee that the result of Theorem 2.3
remains valid.

Let Z be a topological space endowed with a closed partial ordered relationRZ ⊆
Z × Z. For any z′, z′′, z′′′ ∈ Z and any subsetA ⊆ Z, the following notations will
be used:z′ �z′′ iff (z′, z′′) ∈ RZ , z′ < z′′ iff (z′, z′′) ∈ RZ and z′ �= z′′, z′ � z′′ iff
(z′, z′′) ∈ Int RZ , A � z′′′ iff a � z′′′ for a ∈ A, z′′′ � A iff z′′′ � a for a ∈ A,
A�z′′′ (A < z′′′) iff a�z′′′ (a < z′′′) for a ∈ A, z′′′ �A (z′′′ < A) iff z′′′ �a (z′′′ < a)

for a ∈ A.
Assume that� is a semiflow onZ and the mappingI : R1 → Z is continuous and

satisfies that

I (�) � I (�) for any � < �

and that for anyz ∈ Z, there exist�′,�′ ∈ R1 such that

I (�′)�z�I (�′).

It is further assumed that
∑

Z is a subset ofZ and I (R1) ⊆ ∑
Z .

Definition 2.4. The semiflow � is said to be essentially strongly sup-pseudo (sub-
pseudo) monotone with respect to

∑
Z if the semiflow � is sup-pseudo (sub-pseudo)

monotone with respect to
∑

Z and for anye ∈ ∑
Z , there existsT = Te > 0 such that
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for any z ∈ Z with e�z (e�z), we have either�T (z) = e or e � �T (z) (either
�T (z) = e or e � �T (z)).

Theorem 2.4. Let the semiflow� be essentially strongly sup-pseudo(or sub-pseudo)
monotone with respect to

∑
Z . Suppose thatz ∈ Z is a given point such thatO(z) is

precompact. Then there exists�∗ ∈ R1 such that

�(z) = {I (�∗)}.

Proof. Without loss of generality, we assume that the semiflow� is essentially strongly
sup-pseudo monotone with respect to

∑
Z . Let X1 = Z, R1 = R2, X2 = R1 andR2 =

{(�,�) ∈ R2 : � − ��0}. Also, let �t (x1, x2) = (�t (x1), x2) for t ∈ R1+, x1 ∈ X1,
x2 ∈ X2. It follows that � is a semiflow onX1 × X2. Let

∑ = ∑
Z ×R1. Then

the semiflow� is essentially semi-strongly sup-pseudo monotone with respect to
∑

.
Suppose thatI1(�) = I (�) and I2(�) = �, where� ∈ R1. Let F ≡ 0. ThenD̂F ⊆ ∑

.
Thus, by Theorem 2.1, there exist�∗,�∗ ∈ R1 such that

⋂
s�0

⋃
t � s

�t (z,0) = {(I (�∗), I (�∗))}.

By the definition of�, we have

⋂
t �0

⋃
t � s

�t (z) = {I (�∗)},

that is, �(z) = {I (�∗)}. This completes the proof.�

Theorem 2.4 improves and extends the convergence principle of[7]. To see this, we
state the convergence principle of [7] and use Theorem 2.4 to prove it. Suppose that
X ⊆ C(M,R1) has a topology making its inclusion intoC(M,R1) continuous, where
M is a compact topological space. For anyu, v ∈ X, the following notations will be
used:u�v iff u(x)�v(x) for any x ∈ M, u ≺ v iff u�v and u �= v, u ≺≺ v iff
u(x) < v(x) for any x ∈ M. For any� ∈ R1, let us definê�(x) = �, x ∈ M. Let � be
a semiflow onX. Moreover, we introduce the following assumptions:

(C1) If u ∈ X and �,� ∈ R1 with �̂�u��̂, then �̂��t (u)��̂ for all t�0.
(C2) There existsT > 0 such that for anyu ∈ X and � ∈ R1 with u ≺ �̂ (̂� ≺ u), we

have�T (u) ≺≺ �̂ (̂� ≺≺ �T (u)).

Corollary 2.1. Let (C1) and (C2) hold. Then each precompact orbit tends to a constant
function.

Proof. Let I (�) = �̂ for all � ∈ R1, andR = {(u, v) ∈ X×X : u(x)�v(x) for x ∈ M}.
If u, v ∈ X with u ≺≺ v, then (u, v) ∈ Int R, sinceX ⊆ C(M,R1) has a topology
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making its inclusion intoC(M,R1) continuous, whereInt R denotes the interior ofR
in X × X. It follows from assumptions(C1) and (C2) that � is a essentially strongly
pseudo monotone semiflow onX. Thus, by Theorem 2.4, we can conclude that the
conclusion of Corollary 2.1 is true.

Remark 2.8. In fact, if exactly one of assumptions(C1) and (C2) is satisfied, then the
conclusion of Corollary 2.1 continues to hold. We refer to[7] for a detailed descrip-
tion of the applications of Corollary 2.1 to neutral functional differential equation and
semilinear parabolic partial differential equation with Neumamn boundary condition.

Remark 2.9. Let J be a subinterval ofR1 such as [0,1], [0,1) and so forth. We assume
that the mapIi : J → Xi is continuous and satisfies thatIi(�i ) � Ii(�′

i ) for all �′
i > �i

and that for anyxi ∈ Xi , there exist�i , �′
i ∈ J such thatIi(�i )�xi �Ii(�′

i ), where
i = 1,2. Let F : R1 → R1 be continuous and nondecreasing. Also, let

sJF (�) = sup{� ∈ J : F(�) = F(�)},
iJF (�) = inf {� ∈ J : F(�) = F(�)},
DJ

F = {(�,�) ∈ J × J : F(�) = F(�)},
D̂J

F = {(I1(�), I2(�)) ∈ X : (�,�) ∈ DF }.

Assume that̂DJ
F ⊆ ∑ ⊆ X. If sF (�i ), iF (�i ) and DF in (H1)–(H4) are replaced by

the abovesJF (�i ), i
J
F (�i ) andDJ

F , respectively, then the results of Lemmas 2.1–2.2 and
Theorems 2.1–2.3 continue to hold. Clearly, Theorem 2.4 can also be improved in a
similar way.

3. Applications to delay differential equations

As some applications of the convergence principles in Section 2, we consider several
systems of delay differential equations.

3.1. Consider the following system of delay differential equations


dx1(t)

dt
= −F1(x1(t)) + F1(x2(t − r2)),

dx2(t)

dt
= −F2(x2(t)) + F2(x1(t − r1)),

(3.1)

where r1, r2 > 0 are constants andF1, F2 ∈ C(R1) is nondecreasing.
System (3.1) can be used to model a compartmental system with two pipes (see[6]).

Let � = min{r1, r2} and r = max{r1, r2}.
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Lemma 3.1. Let F ∈ C(R1) be nondecreasing onR1. For any constants K, t0 and x0,
the initial value problem {

x′(t) = −F(x(t)) + K,

x(t0) = x0
(3.2)

exists a unique solutionx(t, t0, x0) on [t0,∞).

Proof. From the Peano theorem, we know that the solutions of the initial value problem
(3.2) locally exist. Again, sinceF is nondecreasing, it follows from[2] that right-hand
solutions of the initial value problem (3.2) are also unique. Hence,x(t, t0, x0) exists
and is unique on[t0, �) for some positive constant�, where[t0, �) denotes the maximal
right-interval of existence ofx(t, t0, x0). We will show that� = +∞. Otherwise,� <

+∞ and lim t−→�−|x(t, t0, x0)| = +∞. We next distinguish several cases to finish the
proof. �

Case1: There existst1 ∈ [t0, �) such that−F(x(t1, t0, x0)) + K = 0. Let

x̃(t) =
{
x(t, t0, x0) for t0� t� t1,

x(t1, t0, x0) for t� t1.

It follows that x̃(t) satisfies (3.2) and hence,x(t, t0, x0) ≡ x̃(t), which contradicts
� < +∞.
Case2: −F(x(t, t0, x0)) + K < 0 for t ∈ [t0, �). Then x(t, t0, x0) is strictly de-

creasing on[t0, �) and thus,x(t, t0, x0)�x(t0, t0, x0) for all t ∈ [t0, �). It follows
that −F(x(t, t0, x0)) + K� − F(x(t0, t0, x0)) + K for all t ∈ [t0, �), and hence,
x(t, t0, x0)�(K−F(x(t0, t0, x0)))t+x(t0, t0, x0) for all t ∈ [t0, �). Therefore, limt−→�−
|x(t, t0, x0)| < +∞, which yields a contradiction.
Case 3: −F(x(t, t0, x0)) + K > 0 for t ∈ [t0, �). Then x(t, t0, x0) is strictly in-

creasing on[t0, �) and thus,x(t, t0, x0)�x(t0, t0, x0) for all t ∈ [t0, �). It follows
that −F(x(t, t0, x0)) + K� − F(x(t0, t0, x0)) + K for all t ∈ [t0, �), and hence,
x(t, t0, x0)�(K−F(x(t0, t0, x0)))t+x(t0, t0, x0) for all t ∈ [t0, �). Therefore, limt−→�−
|x(t, t0, x0)| < +∞, which yields a contradiction.

The proof of the lemma is complete.�

Lemma 3.2. Let s be a given positive constant, g ∈ C([t0, t0 + s], R1), F ∈ C(R1)

and F be nondecreasing onR1. Then the initial value problem{
x′(t) = −F(x(t)) + d(t),

x(t0) = x0

exists a unique solutionx(t, t0, x0) on [t0, t0 + s].
Proof. Lemma 3.2 follows by applying the standard technique of differential inequali-
ties and Lemma 3.1. �
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Lemma 3.3. Let x(t,�) be the solution of(3.1) with the initial value � ∈ C =
C([−r,0], R2). Thenxt (�) exists and is unique onR1+.

Proof. We only need to prove thatxt (�) exists and is unique on[0, �]. We now show
that x1(t,�) exists and is unique on[0, �]. Let

g1(t) = F1(�2(t − r2)), t ∈ [0, �].

Obviously, g1 ∈ C([0, �], R1). From Lemma 3.2, we know thatx1(t,�) exists and is
unique on[0, �]. Similarly, we can show thatx2(t,�) exists and is unique on[0, �].
The proof is now complete.�

Lemma 3.4. Let F1, F2 ∈ C(R1) be nondecreasing onR1. Then there exists a non-
decreasing functionF ∈ C(R1) such thatDF = DF1

⋂
DF2. Moreover, we have the

following:

(i) If �∗ ∈ R1 with �∗ = sF (�∗), then there existsi ∈ {1,2} such that�∗ = sFi
(�∗);

(ii) If � ∈ R1 with �∗ = iF (�∗), then there existsi ∈ {1,2} such that�∗ = iFi
(�∗).

Proof. Let F(x) = F1(x) + F2(x), for x ∈ R1. It is easily verified thatF ∈ C(R1) is
nondecreasing onR1 and DF = DF1

⋂
DF2. Next, we will show conclusion (i). The

proof of conclusion (ii) can be dealt with similarly and thus, it is omitted. Suppose,
by contradiction, that there exists�∗ ∈ R1 such that�∗ = sF (�∗), �∗ < sF1(�

∗) and
�∗ < sF2(�

∗). Setting�∗ = min{sF1(�
∗), sF2(�

∗)}, we can conclude from the definitions
of sF1 and sF2 that

F1(�∗) = F1(�
∗) and F2(�∗) = F2(�

∗).

Hence,F(�∗) = F(�∗). But the definition ofsF implies thatF(�∗) < F(�∗), which
yields a contradiction. This completes the proof.�

In this subsection, we introduce the following notation:
Let C1 = C([−r1,0], R1) andC2 = C([−r2,0], R1) be the Banach spaces equipped

with supremun norms, and defineC+
1 = C([−r1,0], R1+) and C+

2 = C([−r2,0], R1+).
Then C+

i induces a closed partial ordered relation onCi , where i = 1,2. Define
Ii : R1 −→ Ci by setting Ii(�)(�) = �, � ∈ R1, � ∈ [−ri,0], i = 1,2. Assume that
� ∈ C = C1 × C2 and usext (�) to denote the solution of (3.1) with the initial data
x0(�) = �. By Lemma 3.3, we know thatxt (�) exists and is unique onR1+. Let
�t (�) = xt (�), t ∈ R1+, � ∈ C. Then � is a semiflow onC.

Define

D = {(�,�) ∈ R2 : Fi(�) = Fi(�), i = 1,2} and D̂ = {x̂ ∈ C : x ∈ D}.

By Lemma 3.4, we know thatD = DF and D̂ = D̂F .
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To proceed further, we assume the following hypotheses are satisfied:

(C1) For any� ∈ R1, there existε > 0 andL > 0 such that−Fi(x)+Fi(�)�−L(x−�)
for any x ∈ [�, � + ε], wherei = 1,2.

(C2) For any� ∈ R1, there existε > 0 andL > 0 such that−Fi(x)+Fi(�)�−L(x−�)
for any x ∈ [� − ε, �], wherei = 1,2.

Lemma 3.5. Let � ∈ C and d ∈ D with �� d̂. Thenxt (�)� d̂ for all t�0. Further-
more, we have one of the following:

(i) xt (�) = d̂ for t�5r;
(ii) xt (�) � d̂ for t�5r;

(iii) x1(x,�) > d1 and x2(t,�) = d2 for t�5r;
(iv) x2(t,�) = d1 and x2(t,�) > d2 for t�5r.

Proof. SinceF1 andF2 are nondecreasing, it follows from[19, Proposition 1.1] that

xt (�)� d̂ for all t�0.

We next distinguish four cases to finish the proof.
Case1: xt (�) = d̂ for any t ∈ [0,4r]. Then, we havext (�) ≡ d̂ for all t�r.
Case2: x1(t,�) = d1 for any t ∈ [0,4r] and x2(t2,�) > d2 for somet2 ∈ [0,4r].
From (3.1) and the above discussion, we obtain

dx2(t,�)
dt

= −F2(x2(t,�)) + F2(x1(t − r1,�))

� −F2(x2(t,�)) + F2(d1)

= −F2(x2(t,�)) + F2(d2).

Now, we will prove thatx2(t,�) > d2 for all t� t2. Otherwise, t3 = inf {t� t2 :
x2(t,�) = d2} < +∞. Hence,t3 > t2 and x2(t3,�) = d2. By assumption(C1), there
exist	 > 0 andL > 0 such thatt3−	 > t2 and−F2(x2(t,�))+F2(d2)�−L(x2(t,�)−
d2) for all t ∈ [t3 −	, t3]. So, we havex2(t3,�)�d2 + (x(t3 −	)−d2)e

−L	. Therefore,
x2(t3,�) > d2, which yields a contradiction.

Next, we will show thatx1(t,�) = d1 for t ∈ [0,4r + �]. Indeed, from (3.1), it
follows that

x′
2(t,�) = −F2(x2(t,�)) + F2(d2) for t ∈ [r1,4r].

Thus,x′
2(t,�)�0 for t ∈ [r1,4r]. Again from (3.1), we have

x′
1(t,�) = −F1(x1(t,�)) + F1(x2(t − r2,�)) for t�0.
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It follows that

F1(d1) = F1(x2(t − r2,�)) for t ∈ [0,4r].

Thus,

F1(x2(t,�))�F1(d1) for t ∈ [0,4r].

Therefore, from (3.1), we obtain

x′
1(t,�)� − F(d1) + F1(x2(t − r2,�)) for t ∈ [r2,4r + r2],

that is,

x′
1(t,�)�0 for t ∈ [r2,4r + r2].

Hence, fromxt (�)� d̂ and x1(r2,�) = d1, we have

x1(t,�) = d1 for t ∈ [r2,4r + r2].

Therefore,

x1(t,�) = d1 for t ∈ [0,4r + �].

So, by induction, we getx1(t,�) = d1 for all t�0, and thus, conclusion (iv) is
established.
Case3: x1(t1,�) > d1 for somet1 ∈ [0,4r] and x2(t,�) = d2 for all t ∈ [0,4r].
Using a similar argument as that of Case 2, we can prove that conclusion (iii) is

true.
Case4: x1(t1�) > d and x2(t2,�) > d2 for somet1, t2 ∈ [0,4r].
Using a similar argument as that of Case 2, we can prove that conclusion (ii) is

true. �

Arguing as in the proof of Lemma 3.5, we can get the following result:

Lemma 3.6. Let � ∈ C and d ∈ D with �� d̂. Thenxt (�)� d̂ for all t�0. Further-
more, we have one of the following:

(i) xt (�) = d̂ for t�5r;
(ii) xt (�) � d̂ for t�5r;

(iii) x1(x,�) < d1 and x2(t,�) = d2 for t�5r;
(iv) x2(t,�) = d1 and x2(t,�) < d2 for t�5r.
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Lemma 3.7. Suppose thatA ⊆ C is a compact subset such thatxt (A) = A for t�0.

Let (�∗,�∗) ∈ DF with (�̂∗,�∗)�A. Then we have the following:

(i) If A = {� ∈ A : �∗ < �1(�) for any � ∈ [−r,0]} and �∗ = sF (�∗), then there
exists�∗ ∈ A such that(�̂∗,�∗) � �∗;

(ii) If A = {� ∈ A : �∗ < �2(�) for any � ∈ [−r,0]} and �∗ = sF (�∗), then there
exists�∗ ∈ A such that(�̂∗,�∗) � �∗.

Proof. We will only prove conclusion (i). The proof of conclusion (ii) is similar. By
Lemma 3.4, there exists somei ∈ {1,2} such that

�∗ = sFi
(�∗).

We next distinguish two cases to finish the proof.
Case1: �∗ = sF2(�

∗).
Let � ∈ A and xi(t) = xi(t,�), i ∈ {1,2}. By the invariance ofA, we have that

x1(t) > �∗ for all t� − r1.

From (3.1), one obtains

x′
2(t) = −F2(x2(t)) + F2(x1(t − r1))

> −F2(x2(t)) + F2(�∗)

= F2(x2(t)) + F2(�
∗).

Hence,x2(t) > �∗ for t�0. Therefore, we obtainxr(�) � ̂(�∗,�∗).
Case2: �∗ = sF1(�

∗) and �∗ < sF2(�
∗). Suppose that conclusion (i) is not true.

Then, by Lemma 3.5 and the invariance ofA, we have

�2(�) = �∗ for � ∈ [−r2, �] and � ∈ A.

Let �∗∗ = sup{�1(�) : � ∈ A, � ∈ [−r1,0]}. By the invariance and compactness of
A, there exists�∗∗ such that�∗∗ = �∗∗

1 (0). Again, by the invariance ofA, there exists
� ∈ A such thatxr(�) = �∗∗. Let yi(t) = xi(t,�), i = 1,2. Then, by the Fermat’s
theorem, we gety′

1(r) = 0. From (3.1), it follows that−F1(y1(r))+F1(y2(r−r2)) = 0.
That is,F1(�

∗) = F1(y1(r)). That is,F1(�∗) = F1(y1(r)). On the other hand,y1(r) =
�∗∗

1 (0) = �∗∗ > �∗, which contradicts the choice of�∗. This completes the proof.�

Using a similar argument as that in the proof of Lemma 3.7, we can obtain the
following:
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Lemma 3.8. Suppose thatA ⊆ C is a compact subset such thatxt (A) = A for t�0.

Let (�∗,�∗) ∈ DF with (�̂∗,�∗)�A. Then we have the following:

(i) If A = {� ∈ A : �∗ > �1(�) for any � ∈ [−r,0]} and �∗ = iF (�∗), then there
exists�∗ ∈ A such that(�̂∗,�∗) � �∗;

(ii) If A = {� ∈ A : �∗ > �2(�) for any � ∈ [−r,0]} and �∗ = iF (�∗), then there
exists�∗ ∈ A such that(�̂∗,�∗) � �∗.

Theorem 3.1. Let � ∈ C. Then there exist�∗,�∗ ∈ R1 such that lim t→∞ x(t,�) =
(�∗,�∗).

Proof. Let � be the solution semiflow generated by system (3.1). By Lemmas 3.5
and 3.6, we know that all orbits of� are bounded, and are thus precompact. Lemmas
3.5–3.8 implies that assumptions(H1) and (H2) are satisfied. It then from Theorem
2.3 that Theorem 3.1 holds. This completes the proof.�

3.2. Consider a class of so-called pseudo cooperative and irreducible systems. More
precisely, we consider the following system:

x′(t) = f (xt ), (3.3)

wheref ∈ C(U,Rn), U ⊆ C([−r,0], Rn), r > 0.
In this subsection, we introduce the following notation. LetC = C([−r,0], Rn) be the

Banach space endowed with the usual supremum norm. DefineC+ = C([−r,0], Rn+),
where Rn+ denotes the set of all nonnegative vectors inRn. For x ∈ Rn, we write
x̂ for the element ofC satisfying x̂(�) = x, � ∈ [−r,0]. We tacitly assume that the
initial value problem (3.3) globally exists a unique solution, denoted byxt (�)(x(t,�)),
satisfying x0(�) = � ∈ U . Set N = {1,2, . . . , n}. For any x, y ∈ Rn, the following
notations will be used:x�y iff y − x ∈ Rn+, x < y iff x�y and x �= y, x � y

iff y − x ∈ Int Rn+. For any �,
 ∈ C,��
 iff 
 − � ∈ C+,� < 
 iff ��
 and
� �= 
,� � � iff 
 − � ∈ Int C+. Let E+ = {x̂ ∈ U : f (x̂)�0} and E− = {x̂ ∈ U :
f (x̂)�0}. It is easy to observe thatE+ ∩E− is the set of equilibria of system (3.3).

Assume that̂e ∈ E+, we introduce the following assumptions:

(P+
e ) If � ∈ U with �� ê, thenfi(�)��i (�)(�i (0)− ei), wherei ∈ N and�i : U →

R1 is continuous.
(I+

e ) Assume that� ∈ U with �� ê. DenoteD+ = {i ∈ N : �i (�) > ei, � ∈ [−r,0]}
and D = {i ∈ N : �i (�) = ei, � ∈ [−r,0]}. If D+ ⋃

D = N,D+ �= � and
D �= N , then there existsi ∈ N \ D+ such thatfi(�) > 0.

Assume that̂e ∈ E−, then we make the following assumptions:

(P−
e ) If � ∈ U with �� ê, thenfi(�)��i (�)(�i (0)− ei), wherei ∈ N and �i : U →

R1 is continuous.



450 T. Yi, L. Huang / J. Differential Equations 214 (2005) 429–456

(I−
e ) Assume that� ∈ U with �� ê. DenoteD+ = {i ∈ N : �i (�) < ei, � ∈ [−r,0]}

and D = {i ∈ N : �i (�) = ei, � ∈ [−r,0]}. If D+ ⋃
D = N,D+ �= � and

D �= N , then there existsi ∈ N \ D+ such thatfi(�) < 0.

Lemma 3.9. Let ê ∈ E+ and (P+
e ) hold. If � ∈ U with �� ê, then xt (�)� ê for all

t�0. Moreover, if �i (0) > ei for somei ∈ N , then xi(t,�) > ei for all t�0.

Proof. From (P+
e ) and Remark 2.1, Chapter 5 of Smith[21], we obtain thatxt (�)� ê

for t�0. Again, from (P+
e ), we get

fi(xt (�))��i (xt (�))(xi(t,�) − ei) for t�0.

Thus, from (3.3), it follows that

d(xi(t,�) − ei))

dt
��i (xt (�))(xi(t,�) − ei) for t�0.

Therefore,

(xi(t,�) − ei)�e
∫ t

0 �i (xs (�))ds(�i (0) − ei) > 0 for t�0,

that is,

xi(t,�) > ei for t�0.

This completes the proof.�

Lemma 3.10. Let ê ∈ E+ and assume that(P+
e ) and (I+

e ) are satisfied. If� ∈ U

with �� ê, then either

xt (�) � ê for t�(n + 2)r

or

xt (�) = ê for t�(n + 2)r.

Proof. We distinguish two cases to finish the proof.
Case1: x(t,�) = e for all t ∈ [0, r].
It follows that f (̂e) = 0. Hence,xt (�) = ê for t�r.
Case2: x(t1,�) > e for somet1 ∈ [0, r].
Let Mt = {i ∈ N : xi(t,�) > ei}, t�0. It follows thatMt1 �= �. Thus, by Lemma

3.9, it follows that

Ms ⊆ Mt, 0�s� t.
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Claim. If t∗ ∈ R1+ andMt∗ /∈ {�, N}, thenMt∗ �= Mt∗+r .

If the claim is not true, thenMt = Mt∗ for all t ∈ [t∗, t∗ + r]. It follows from (I+
e )

that there existsi ∈ N \ Mt∗+r such thatfi(xt∗+r (�)) > 0. Thus, from (3.3), we get

x′
i (t

∗ + r,�) = fi(xt∗+r (�)) > 0.

Therefore, there existsε > 0 such that

d(xi(t,�) − ei)

dt
> 0 for t ∈ [t∗ + r − ε, t∗ + r].

Sincext (�)� ê for any t�0, we havexi(t∗ + r,�) > ei . So, it follows thati ∈ Mt∗+r ,
which yields a contradiction. This completes the proof of the claim.

Now, we will show thatMt1+(n−1)r = N . Otherwise, by the above claim, we have

� �= Mt1 ⊆ Mt1+r ⊆ · · · ⊆ Mt1+(n−1)r ⊆ Mt1+nr andMt1+ir �= Mt1+(i−1)r ,

i = 1,2, . . . , n.

But this contradictsMt ⊆ N for t�0. This completes the proof.�

Arguing as in the proof of Lemma 3.10, we can get the following result:

Lemma 3.11. Let ê ∈ E− and assume that(P−
e ) and (I−

e ) are satisfied. If� ∈ U

with �� ê, then either

xt (�) � ê for t�(n + 2)r

or

xt (�) = ê for t�(n + 2)r.

Assume that the mappingI : R1 → U is continuous and satisfies that

(i) I (�) � I (�), for � < �;
(ii) For any � ∈ U , there exist�∗,�∗ ∈ R1 such that

I (�∗)���I (�∗).

Definition 3.1. System (3.3) is said to be sup-pseudo cooperative and irreducible with
respect toI if I (R1) ⊆ E+ and for anyê ∈ I (R1), assumptions(P+

e ) and (I+
e ) are

satisfied. System (3.3) is said to be sub-pseudo cooperative and irreducible with respect
to I if I (R1) ⊆ E− and for anyê ∈ I (R1), assumptions(P−

e ) and (I−
e ) are satisfied.
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Theorem 3.2. Let system(3.3) be sup-pseudo(sub-pseudo) cooperative and irreducible
with respect to I. If� ∈ U is given such thatO(�) is precompact, then there exists
�∗ ∈ R1 such that

�(�) = {I (�∗)}.

Proof. Without loss of generality, we assume that system (3.3) is sup-pseudo cooper-
ative and irreducible with respect toI. Let �t (�) = xt (�), t ∈ R1+, � ∈ U. Then, by
Lemma 3.10, the semiflow� is essentially strongly sup-pseudo monotone with respect
to I (R1). Theorem 3.2 follows immediately from Theorem 2.4.�

Example 3.1. Consider the following compartmental system with three pipes[6]:


dx1(t)

dt
= −F1(x1(t)) + G1(x2(t − r2)),

dx2(t)

dt
= −F2(x2(t)) + G2(x3(t − r3)),

dx3(t)

dt
= −F3(x3(t)) + G3(x1(t − r1)),

(3.4)

where ri is a positive constant,Fi , Gi ∈ C(R1), and Fi is strictly increasing onR1,
i = 1,2,3.

Corollary 3.1. Assume one of the following conditions is satisfied:

(i) Gi �Fi and for any� ∈ R1, there exists a continuous functionL : [�,∞) → R1+
such thatFi(x) − Fi(�)�L(x)(x − �) for all x ∈ [�,∞);

(ii) Gi �Fi and for any� ∈ R1, there exists a continuous functionL : (−∞, �] → R1+
such thatFi(x) − Fi(�)�L(x)(x − �) for all x ∈ (−∞, �].
Then each bounded solution of system(3.4) tends to a constant ast −→ ∞.

Proof. Without loss of generality, we assume that condition (i) is satisfied. Letr =
max{r1, r2, r3} and X = C([−r,0], R3). Define the mappingsg : X → R3 and I :
R1 → X as

gi(�) = −Fi(�i (0)) + Gi(�(i+1)mod 3(−r(i+1)mod 3)), � ∈ X,

and

(I (�))(�) = (�, �, �), � ∈ R1, � ∈ [−r,0].

Then, from condition (i), we can see thatg is sup-pseudo cooperative and irreducible
with respect toI. Therefore our conclusion follows from Theorem 3.2.�
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Remark 3.1. If Gi is not strictly increasing for somei ∈ {1,2,3}, then system (3.4)
in Corollary 3.1 is not cooperative and irreducible in the sense of Smith[21].

3.3. Consider the following well-known system of delay differential equations

x′(t) = F(x(t), x(t − r)), (3.5)

where r > 0 is a constant andF : R2 −→ R1 is continuous.
System (3.5), based on certain conditions, have been widely studied by many re-

searchers (see, for example,[3,4,6,7]). In this subsection, we introduce the following
notations and assumptions. LetC = C([−r,0], R1) be the Banach space of continuous
mappings from[−r,0] into R1, equipped with the usual supremum norm. Define

C+ = C([−r,0], R1+).

ThenC+ is an order cone inC, and thus, induces a partial order relation “�”, which
can be defined as that in Section 3.2. For� ∈ C, by xt (�) we denote a solution of
(3.5) with the initial datax0(�) = �. We assume thatxt (�) exists and is unique on
R1+ for each� ∈ C.

We need the following assumptions:

(H+) For � ∈ R1, M > 0, there existε = ε(�,M) > 0 andL = L(�,M) > 0 such
that F(x, y)� − L(x − �) for any x ∈ [�, � + ε] and y ∈ [�, � + M].

(H−) For � ∈ R1, M > 0, there existε = ε(�,M) > 0 andL = L(�,M) > 0 such
that F(x, y)� − L(x − �) for any x ∈ [� − ε, �] and y ∈ [� − M, �].

Lemma 3.12. Let (H+) hold and assume that� ∈ C and � ∈ R1 with �� �̂. Then
either

xt (�) � �̂ for t�2r

or

xt (�) = �̂ for t�2r.

Proof. Define f : C → R1 as f (
) = F(
(0),
(−r)). It then follows from (H+)
that for any� ∈ R1 with �� �̂ and �(0) = �, we obtainf (�)�0. Hence, by Remark
2.1 in Chapter 5 of Smith[21], we getxt (�)� �̂ for all t�0. We next distinguish two
cases to finish the proof.
Case1: x(t,�) = �, t ∈ [0, r].
For this case, we haveF(�, �) = 0, and hencex(t,�) = � for all t�0.
Case2: x(t1,�) > � for somet1 ∈ [0, r].
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We will show thatx(t,�) > � for all t� t1. Otherwise, we havet2 = inf {t� t1 :
x(t,�) = �} < +∞. Hence, t2 > t1 and x(t2,�) = �. By (H+) and the above
discussion, there existε > 0 andL > 0 such thatt2 − ε > t1 and

F(x(t,�), x(t − r,�))� − L(x(t,�) − �) for all t ∈ [t2 − ε, t2].

From (3.5), we obtain

x′(t,�)� − L(x(t,�) − �) for all t ∈ [t2 − ε, t2].

Thus,

x(t,�)�� + (x(t2 − ε,�) − �)eL(t2−t−ε).

It follows that

x(t2,�)�� + (x(t2 − ε,�) − �)e−Lε.

Therefore, we obtainx(t2,�) > �, which yields a contradiction. This completes the
proof. �

Arguing as in the proof of Lemma 3.12, we can get the following result:

Lemma 3.13. Let (H−) hold and assume that� ∈ C and � ∈ R1 with �� �̂. Then
either

xt (�) � �̂ for t�2r

or

xt (�) = �̂ for t�2r.

Theorem 3.3. If either (H+) or (H−) holds, then each bounded solution of system
(3.5) tends to a constant ast −→ ∞.

Proof. Without loss of generality, we may assume that(H+) holds. Then by Lemma
3.11, the semiflow generated by (3.5) satisfies the conditions of Theorem 2.4, and thus
the conclusion of the theorem is true.�

Example 3.2. As an application of Theorem 3.3, we consider the following scalar
delay differential equation:

x′(t) = −F(x(t)) + G(x(t − r)), (3.6)
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where r is a positive constant,F,G ∈ C(R1), and F is nondecreasing onR1. In the
case whereG ≡ F , Eq. (3.6) has been used as a model for some population growth, the
spread of epidemics, and the dynamics of capital stocks (see[3,4,6] for more details).

Corollary 3.2. Assume one of the following conditions is satisfied:

(i) G�F and for any � ∈ R1, there existε > 0 and L > 0 such that−F(x) +
F(�)� − L(x − �) for all x ∈ [�, � + ε];

(ii) G�F and for any � ∈ R1, there existε > 0 and L > 0 such that−F(x) +
F(�)� − L(x − �) for all x ∈ [� − ε, �].
Then each bounded solution of Eq.(3.6) tends to a constant ast −→ ∞.

Proof. Without loss of generality, we assume that assumption (i) is satisfied. Clearly,
by assumption (i) and the fact thatF is nondecreasing, we know that(H+) holds.
Therefore, Theorem 3.3 can then be applied to get the result of the corollary.
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