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Abstract 

This article presents some results from a large monitoring campaign performed in 22 buildings around the world as part of 
International Energy Agency (IEA) Task 50 “Advanced lighting solutions for retrofitting buildings”. This article mainly 
addresses the work of Subtask D, which aims to demonstrate sound lighting retrofit solutions in a selection of representative, 
typical Case Studies. In order to evaluate the Case Studies, a monitoring protocol was developed to assess the overall lighting 
performance taking into consideration: 1) Energy use, 2) Retrofit costs, 3) Photometric assessment, and 4) User assessment. The 
monitoring was carried out from June 2014 to December 2015 in 22 non-residential buildings in ten countries. This article 
presents results from selected Case Studies, drawing conclusions regarding retrofit solutions as well as reflecting on 
methodological procedures for the measurements and data collection. Measured data as well as key conclusions from Subtask D 
will be summarized in an electronic web and portable sourcebook at the end of the IEA Task 50 (December 2015), which will be 
freely available through the Internet. 
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1. Introduction 

Electric lighting accounts for approximately one fifth of the global electricity consumption. Without drastic 
changes in policies and practical implementations, the world’s electric lighting demand is expected to grow 
dramatically despite the increased energy-efficiency brought by solid-state lighting, lighting control and daylight 
harvesting technologies. This increase in electric lighting consumption will generate a significant increase in 
greenhouse gas emissions justifying the need to urgently promote energy savings in the lighting sector.  
 
Nomenclature 

IVS Initial Visit Survey 
LED  Light Emitting Diodes 
LRA Lighting Retrofit Advisor 
SHC Solar Heating and Cooling 

 
Major lighting energy savings can only be realized by retrofitting the existing building stock, which still relies on 

inefficient lighting technology for the majority of buildings. In this context, the International Energy Agency 
launched in 2013 Task 50 entitled ‘Advanced Lighting Solutions for Retrofitting Buildings’ under the umbrella of 
the Solar Heating and Cooling (SHC) Programme. IEA Task 50, which will be completed at the end of 2015 and 
involves 14 participating countries, pursues the goal to accelerate retrofitting of daylighting and electric lighting in 
the non-residential sector using cost-effective, best practice approaches applicable to a wide range of typical existing 
buildings. Task 50 is divided into four subtasks: A - market and policy, B - daylighting and electric lighting 
solutions, C - methods and tools and D - case studies. An additional joint working group called “Lighting Retrofit 
Adviser” (LRA) aims to collect and harmonize the subtasks’ outcomes. More information can be found online at 
http://task50.iea-shc.org. 

 

 

Fig. 1. Distribution of case studies around the world. 
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This article presents results from the work package on Case Studies called ‘Subtask D’, which aimed to 
demonstrate sound lighting retrofit solutions in a selection of representative, typical Case Studies spread around the 
world, see Fig. 1. In order to fulfill this goal, experts involved in Subtask D developed a monitoring protocol 
applicable to non-residential buildings retrofitted with electric lighting and/or daylighting technologies. The protocol 
is basically a common framework for monitoring and analysis of case study buildings. This protocol was 
subsequently tested by monitoring a total of 22 non-residential buildings in ten countries (see table 1). This article 
first outlines the main features of the monitoring protocol and then some of the lessons learned from the monitoring 
process are discussed. A few Case Studies are also presented and discussed. 

2. Monitoring protocol 

The access to monitored data is crucial to assess whether daylighting or electric lighting systems deliver the 
anticipated performance in terms of energy efficiency, cost-effectiveness, and lighting quality. The monitoring 
protocol [1] developed as part of Subtask D is a toolbox for professionals including a five-phase procedure for 
preparing and conducting the lighting retrofit assessment.  After a general introduction, five phases are covered in 
separate chapters in the monitoring protocol document, which measures four fundamental aspects of a lighting 
retrofit project (Energy use, Retrofit costs, Photometric assessment, User assessment), as outlined in Fig. 2. 

 

 

Fig. 2. Structure of the monitoring protocol. 

The section about energy use and retrofit costs basically involve the collection of information on costs, the 
description of daylight/electric lighting systems and,  when possible, the measurements of energy consumption. The 
photometric assessment, which is the most developed part of the protocol, involves measurements of seven key 
photometric quantities that allow describing lighting conditions and quality, see [2  for details. Finally, the fourth 
aspect of the protocol called ‘User assessment’ involves subjective assessments via questionnaires and/or interviews 
with the building occupants. 
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Fig. 3. Timeline for the evaluation for the two different levels of monitoring. 

 
The protocol offers two monitoring levels: 1) a ‘basic’ and 2) a ‘comprehensive’ level. The choice depends on the 

purpose of monitoring and on practical constraints like the access to the building and the availability of resources. 
The protocol is developed so that a comprehensive picture of the electric lighting/daylighting performance can be 
obtained for the conditions before and after renovation (referred to as pre- and post-retrofit in the monitoring 
protocol document). However, it is possible to use segments of the protocol. For example, in some cases, it is not 
possible to access the pre-retrofit situation as the building has already been retrofitted. In this case, it is possible to 
perform the post-retrofit evaluation only and compare the results obtained with typical (benchmark) values for 
similar types of spaces. 

 
The ‘basic’ level requires a) more limited instrumentation, b) access to the spaces at least in their post-retrofit 

condition, c) an overcast sky day and clear sky day (close to an equinox) over a one-year period for the actual 
monitoring, d) approximately one year for the whole evaluation process (Fig. 3). On the other hand, the 
‘comprehensive’ level requires a) advanced instrumentation, b) access to the spaces both before and after the 
retrofit, c) four days per year over a period of two years for the actual monitoring (overcast day, clear skies for an 
equinox and each solstice), d) approximately three years for the whole evaluation process. Note also that it is 
possible to mix elements of the basic and comprehensive monitoring procedure to suit the specific needs of the 
building or monitoring team. 

3. Lessons learned  

3.1. Lessons learned from the monitoring process 

3.1.1. Timing and weather conditions 
The measurements related to daylight were difficult to achieve in practice since on the planned monitoring day, 

the weather conditions were not as expected. For example the daylight factor can only be measured under overcast 
skies. This was especially problematic when the monitored building was very remote from the work place of the 
monitoring team. Last minute cancellations and travel costs were significant in this case. One way to go around this 
problem is to plan several measuring days in advance and make sure that there is measuring staff available in the 
city where the building is located. In any case, this issue should be addressed with the building manager at the 
beginning of the monitoring process, preferably already during the IVS, to allow for some flexibility in the 
monitoring schedules. 
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Table 1. List of case studies listed by country. 

Austria Belgium Belgium Brazil Brazil China 

 

 
N/A 

 
N/A 

 

 
N/A 

Bartenbach R&D 
Office, 
Aldrans 

Belgian Building 
Research Institute, 
Limelette (Wavre) 

Belgian Building 
Research Institute, 

Sint-Stevens-Woluwe

Tribunal of Justice, 
Brasilia 

Ministry of Energy 
and Environment, 

Brasilia 

The People’s 
Hall, 

Beijing 
Retrofit of daylighting 
and electric lighting 
systems 

   T12 to T8 lamps 
w/electronic ballasts 

 

Denmark Denmark Denmark Denmark Finland  
      

Horsens Town Hall, 
Horsens 

Alfa Laval Factory 
Building, 
Kolding 

Aarhus University 
Dental School Clinic, 

Aarhus 

Indoor Pool and Spa 
“Spanien” 

Aarhus 

Aalto University 
School of Electrical 

Engineering, 
Espoo 

 

Fluorescent (2700K) 
to LED panels and 
tubes (6000K) 

T12 to T8/T5 lamps to 
increase illuminance, 
visibility and visual 
comfort 

T8 (3000K) to T5 
(4000K) lamps with 
Daylight-linked 
dimming 

Historical 
preservation, retrofit 
with LED and 
fluorescent lamps 

T8 to LED luminaires  

Germany Germany Germany Germany Germany Japan 
      

N/A 

Friedrich Fröbel 
School, 

Olbersdorf 

Dietrich Bonhoeffer 
Vocational College, 

Detmold

DIY Market, 
Coburg 

Apartment Building, 
Berlin 

Student Housing, 
Berlin 

T Corporation, 
Yokohama 

Advanced daylighting 
systems, innovative 
controls 

Renovation of facades 
to a high level of 
insulation 

HID to LED Listed building, 
renovation of facades, 
replacement lamps. 

Listed building, 
renovation of facades, 
replacement lamps. 

 

Norway Norway Sweden Sweden Sweden  
      

NTNU Campus, 
Architecture Studio, 

Trondheim 

Powerhouse Kjørbo, 
Oslo 

Lund Univ. School of 
Architecture, 

Lund

WSP Consulting 
Engineering Office, 

Stockholm

School, 
Helsinborg  

Retrofit of skylights 
and electric lighting 

Total building retrofit 
to zero emission 
building 

Total building retrofit Total building retrofit, 
pre- and post-retrofit 
information  available 

Fluorescent  to LED 
with dimming 

 

 
Colour Key for Building Types 
Industry Retail Office Housing Assembly Sport/Recreation Education 
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3.1.2. Privacy issues 
In general, the IEA T50 experts found that some of the measurements were slightly intrusive for the building 

occupants. Since the monitored buildings are typically occupied, it is necessary to have a close collaboration with 
the building manager for gaining access to the environment and have occupants feel at ease and as little disturbed as 
possible on the monitoring day. Monitoring procedures can also interfere with expectations of confidentiality for 
both building owners and users. Such concerns should be discussed when initiating a monitoring process and an 
agreement about how to treat potentially sensitive data should be made.  

3.1.3. Measurement techniques 
The authors found that some measurements were very time consuming and required a significant familiarity with 

instrumentation and the monitoring process. For example, measuring directionality was found to be difficult, and it 
was discarded by many experts during the monitoring process. In addition, the measurement of energy use was often 
problematic since electric lighting circuits are not provided with a separate electricity meter in most buildings. In 
these cases, energy use had to be estimated based on information about lighting fixtures and occupancy patterns. 

3.2. Lessons learned from the monitored buildings 

3.2.1. Austria 

3.2.1.1. Bartenbach research and development (R&D) office, Aldrans  
The Bartenbach R&D office is an example of a comprehensive lighting retrofit of an office building (Figs. 4 and 

5). Here the daylight solution, the electrical lighting, the lighting control and the interior design of the room have 
been retrofitted.   
 The daylight solution consists of exterior louvers with varying distances between the single slats optimized for 

the geographical location. An additional screen has been added for luminance control and glare protection. With 
this combination, the visual link to the exterior is maximized even for sunny conditions. 

 The architecture integrated electric lighting solution is an efficient tunable white LED downlight system where 
the color temperature can vary from 2,200 to 5,000K for dynamic scenarios. The dimmable system provides up to 
1250lx in every light color at the work plane to also allow biologically activating light. Independent of the 
selected light colour, the energy consumption at 500lx workplane illuminance is below 6 W/m2. 

 In this project, an integrated control for the daylight solution, the electric lighting system, the heating and the 
ventilation system have also been installed. Occupancy sensors, workplane as well as exterior illuminance 
sensors, wind speed sensors and temperature sensors feed this holistic control system. 
 

 
Fig. 4. Pre-retrofit view of Bartenbach R&D Office. 

 
Fig. 5. Post-retrofit view of Bartenbach R&D Office. 
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The installed daylighting solution provides a highly daylit building with hardly any need for additional electric 
lighting during daytime hours. The variable combination of louvers and screens also allows for good solar and glare 
protection. For the morning and evening hours, the highly flexible electric lighting solution produces dynamic 
scenarios in an attempt to support the human circadian rhythm at highest energy efficiency. The integrated control 
reacts to exterior and interior conditions to intelligently combine the daylight and electric lighting solution and 
provide a pleasant lighting experience. 

3.2.2. Brazil 

3.2.2.1. Tribunal of justice of federal district and territories (TJDF-T), Brasília 
The results of the monitoring in the TJDF-T building shows that despite the fact that this is a building with high 

daylighting potential (good orientation with North-South facades, bilateral daylight entry, windows with solar 
protection), daylight utilization is not as good as expected. The solar protection is not always effective, causing glare 
in some conditions and the user to close the curtains. Glare typically occurs when the user is facing the windows. 
The solar protection system can then increase perceived glare due to its light surface colour and resulting high 
reflectance. The electric lighting controls are not linked with daylighting, which has consequences in terms of 
energy efficiency. Even directionality is not adequate in this building, especially in the center of spaces, far from 
windows.  

3.2.2.2. Ministry of energy and environment (MMA), Brasília 
The results show good performance for the post-retrofit situation, especially regarding quality of the electric 

lighting and controls. Original T12 fluorescent lamps were replaced by T8 lamps with electronic ballasts, enhancing 
illuminance for all working areas. The system now allows control of each room separately, which was not possible 
before. Regarding daylighting strategies, the building could not have external devices due to the fact that it is an 
architectural heritage building. Therefore a solar film-coating was added to the windows.  Glare occurs when the 
user is facing the windows, especially on East-facing facades. On West-facing facades that are equiped with external 
solar protection (brise soleil) the devices are always closed, obstructing external view and daylighting. However, 
monitoring showed that directionality of the lighting was appropriate in this building. 

The user surveys indicate satisfaction with aspects like electric lighting and its controls, but the appearance of the 
spaces is considered “cold” after the retrofit. The users were unsatisfied with window size and the transparency of 
the solar protection after the retrofit, indicating that these aspects could be the object of future interventions. The 
results indicate some difficulties in finding the right strategies and technologies for daylighting improvement in 
heritage protected buildings. Problems like glare and overheating due to sun exposure were not properly solved, 
causing lower than predicted daylighting use and significantly reduced or completely eliminated views to the 
exterior for many of the building inhabitants. 

3.2.3. Denmark 

3.2.3.1.  Horsens town hall and dentistry school clinic, Aarhus University 
Horsens Town Hall is an example of a basic lighting retrofit where only the electric lighting installation was 

retrofitted while the daylighting design and lighting controls remained unchanged. Before the final installation with 
LED panels, an attempt was made to replace the T8 fluorescent lamps and magnetic ballasts in the original 
luminaires with LED tubes. These lamp replacements reduced energy use by about 55 percent compared to previous 
levels, but also reduced the illuminance by about the same amount, providing an illumination level below the 
required 200lx (in Denmark). Furthermore, this created a significantly altered lighting distribution pattern due to the 
directionality of the LED tubes.  

For the final retrofit in offices and meeting rooms, LED panels with a colour temperature of 5,500 to 6,000K 
were installed. The new LED panels provided an even illumination and maintained the required illuminance above 
200lx for all working areas. The electric lighting is manually controlled via on/off switches installed at the wall near 
the entrance to each room. To reduce the energy use for the electric lighting system, manual switches are generally 
provided for each of two luminaire rows parallel to the windows, so the row closer to the window can be turned off 
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when sufficient daylight is present. Despite the quite high correlated colour temperature of the LED panels, the vast 
majority of users rated the lighting systems as an improvement over the old fluorescent luminaires.  

The daylight illumination in the spaces at Horsens Town Hall is quite limited, even on south-facing facades, due 
to a window construction with low height and large frames. Venetian blinds are integrated between the window 
panes to prevent possible glare from direct sunlight at the computer workstations. While the blinds are well 
maintained and effective regarding glare control, it seems like the blind positions were very rarely adjusted, since 
most of the blinds were found to be in the same position during all monitoring visits.  

The small windows and low daylight levels seem to results in user behaviour with little interaction with the 
shading system. As a consequence, the electric lighting was on most of the time to maintain a sufficient illuminance 
level.  

A solution to reduce the use of electric lighting could be to install a daylight-linked dimming and shading control, 
where Venetian blinds are adjusted to provide more daylight once glare is deemed to be no longer present, and the 
electric lighting is still turned on manually but adjusted or switched off relative to the available daylight illuminance 
in the spaces. This will, however, only have the desired effects if the sensors for the dimming controls are 
appropriately positioned and calibrated. Otherwise this can create conditions where the users overrule the system.  

The latter effect can be observed in the case study for the Dentistry School Clinic at Aarhus University, where the 
installed sensors and their set points adjusted the illuminance level far too often and thereby caused discomfort and 
annoyance for the occupants. As repeated attempts by the electrical company supplying the system failed to correct 
the problems, it ultimately resulted in the sensor illuminance set-point being adjusted to its highest level, so that no 
dimming occurs.  Because of this, projected energy savings cannot be achieved. 

3.2.4. Finland 

3.2.4.1.  School of electrical engineering, Aalto University, Espoo 
In Finland, the monitored retrofitted project at Aalto University consists of six office spaces. The original lighting 

system of each space consisted of four T8 fluorescent luminaires. During the past years, lamps have been substituted 
many times and also the reflectors have been substituted once. All other parts of the luminaires (including ballasts) 
were original. In two of the rooms, the old luminaires were replaced with new LED luminaires. In two similar 
rooms, LED luminaires with active dimming were installed. The new luminaires were installed in the same position 
as the old ones. The active dimming solution used in two of the six rooms consisted of stand-alone built-in dimming 
solutions for LED luminaires with a photosensor and a presence detection sensor. The installation procedure for the 
luminaires with active dimming control was exactly the same as for the LED luminaires without a control system. 
Since the active dimming control system is embedded in the luminaire, there was no need to install extra wires for 
control. The existing electrical installation in the rooms was retained. Following the installation of the new 
luminaires, an automatic learning period was started. This resulted in energy savings through optimized absence 
detection for different situations, light level compensation over the entire life cycle, and automatic daylight 
harvesting.  

After the retrofit, two energy meters have been installed in two rooms to measure the energy consumption of the 
new lighting systems. The energy consumption before the retrofit was evaluated by measuring the power of the old 
luminaires and estimating the hours of operation of the luminaires. The luminous environment was assessed by 
measurements and also simulated with DIALux for both pre- and post-retrofit conditions. User satisfaction was 
evaluated with questionnaires.  

Pre-retrofit lighting conditions did not meet the standard requirements in every room in terms of average 
illuminance, or in terms of uniformity, or both, depending on the room. After the retrofit, minimum values required 
by the standards were met. Before the retrofit, the average illuminance was between 180 and 350lx, and after the 
retrofit it was between 520 and 580lx. Illuminance uniformity increased from 0.5 to 0.8, and the colour rendering 
index remained almost the same: 84 before and 83 after retrofitting. The Unified Glare Rating (UGR) increased 
from less than 10 to between 16 and 18, indicating a higher likelihood of experiencing discomfort glare from the 
new luminaires. Energy savings due to the new luminaires without dimming were 38 percent of the pre-retrofit 
power consumption, while the new luminaires with active dimming resulted in 68 percent savings. 
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The change in users’ satisfaction due to the retrofit was evaluated by comparing the mean ratings of different 
questions from the pre- and post-retrofit questionnaires. Users evaluated the appearance of the lighting system, of 
the room, and of the lighting environment, the amount of light, colour naturalness, visibility and visual performance. 
The results showed that users were more satisfied with the lighting environment after retrofitting.  

3.2.5. Germany 
In Germany five cases were studied. In these buildings, the building skin and electric lighting system were 

retrofitted. In three of the buildings, the retrofit only concerned the electric lighting system. The vocational school in 
Detmold was selected for presentation, because it was renovated to the efficiency level of a passive-house school 
and hence can serve as an example of how the improvement of the U-value of the facades impacts daylighting. 

3.2.5.1. Dietrich Bonhoeffer vocational college Lippe-Detmold 
The vocational college in Detmold consists of four classroom buildings and two gymnasiums. A classroom in 

Building 1 and the small gymnasium were selected for monitoring. In the sports hall, the lower part of the glazed 
facade, which had been masked by a baffle wall, was reopened. This was possible because the gymnasium will only 
be used for gymnastics after renovation, but no longer for ball games. After renovation, the gymnasium provides a 
view and the window-to-floor area ratio was increased by 20 percent. Since the new frames are thinner in relation to 
the old frames, the glazing-to-floor area ratio increased by 38 percent. However, since the sports hall had single 
glazing before renovation and is glazed after renovation with triple glazing with a significant area of light diffusing 
glass (Figs. 6 and 7), the visual transmittance of the glass was reduced by 43 percent. In total the efficient window-
to-floor area ratio decreased by 22 percent. After renovation, the daylight factor in the centre of the floor space 
accounted for 2.4 percent. New LED-lighting replaces the fluorescent lighting installed before renovation.  
 

Fig. 6. Small gymnasium before renovation. Fig. 7. Small gymnasium after renovation. 

3.2.6. Sweden 

3.2.6.1. School of architecture building, Lund University 
In Sweden, the employee’s lunch room of the School of Architecture at Lund University’s Campus was 

monitored. This room provides a good example of a well daylit room where electric light is not needed for most of 
the day. In this case, the retrofit of the building involved window replacement from an ordinary double-glazing 
combination with white venetian blinds between panes to a more energy-efficient triple-glazing assembly with low-e 
coating and an interior rolling screen. The new window has a slightly lower visual transmittance than the original. 
Apart from a total retrofit of the electric lighting in this room, the renovation also involved a change of interior 
reflectance of walls to very high values (> 90%) and the addition of glazed sections in doors and side walls in the 
room above head-height that contribute to transmitting daylight between spaces. All these design aspects contributed 
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to good daylighting and minimized the reliance on electric lighting. Lessons learned from monitoring this room can 
be summarized below: 
 The glazing-to-floor area ratio was reasonable (12% of floor area and 20% of the room’s exterior wall area 

measured on the interior side) and still provided very good daylight conditions given this high-latitude location. 
 Windows were placed high up next to the ceiling in order to maximize the daylight penetration. 
 The room depth (5 m) was exactly twice the window-head-height (2.5 m), which means that sufficient daylight 

could reach the wall opposite the window. 
 The inner walls and floor had a high reflectance, which maximised inter-reflections and minimized the need for 

electric lighting. 

3.2.6.2. WSP office building, Stockholm 
The other building monitored in Sweden was the WSP Consulting Engineering Office in Stockholm. The space 

interior was completely refurbished. In particular, some small cellular meeting rooms were removed. This provided 
space for new workstations and, at the same time, eliminated some daylight obstructions. In addition, the reflectance 
of surfaces was improved. For example, a dark red/black wall (24% reflectance) was repainted white (91% 
reflectance). These measures brought the daylight factor to values higher than 2 percent in the post-retrofit situation. 
The use of electric lighting during the day was sporadic, even for the working station far from windows. Despite the 
improved daylight penetration, no major glare issues were reported thanks to automated shading screens installed on 
the North-East façade. However, employees complained about the noise made by the motors operating the screen. 

Unfortunately, the expected energy savings were not quite achieved because of the lack of proper implementation 
of the lighting control system. In this building, an important lesson was learned regarding the control type and 
strategy for task lighting at individual workstations. Personal ceiling mounted pendant luminaires were fitted with a 
built-in occupancy sensor. Two main problems were identified: 1) The installer left the setting on ‘presence’ 
detection (automatic on-off switch) and set a 15 minute time-delay for the off-function. 2) The sensors’ field of view 
was too wide, so any person passing by triggered the switch-on mode of several fixtures. This was very annoying 
and the employees did not know how to change it. In general, the authors noted that absence detection and a more 
limited field of view for the sensors would have been preferable in this landscape office context.  

In addition, dimmable T5 pendant luminaires controlled through a switch cord (single pull = on/off switch, cord 
continuously pulled = dimming) were installed.  It was found that none of the employees understood how the system 
worked. The light fixtures were frequently not meeting the required light levels since many employees dimmed by 
mistake and did not know how to get back to the original setting. 

4. Summary of the lessons learned from the monitoring activities 

A monitoring protocol was developed as part of IEA-SHC Task 50 on ‘Advanced Lighting Solutions for 
Retrofitting Buildings’. The protocol was tested in 22 case studies in ten countries. The case studies will be 
presented with monitored data and key conclusions in a ‘Light Retrofit Advisor’ (freely available on Internet and 
portable devices) once the analysis process has been fully completed. A few key lessons learned from the 
monitoring process are summarized below: 
 Reducing energy use attributed to electric lighting was the main driver for the majority of the lighting retrofits 

monitored in this study. 
 All retrofits monitored achieved improvements in either energy efficiency or lighting quality or both.   
 The best overall results could be achieved when the focus was on an effective integration of energy performance, 

daylight and electric lighting.  
 When the building design allows for good daylighting before the start of an electric lighting retrofit, it seems 

more likely that a retrofit can achieve good results with respect to user satisfaction and reduced lighting energy 
consumption due to effective integration with daylighting.  However, as electric lighting is required for shorter 
periods in well-daylit spaces, lighting retrofits are less likely to be cost-effective as installation costs can easily 
outweigh the projected energy savings. 

 When openings in the building envelope do not provide good views to the outdoors or effective daylighting in a 
space (e.g. because of the effective aperture being too small), building users might interact significantly less with 
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available shading devices to regulate daylight and sunlight penetration into the space, typically resulting in even 
lower illumination from daylight. They might position the shading devices to avoid direct glare at specific times, 
but then forget to adjust the shading devices again to increase the daylight contribution later on. This could be 
observed before and after lighting retrofits.  However, installing an integrated control system for shading and 
lighting to allow better daylight utilization could likely provide further energy savings potential in such a case. 

 Replacing older fluorescent with appropriate LED lighting systems can lead to substantial energy savings for 
electric lighting. Lighting quality and user satisfaction can also be improved at the same time by providing better 
visual conditions in the spaces.  It is, however, not recommended to just replace fluorescent tubes with LED tubes 
in existing luminaires other than those with diffusing panels, as it can lead to inappropriate light distribution 
patterns and significantly lower illuminance levels at the work plane. 

 Heritage buildings present a special case, especially for daylighting and solar shading solutions, but sometimes 
also for electric lighting solutions, as there are typical limitations regarding alterations to exterior and/or interior 
building design features (depending on protection class and protected features). In the “Spanien” Public Pool and 
Spa in Aarhus, Denmark, the visual appearance of key luminaires had to be maintained as they are considered a 
part of the design heritage. Nevertheless, switching from fluorescent to dimmable LED lamps with flexible 
colour control inside existing luminaires resulted in a reduction in energy use and allows for the possibility to 
manually adjust illuminance levels and light colour depending on available daylight or other requirements. 

 Upgrading older fluorescent lighting systems to newer ones can also provide benefits for both energy use and 
lighting quality.  

 Control systems for electric lighting or solar shading devices, are frequently found to be poorly implemented, 
calibrated or commissioned, or perhaps too complex, resulting in reduced energy savings, annoyance of users or 
even in complete deactivation of the control system.  This highlights the need for better guidance on the 
installation, commissioning and operation of lighting control systems.  

 It is suggested that building owners implementing a lighting retrofit strongly consider monitoring appropriate 
performance metrics (see monitoring protocol) before and after such a retrofit to gauge the potential for the 
retrofit and later assess the success of the retrofit. 
The monitoring is still on-going in some of the participating countries.  Many more lessons learned will be 

summarized in a stand-alone report (‘D5 Lessons Learned’) to be available on the IEA-SHC website for this 
research task upon completion of all case studies. 
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