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Abstract
We give a self-contained proof of Lindeberg’s central limit theorem based on a presentation due to

Hausdorff. Various historical remarks are also appended.
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1. Introduction

Recently, while editing Hausdorff’s Nachlass for the publication of vol. 5 of his col-
lected works [9], we came across an attractive presentation of the central limit theorem of
probability theory (under Liapounov’s third moment conditions) using Lindeberg’s novel
and elementary proof of 1922 [10]. Part of the attractiveness lay in the fact that the theorem
was presented in finitary terms and included a rate of convergence; although the latter was
far from being optimal, it turned out that Hausdorff’s arrangement of the proof could easily
give the complete Lindeberg theorem with a rate of convergence included in its statement.
Hausdorff’s work was contained in his Lecture Notes from a course on probability theory
given at the University of Bonn in 1923; Hausdorff probably avoided giving the full Lin-
deberg theorem in his lectures in order to concentrate on the essentials. It seemed to us to
be of general interest to write out a complete proof of Lindeberg’s theorem with a useful

E-mail address: srishti.chatterji@epfl.ch.

0723-0869/$ - see front matter � 2006 Elsevier GmbH. All rights reserved.
doi:10.1016/j.exmath.2006.10.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81966222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.de/exmath
mailto:srishti.chatterji@epfl.ch


216 S.D. Chatterji / Expo. Math. 25 (2007) 215–233

remainder term included, using only the most elementary tools used by Lindeberg himself.
The proofs we present here are essentially Lindeberg’s as adjusted (mildly) by Hausdorff
with some very minor modifications made by us; in fact, the remainder term is implicitly
contained in Lindeberg’s original paper. However, as some authors seemed to have felt
that Lindeberg’s original presentation was somewhat “intricate” (cf. [6, foot-note, p. 256]
it seemed to us useful to work out the full details of Lindeberg’s elementary proof in such
a way that it can be presented easily in any introductory graduate course on probability or
measure theory. The proof uses nothing more than Fubini’s theorem for product probability
measures in R2 and elementary calculus; use is made of the language of linear operators
between normed spaces without using any non-trivial results of the latter theory; no use is
made of characteristic functions (Fourier transforms).

Although Hausdorff’s original 1923 Lecture Notes are available (in German, in
[9, vol. 5]) accompanied by our commentaries and although various versions of Linde-
berg’s proof have already appeared in English (cf. [6, p. 256]) it appeared to us not without
interest to give a full presentation in English, indicating at the same time where Lindeberg’s
original formulation was quite different from that given in present day text-books. Further
historical comments are given at the end.

In Section 2 , we state two theorems formulated in purely measure-theoretical terms; in
Sections 3–5 we prove them in detail. In Section 6, a brief complement is added to translate
the theorems into the usual language of probability theory using random variables; this will
allow the reader to compare them easily with the work which appears in standard probability
texts. Section 7 concludes with various historical remarks.

The main body of the paper (Sections 2–5) could certainly be compressed to half its
length by suppressing the elementary details provided there. We have preferred to spell out
everything as explicitly as possible so that the material can be used easily for class-room
teaching.

2. Statement of the theorems

We shall be concerned with probability measures in R; if � is such a measure (defined
on the Borel subsets of R) we shall write

M(�) =
∫ ∞

−∞
x d�(x) = mean value of �

only if
∫ ∞
−∞ |x| d�(x) < ∞. If M(�) = 0, we write

V (�) =
∫ ∞

−∞
x2 d�(x), C3(�) =

∫ ∞

−∞
|x|3 d�(x),

V (�) will be called the variance of � and C3(�) the third absolute moment of �. Further

F�(x) = �(] − ∞, x]), x ∈ R,
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will stand for the distribution function associated with �. The normal probability measure
(in R) � = N(0; �2) with mean 0 and variance �2, 0 < � < ∞, is defined by

�(A) =
∫

A

1

�
√

2�
e−x2/2�2

dx, A ⊂ R, A Borel,

If �, � are two probability measures in R, their convolution � ∗ � is the probability measure
in R defined by

(� ∗ �)(A) =
∫

A

�(A − x) d�(x), A ⊂ R, A Borel,

here A − x is the set formed by {a − x; a ∈ A}.

Theorem 1 (Liapounov’s central limit theorem). Let �1, . . . , �n be n probability measures
in R with M(�j ) = 0, V (�j ) = a2

j , C(�j ) < ∞, 1�j �n; let

b2
n = a2

1 + · · · + a2
n, d3

n = C3(�1) + · · · + C3(�n), � = �1 ∗ · · · ∗ �n

and � = N(0; b2
n). Then

sup
x∈R

|F�(x) − F�(x)|��0	
1/4
n , (1)

where 	n = (dn/bn)
3 and 0 < �0 < ∞ is an absolute constant independent of n, �1, . . . , �n.

For the statement of Lindeberg’s general theorem we define (with Lindeberg) the quantity
L(�) for any probability measure � in R; to do so, we use the function s : R → R given by

s(x) =
{ |x|3 if |x| < 1,

x2 if |x|�1
(2)

and put

L(�) =
∫ ∞

−∞
s(x) d�(x).

Note that L(�) < ∞ iff
∫ ∞
−∞ |x|2 d�(x) < ∞.

Theorem 2 (Lindeberg’s central limit theorem). Let �1, . . . , �n be n probability measures
in R with M(�j )=0, V (�j )=a2

j , 1�j �n, a2
1 +· · ·+a2

n =1. If �=�1 ∗· · ·∗�n, �=N(0; 1)

then

sup
x∈R

|F�(x) − F�(x)|��L
1/4
n , (3)

whereLn=∑n
j=1L(�j )and 0 < � < ∞ is an absolute constant independent ofn, �1, . . . , �n.
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3. Some lemmas

For ease of exposition, we have collected together here some notation and elementary
lemmas for use in the proofs of the two main theorems stated above.

Let B(R) be the (Banach) space of all bounded Borel functions g : R → R with
‖g‖ = supx |g(x)|. For any probability measure � in R and for any g in B(R) we write

T�g(x) =
∫ ∞

−∞
g(x − y) d�(y).

Lemma 1. T� : B(R) → B(R) is a positive linear operator with ‖T�‖�1.

The proof is immediate; let us simply recall that

‖T�‖ = sup{‖T�g‖ : ‖g‖�1}
and that

|T�g(x)|�
∫ ∞

−∞
|g(x − y)| d�(y)�‖g‖.

Recall also that the positivity of T� means simply that T�g(x)�0 for all x ∈ R whenever
g(x)�0 for all x ∈ R.

Note further that T�1A(x)=�(x−A) (A ⊂ R, A Borel where 1A is the indicator function
of the set A and x − A = {x − a : a ∈ A}. Hence, if �, � are two probability measures in
R, then T�g = T�g for all g ∈ B(R) iff � = �.

Lemma 2. If �, � are any two probability measures in R, then � ∗ � = � ∗ � and

T�T� = T�∗� = T�T�. (4)

Further, if �j = N(0; a2
j ), 1�j �n, then

�1 ∗ · · · ∗ �n = N(0; b2
n),

where b2
n = a2

1 + · · · + a2
n.

The proof of the statement concerning the convolution of normal probability measures
will not be given here since it is quite elementary and standard. The relation (4) is very
well-known and its proof can be found in many places; for completeness, we sketch here
its proof very briefly, using Fubini’s theorem. First note that for any h ∈ B(R), we have∫ ∞

−∞

(∫ ∞

−∞
h(x + y) d�(x)

)
d�(y) =

∫ ∞

−∞

(∫ ∞

−∞
h(x + y) d�(y)

)
d�(x) (5)

by Fubini’s theorem. By taking h = 1A in (5), A ⊂ R, A Borel, we obtain∫ ∞

−∞
�(A − y) d�(y) =

∫ ∞

−∞
�(A − x) d�(x), (6)
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which gives � ∗ � = � ∗ � by the very definition of convolutions given in Section 2; further,
for all x ∈ R, (see remark after Lemma 1)

T�(T�1A)(x) =
∫ ∞

−∞
T�1A(x − y) d�(y) =

∫ ∞

−∞
�(x − y − A) d�(y)

= (� ∗ �)(x − A)

and, similarly

T�(T�1A)(x) = (� ∗ �)(x − A).

Thus, since � ∗ � = � ∗ �,

T�∗�(1A) = T�(T�1A) = T�(T�aA),

whence follows

T�∗�(g) = T�(T�g) = T�(T�g)

for all g ∈ B(R) by linearity and passage to limit. This establishes (4) and Lemma 2.

Lemma 3. Let {A1, . . . , An}, {B1, . . . , Bn} be linear operators on any normed space E

with ‖Ai‖�1, ‖Bi‖�1, 1� i�n and AiAj = AjAi, BiBj = BjBi for 1� i, j �n. Then

‖A1 . . . An − B1 . . . Bn‖�
n∑

i=1

‖Ai − Bi‖. (7)

The proof is by induction; for n=1, (7) is trivial. Supposing (7) to hold for n=m, we prove
it for n = m + 1; write Pj = A1 . . . Aj , Qj = B1 . . . Bj and note that ‖Pj‖�1, ‖Qj‖�1;
using commutativity of the A′s and that of the B ′s, we have

Pm+1 − Qm+1 = PmAm+1 − QmBm+1,

= Am+1Pm − Bm+1Pm + Bm+1Pm − Bm+1Qm,

= (Am+1 − Bm+1)Pm + Bm+1(Pm − Qm),

which gives (using the inductive hypothesis)

‖Pm+1 − Qm+1‖�‖Am+1 − Bm+1‖ + ‖Pm − Qm‖�
m+1∑
i=1

‖Ai − Bi‖

establishing (7) for n = m + 1.

Lemma 4. LetC(k)
b (R) be the space of functions g : R → R which are k times continuously

differentiable with ‖g(k)‖ < ∞; then any g ∈ C
(k)
b (R) is in C

(j)
b (R) for j = 0, 1, . . . , k;

further if g ∈ C
(k)
b (R) then T�g ∈ C

(k)
b (R) and

‖(T�g)(j)‖�‖g(j)‖, 0�j �k,

where � is any probability measure in R.
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The first part of Lemma 4 is elementary and follows from the mean-value theorem;
the proof of the second part is contained in the fact that

(T�g)(j)(x) =
∫ ∞

−∞
g(j)(x − y) d�(y)

whenever g ∈ C
(j)
b (R).

Lemma 5. Let �, � be two probability measures in R with M(�)=0, M(�)=0, V (�)=V (�)

and C(�), C(�) finite; then for any g ∈ C
(3)
b (R):

‖T�g − T�g‖� 1
6‖g(3)‖{C3(�) + C3(�)}.

Proof. Using Taylor’s expansion of order 3 we have, for t, x in R,

g(t − x) = g(t) − xg′(t) + x2

2
g′′(t) − x3

6

(t, x),

where |
(t, x)|�‖g(3)‖. If �2 = V (�) = V (�) we obtain by integrating with respect to d�
that

T�g(t) =
∫ ∞

−∞
g(t − x) d�(x) = g(t) + �2

2
g′′(t) − 1

6

∫ ∞

−∞
x3
(t, x) d�(x),

whence∣∣∣∣T�g(t) − g(t) − �2

2
g′′(t)

∣∣∣∣ � 1
6‖g(3)‖C3(�),

similarly,∣∣∣∣T�g(t) − g(t) − �2

2
g′′(t)

∣∣∣∣ � 1
6‖g(3)‖C3(�),

whence

|T�g(t) − T�g(t)|� 1
6‖g(3)‖{C3(�) + C3(�)},

which proves Lemma 5.

Lemma 6. Let �j , �j , 1�j �n, be probability measures in R such that M(�j ) = 0,

M(�j ) = 0, V (�j ) = V (�j ), C(�j ), C(�j ) finite for 1�j �n; let � = �1 ∗ · · · ∗ �n, � =
�1 ∗ · · · ∗ �n; then for any g ∈ C

(3)
b (R),

‖T�g − T�g‖� 1

6
‖g(3)‖

n∑
j=1

{C3(�j ) + C3(�j )}.

This follows immediately from Lemmas 1–5 since

T� = T�1T�2 . . . T�n , T� = T�1
T�2

. . . T�n
.
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Lemma 7. If � = N(0; �2), M(�) = 0, V (�) = �2, C3(�) < ∞, then

C3(�) < 2 C3(�).

Proof. It is well-known that

C3(�) =
∫ ∞

−∞
|x|3 1

�
√

2�
e−x2/2�2

dx = 2
√

2√
�

�3,

also

�3 =
(∫ ∞

−∞
|x|2 d�(x)

)3/2

�
∫ ∞

−∞
|x|3 d�(x) = C3(�)

by Jensen’s inequality. Hence

C3(�) = 2
√

2√
�

�3 � 2
√

2√
�

C3(�) < 2 C3(�). �

Lemma 8. Let �j , �j , 1�j �n, be probability measures in R with �j =N(0; a2
j ), M(�j )=

0, V (�j ) = a2
j , C3(�j ) < ∞, 1�j �n; let � = �1 ∗ · · · ∗ �n, � = �1 ∗ · · · ∗ �n; then, for

g ∈ C
(3)
b (R),

‖T�g − T�g‖� 1

2
‖g(3)‖

n∑
j=1

C3(�j ).

This follows immediately from Lemmas 6 and 7.

Lemma 9. Let g ∈ B(R) be such that 0�g�1 with (for some � > 0):

g(x) =
{

0 if x�0,

1 if x��,

then for any two probability measures �, � in R, we have, for t ∈ R:

(i)

T�g(t)�F�(t)�T�g(t + �),

T�g(t)�F�(t)�T�g(t + �),

(ii)

F�(t) − F�(t)�‖T�g − T�g‖ + F�(t + �) − F�(t),

F�(t) − F�(t)�‖T�g − T�g‖ + F�(t) − F�(t − �).

Further, if � = N(0; �2) then, for t ∈ R,
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(iii)

|F�(t) − F�(t)|�‖T�g − T�g‖ + �

�
√

2�
.

Proof. (i) T�g(t) = ∫ ∞
−∞ g(t − x) d�(x) = ∫

]−∞,t[ g(t − x) d�(x)�
∫
]−∞,t[ d�(x)�F�(t)

since g(t − x) = 0 if x� t and g�1; further, since g�0,

T�g(t + �) =
∫ ∞

−∞
g(t + � − x) d�(x)�

∫
]−∞,t]

g(t + � − x) d�(x)

=
∫

]−∞,t]
d�(x) = F�(t)

because g(t + � − x) = 1 if x� t . The same holds for �; this proves (i).
(ii) This follows from (i); indeed, from (i),

F�(t) − F�(t)�T�g(t + �) − F�(t)

= {T�g(t + �) − T�g(t + �)} + T�g(t + �) − F�(t)

�‖T�g − T�g‖ + F�(t + �) − F�(t),

similarly, from (i), F�(t − �)�T�g(t − � + �) = T�g(t) which gives

F�(t) − F�(t) = {F�(t) − F�(t − �)} + F�(t − �) − F�(t)

�{F�(t) − F�(t − �)} + T�g(t) − T�g(t)

�{F�(t) − F�(t − �)} + ‖T�g − T�g‖
proving (ii). For (iii), we simply note that

F�(t + �) − F�(t) =
∫ t+�

t

1

�
√

2�
e−x2/2�2

dx� �

�
√

2�

and similarly that

F�(t) − F�(t − �)� �

�
√

�
,

this along with (ii) proves (iii). �

4. Proof of Theorem 1

We use the same notations as in the statement of the theorem; a key element in the
proof is to notice that � = N(0; b2

n) is equal to �1 ∗ · · · ∗ �n where �i = N(0; a2
i ), 1� i�n

(cf. Lemma 2).
Fix a function h : R → R in C

(3)
b (R) such that

h(x) =
{

0 if x�0,

1 if x�1,
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with 0 < h(x) < 1 if 0 < x < 1; let m = ‖h(3)‖. For example, we may take

h(x) =
∫ x

0
t3(1 − t)3 dt/

∫ 1

0
t3(1 − t)3 dt (8)

if 0 < x < 1 and h(x) = 0 for x�0, h(x) = 1 for x�1. Let � be some number, 0 < � < ∞,

which we shall fix later and put g(x) = h(x/�); then g ∈ C
(3)
b (R), 0�g�1, and

g(3)(x) = �−3h(3)(x/�), ‖g(3)‖ = m/�3.

From Lemma 8 we have

‖T�g − T�g‖� m

2�3

n∑
j=1

C3(�j ) = m

2�3
d3
n .

From Lemma 9(iii) (with � = �, � = �) we have, for t ∈ R,

|F�(t) − F�(t)|� m

2�3
d3
n + �

bn

√
2�

. (9)

We now take � = b
1/4
n d

3/4
n ; this essentially minimizes the right-hand side of (9); then (9)

becomes

|F�(t) − F�(t)|�
(

m

2
+ 1√

2�

) (
dn

bn

)3/4

,

which proves (1) with �0 = (m/2) + (1/
√

2�).
N.B. If we choose h as given by (8), then m turns out to be less than 54 and so �0 < 28.

For reasons given later, we find it not very useful to determine the best value of �0.

5. Proof of Theorem 2

This proof is very similar to that of Theorem 1; we just need a lemma in which the third
moments of Lemmas 5, 6 and 8 are replaced by integrals involving the Lindeberg s-function
(2). First, we give an elementary lemma relating the variance with the s-function integral.

Lemma 10. Let � be a probability measure in R with M(�)=0, V (�)=a2 with 0 < a < 1;
then

a3 < 4
∫ ∞

−∞
s(x) d�(x).

Proof. Suppose first that∫
|x|�1

x2 d�(x)� a2

4
,
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in this case the inequality of the lemma is trivial since∫ ∞

−∞
s d��

∫
|x|�1

x2 d�(x)� a2

4
>

a3

4

because 0 < a < 1 and a2 > a3. Next, suppose that∫
|x|�1

x2 d�(x) <
a2

4
,

then ∫
|x|<1

x2 d�(x) = a2 −
∫

|x|�1
x2 d�(x) >

3a2

4

and ∫
a
2 <|x|<1

x2 d�(x) >
3a2

4
−

∫
|x|� a

2

x2 d�(x)� 3a2

4
− a2

4
= a2

2

so that∫
|x|<1

|x|3 d�(x)�
∫

a
2 <|x|<1

|x|3 d�(x)� a

2

∫
a
2 <|x|<1

|x|2 d�(x) >
a3

4
,

hence,∫ ∞

−∞
s(x) d�(x)�

∫
|x|<1

|x|3 d�(x) >
a3

4
,

which again gives the desired inequality, which is thus established in all cases where
0 < a < 1. �

Lemma 11. Let � be any probability measure in R with M(�) = 0, V (�) = a2 and let
� = N(0; a2). If g ∈ C

(3)
b (R) with ‖g(3)‖�m, ‖g(2)‖�m, then

‖T�g − T�g‖�m

{∫ ∞

−∞
s d� +

√
2

�

1

3
a3

}
,

further, if 0 < a < 1, then

‖T�g − T�g‖�3m

∫ ∞

−∞
s d�.

Proof. Write, for t, x in R,

g(t − x) = g(t) − xg′(t) + x2

2
g′′(t) + R(t, x) (10)
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and note that (for some � between 0 and x)

R(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

−x3

6
g(3)(t − �) if |x| < 1,

x2

2
{g(2)(t − �) − g(2)(t)} if |x|�1,

so that

|R(t, x)|�
⎧⎨
⎩

m|x|3
6

if |x| < 1,

mx2 if |x|�1.

(11)

Integrating (10) with respect to d�(x) we obtain

T�g(t) = g(t) + a2

2
g′′(t) +

∫ ∞

−∞
R(t, x) d�(x)

whence, using (11), we have∣∣∣∣T�g(t) − g(t) − a2

2
g′′(t)

∣∣∣∣ �m

∫ ∞

−∞
s d�. (12)

Similarly, using � in place of �, we have∣∣∣∣T�g(t) − g(t) − a2

2
g′′(t)

∣∣∣∣ �
∫ ∞

−∞
|R(t, x)| d�(x)

� m

6

∫ ∞

−∞
|x|3 d�(x) = m

6
· 2

√
2√
�

a3 = m

3
a3

√
2

�
(13)

using the fact that, for all t, x, |R(t, x)|= |(x3/6)h(3)(t − �)|�(|x|3/6)m. Combining (12)
and (13) we obtain the first inequality of Lemma 11; if 0 < a < 1, we use Lemma 10 to
obtain the second inequality. �

We now pass to the proof of Theorem 2; note first that since a2
1 + · · · + a2

n = 1, we may
and do suppose that 0 < aj < 1, 1�j �n; as in the proof of Lemma 1, we observe also that
� = N(0; 1) equals �1 ∗ · · · ∗ �n where �j = N(0; a2

j ), 1�j �n.

Fix a function h ∈ C
(3)
b (R) exactly as in the proof of Theorem 1 in Section 4 with

0 < h(x) < 1 if 0 < x < 1 and h(x) = 0 if x�0, h(x) = 1 if x�1 and put m = ‖h(3)‖; it is
easy to see that for such a function h, ‖h(2)‖�m since h(2)(x) = 0 if x�0 and if x�1 and
|h(2)(x)|�mx if 0 < x < 1 because

h(2)(x) =
∫ x

0
h(3)(t) dt, 0 < x < 1.

Now take any number �, 0 < ��1 (to be fixed later) and define g by g(t) = h(t/�);
then g(t) = 0 if t �0, g(t) = 1 if t ��, 0�g�1, g(3)(t) = �−3h(3)(t/�). To this g apply
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Lemma 11 with �=�j , �=�j =N(0; a2
j ), 1�j �n, where the �j ’s are probability measures

in R as in the statement of Theorem 2; since 0 < aj < 1, we have

‖T�j
g − T�j

g‖� 3m

�3

∫ ∞

−∞
s d�j , 1�j �n.

We now use Lemmas 2 and 3 with � = �1 ∗ · · · ∗ �n, � = �1 ∗ · · · ∗ �n = N(0; 1) to obtain

‖T�g − T�g‖� 3m

�3

n∑
j=1

∫ ∞

−∞
s d�j = 3m

�3
Ln.

Finally, from Lemma 9(iii) (with � = �, � = �) we have, for t ∈ R,

|F�(t) − F�(t)|� 3m

�3
Ln + 1√

2�
�. (14)

Note that Ln �1 since

Ln =
n∑

j=1

∫ ∞

−∞
s d�j �

n∑
j=1

∫ ∞

−∞
x2 d�j =

n∑
j=1

a2
j = 1.

Now take � = L
1/4
n in (14); this gives, for t ∈ R,

|F�(t) − F�(t)|�
(

3m + 1√
2�

)
L

1/4
n = �L

1/4
n ,

where � = 3m + (1/
√

2�).
N.B. With the choice of h as in (8) of Section 4, we have m < 54 and � < 163.

6. Translation into probabilistic language and complements

In terms of real-valued random variables x1, . . . , xn which are mutually independent with
Exj = 0, Var(xj ) = a2

j < ∞ and b2
n = a2

1 + · · · + a2
n Theorems 1 and 2 can be written as

follows:

Theorem 1′. If further E|xj |3 < ∞, 1�j �n, with d3
n = ∑n

j=1 E|xj |3 and 	n = (dn/bn)
3

then

sup
t∈R

∣∣∣∣P
(

x1 + · · · + xn

bn

� t

)
− 1√

2�

∫ t

−∞
d−u2/2 du

∣∣∣∣ ��0	
1/4
n , (15)

where 0 < �0 < ∞ is some absolute constant.

Theorem 2′. We have,

sup
t∈R

∣∣∣∣P
(

x1 + · · · + xn

bn

� t

)
− 1√

2�

∫ t

−∞
e−u2/2 du

∣∣∣∣ ��L
1/4
n , (16)
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where

Ln =
n∑

j=1

Es(xj /bn)

and 0 < � < ∞ is some absolute constant.

Thus, from Theorem 1′, if 	n → 0 as n → ∞ (Liapounov’s condition), then,

L

(
x1 + · · · + xn

bn

)
→ N(0, 1) as n → ∞, (17)

which is Liapounov’s central limit theorem; as usual, L(y) denotes the law of the random
variable y. Similarly, from theorem 2′, if Ln → 0 as n → ∞ (Lindeberg’s condition) then
again (17) holds which is Lindeberg’s central limit theorem.

The condition Ln → 0 as n → ∞ is the original form of the condition as given in
Lindeberg’s 1922 paper [10]; this condition is equivalent to the following: let

Ln,� = 1

b2
n

n∑
j=1

E(|xj |2; |xj |��bn), � > 0,

here E(y; A) stands for
∫
A

y dP = ∫
y−1(A)

t d�(t) where � = L(y) and A any measurable
subset of the underlying probability space where the random variables and the basic prob-
ability measure P are defined; then Ln → 0 as n → ∞ iff Ln,� → 0 as n → ∞ for any
� > 0. This equivalence is easy to establish by proving that if 0 < � < 1, then

Ln,� �
1

�
Ln, Ln �Ln,� + �, (18)

note that if � < �′ then Ln,� �Ln,�′ .
To prove (18), we note that if 0 < � < 1, then

{
�x2 �s(x)�x2 if |x|��,
s(x) = |x|3 if |x| < �.

(19)

Hence,

Ln =
n∑

j=1

∫ ∞

−∞
s(x/bn) d�j (x)�

n∑
j=1

∫
|x|� �bn

s(x/bn) d�j (x)

��
n∑

j=1

∫
|x|� �bn

(x2/b2
n) d�j (x) = �Ln,�,
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this proves the first inequality in (18); further use of (19) gives

Ln =
n∑

j=1

{∫
|x|� �bn

s(x/bn) d�j (x) +
∫

|x|<�bn

s(x/bn) d�j (x)

}

�
n∑

j=1

{∫
|x|� �bn

(x2/b2
n) d�j (x) +

∫
|x|<�bn

(|x|3/b3
n) d�j (x)

}

�Ln,� + �

b2
n

n∑
j=1

∫
|x|<�bn

x2 d�j (x)

�Ln,� + �

b2
n

n∑
j=1

∫ ∞

−∞
x2 d�j (x)

= Ln,� + �,

which establishes (18) for 0 < � < 1.
It is in the form, Ln,� → 0 as n → ∞ for all � > 0, that the Lindeberg condition is

usually given in most standard probability texts like Feller [6], Chow and Teicher [3]; in the
latter, there is an interesting alternative form (cf. [3, p. 295]), still different from Lindeberg’s
original condition.

It is well-known further that, provided that E|xj |3 < ∞, j �1, then

lim
n→∞ 	n = 0 ⇒ lim

n→∞ Ln,� = 0 for all � > 0,

where 	n is defined in Theorem 1′ (or Theorem 1). This is proved, for example in [3, p.
298], under the more general condition of E|xj |2+
 < ∞ (for some 
 > 0), i.e.

lim
n→∞

1

b2+

n

n∑
j=1

E|xj |2+
 = 0 for some 
 > 0 ⇒ lim
n→∞ Ln,� = 0 for all � > 0.

It is a famous theorem of Feller (1935) that Lindeberg’s condition is an optimal one for the
validity of the central limit theorem in the sense that if Ex2

j < ∞, j �1 and (17) holds and if

an/bn → 0, bn → ∞ as n → ∞ (where a2
n =Ex2

n and b2
n =a2

1 +· · ·+a2
n) then Lindeberg’s

condition holds (see [3, p. 296; 6, p. 492]). For a deeper, intuitive understanding of this we
must refer to appropriate texts (e.g. [6]).

Let us recall here the classical result of Berry-Esséen (1941–1945) which gives the
optimal estimates in (1) or (15) by replacing �0	

1/4
n there by c	n where 0 < c < ∞ is an

absolute constant; much work has gone into an exact determination of c; the best result
seems to be that of Paul van Beek giving c�0.7975 (cf. Journal of Probability Theory and
Applications, vol. 23, 1972). A proof of various forms of the Berry-Esséen theorem appears
in several books (cf. e.g. [3, p. 304; 6, Chapter XVI]).

As is clear from the Berry-Esséen theorem cited here, the rate of convergence contained
in the statements of Theorem 1 or 1′ is far from being the optimal one. This becomes
more vivid in the case of independent identically distributed random variables x1, x2, . . .

in Theorem 1′ i.e. in the case where �1 = �2 = . . . in Theorem 1; here d3
n = n�3, b2

n = n�2
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where �3 = E|x1|3 = ∫ ∞
−∞ |x|3 d�1(x) and �2 = Var(x1) = ∫ ∞

−∞ |x|2 d�1(x) so that 	n =
(dn/bn)

3 = (�/�)3n−1/2. Thus the rate of convergence to 0 according to Theorems 1, 1′
is of the type const. n−1/8 whereas the true rate according to the Berry-Esséen theorem is
given by const. n−1/2. This is the reason why we have found it uninteresting to obtain the
best values for �0, � in our Theorems 1 and 2.

As regards the rate of convergence in Theorems 2 or 2′, standard monographs have
not been informative. However, research reported in [12] indicates that the estimates of
Theorem 2 or 2′ as given in (3) or (16) can be improved to A · Ln, where A is some
absolute constant (instead of our �L

1/4
n ); we do not know of any attempt at estimating the

constant A; there also are more general results using functions other than the s-function of
Lindeberg; cf. Petrov’s article [11] in [12, p. 5]. The Lindeberg method has been extended to
infinite-dimensional vector spaces in the article of Bentkus et al. [1] in [12] (cf. pp. 42–50).

7. Historical and other remarks

This is not the place to give a complete history of the complicated evolution of the central
limit theorem; a clear and detailed account (starting with de Moivre, Laplace, Cauchy,
Poisson, Bessel, Chebyshev, Markov, Liapounov and others) has been given in Hald [8].
We shall only make a few remarks concerning Lindeberg and Hausdorff.

Lindeberg (1876–1932) had first proved (in 1920) a limit theorem using third moments in
a Finnish journal (cf. exact reference in his paper [10]); at the time of the writing of the 1920
paper, Lindeberg was not aware of Liapounov’s work of 1900–1901 and he refers only to
Chebyshev, Markov and von Mises. Already, his 1920 paper contains most of the ingredients
of his basic method which avoids characteristic functions; he does not seem to have been
aware of the latter which were already used efficiently by Liapounov. Lindeberg’s 1922
paper [10] mentions Liapounov’s work but does not make any use of it; his 1922 paper
is a careful simplification of his previous 1920 paper. Contrary to what some have said
(e.g. [13, foot-note p. 284]), Lindeberg did not borrow from Liapounov the “ingenious
artifice” of comparing each �i (in the notation of Theorem 1) with N(0; a2

i ); this very
important “ artifice” seems to be due originally to Liapounov but it was tacitly used by
Lindeberg already in his 1920 paper before he was aware of Liapounov’s paper. An account
of Liapounov’s original work can be found in [13, p. 284]; Liapounov’s work also contained
a good estimation of the rate of convergence which was then subsequently improved by
Cramér before ending up with the Berry-Esséen result mentioned before. See [7, p. 201].

The Finnish mathematician Lindeberg’s early studies were entirely in the area of partial
differential equations, calculus of variations and complex functions. It was only after 1918
that he began to work in probability and statistics; after his two remarkable papers on the
central limit theorem, he worked for the rest of his life (until 1932) on the derivation of the
properties of the distributions of various statistics which appear in sampling theory. More
information on Lindeberg can be obtained from Elfving [5, pp. 153–161].

Lindeberg’s 1922 paper [10] contains other equivalent formulations of his condition but
not the one which appears in standard text-books these days; the latter seems to have been
introduced explicitly by Feller in 1935 and has been used almost universally since then.
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Lindeberg’s 1922 paper contains five explicitly formulated theorems, each stated in fini-
tary terms. To give a flavour of them, let us state his first theorem almost the way Lindeberg
formulated it. Let x1, . . . , xn be n independent real-valued random variables with Exi =
0, Ex2

j = a2
j , a

2
1+· · ·+a2

n=1, letU(x)=P{x1+· · ·+xn �x}, �(x)=∫ x

−∞(1/
√

2�)e−t2/2 dt ;
then given � > 0 there exists � > 0 such that for all x:

|U(x) − �(x)| < �

as soon as
n∑

j=1

E|xj |3 < �.

Lindeberg does not use the expectation symbol, replacing it instead by a Stieltjes integral;
there are other similar formal differences between the above formulation and Lindeberg’s.
Lindeberg could have stated his first theorem as the statement

|U(x) − �(x)| < C

⎧⎨
⎩

n∑
j=1

E|xj |3
⎫⎬
⎭

1/4

,

with C = 3 since this is what he had actually proved just before stating his theorem. Note
that this is equivalent to Theorems 1 and 1′ (with a different constant) and it immediately
gives Liapounov’s central limit theorem.

Lindeberg’s second theorem is a simple deduction from his first theorem; here he supposes
|xj |�dn, 1�j �n, (bounded random variables) with Exj = 0, Ex2

j = a2
j , b

2
n = a2

1 + · · · +
a2
n, xn’s independent; then (with notation as above) for any � > 0 there exists � > 0 such that∣∣∣∣U(x) −

∫ ∞

−∞
1

bn

√
2�

e−t2/2b2
n dt

∣∣∣∣ < �

as soon as (dn/bn) < �. Lindeberg seems to have considered this theorem as essential for
mathematical statistics; he says so in the introduction to his paper. Now comes Lindeberg’s
third and most general theorem: given � > 0 there exists � > 0 such that

|U(x) − �(x)| < �

as soon as
∑n

j=1Es(xj ) < � under the hypothesis that a2
1 + · · · + a2

n = 1, other notations
being held fixed as before. Here again, he could have stated his theorem in the form

|U(x) − �(x)| < C

⎧⎨
⎩

n∑
j=1

Es(xj )

⎫⎬
⎭

1/4

,

(where 0 < C < ∞ is some absolute constant) since this is implicitly contained in his work.
Of course, this is exactly what we have stated in Theorems 2 and 2′. Lindeberg’s fourth
theorem replaces his condition based on

∑n
j=1Es(xj ) by an equivalent one (different from

Feller’s) and his fifth and last theorem is a mere renormalization of the fourth in case
Exj �= 0 and

∑n
j=1Ex2

j �= 1.
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Curiously, contrary to what some authors have affirmed, Lindeberg does not state the
most useful case of his general theorem where the random variables xj are independent
and identically distributed with Ex1 = 0, Ex2

1 = �2, 0 < � < ∞; as is easy to show, in this
case Lindeberg’s condition is verified (most easily in the form Ln,� → 0 as n → ∞, for all
� > 0) and

L

(
x1 + · · · + xn

�
√

n

)
→ N(0, 1).

The observation that the central limit theorem holds in this very simple form in the indepen-
dent, identically distributed case seems to be due to Lévy. Lévy’s work is independent of
Lindeberg’s and almost contemporaneous; it uses characteristic functions systematically, a
theory which Lévy himself had developed for the purpose of studying limit theorems con-
cerning sums of independent random variables. Lévy goes on to study many deeper theorems
concerning these sums; however, Lindeberg’s condition and method remain Lindeberg’s en-
tirely original contribution. For references to Lévy’s work and further developments one
should consult the classic book of Gnedenko and Kolmogorov [7].

We have given a detailed summary of Lindeberg’s work in order to clarify its exact nature;
its contents are often represented in an incomplete and misleading manner. The Lindeberg
method, presented by various text-books (basing themselves essentially on an article of
Trotter from 1959, see e.g. [6]), remains an useful analytical approach to the central limit
theorem, even when the presentation does not completely reflect its full power. As shown by
the work reported in [12], it can be used fruitfully for further investigations. Dalang [4] uses
Lindeberg’s method in an elementary way in proving the central limit theorem in the special
case of real-valued random variables which are independent and identically distributed.

The German mathematician Hausdorff (1868–1942) is best known for his work in set
theory and topology although he himself has gone on record as having declared him-
self to be an analyst as well. His magnum opus is “Grundzüge der Mengenlehre” (1914;
[9, vol. 2] is a recent annotated edition); besides introducing the general notion of “Haus-
dorff spaces”, it contains an enormous amount of material on abstract set theory, topology of
Rn (for example, a full proof of the Jordan curve theorem), much real analysis and Lebesgue
integration theory. The book contains the first modern (and correct) proof of Borel’s law
of normal numbers. This major book of Hausdorff was never translated into English; what
exists in English translation (under the title “Set theory”) concerns a revised and enlarged
edition (from 1927) of only parts of the material contained in his Grundzüge. Besides these
books, he published 41 mathematical papers (all in German) containing such pearls as the
Baker–Campbell–Hausdorff formula, Hausdorff paradox, Hausdorff dimension, Hausdorff
summability, Hausdorff moment problem, Hausdorff-Toeplitz theorem and much else; the
items named here can all be found in vol. 4 of his collected works [9].

Hausdorff also left behind some 26,000 pages of manuscript covering much of the math-
ematics of the first third of the 20th century. There are several manuscripts on probability
theory of which some have been reproduced in vol. 5 of [9]; the Lecture Notes in which
Theorem 1 was found will appear in this volume. Hausdorff actually formulates Theorem
1 rather in the form of our Theorem 1′, using the terminology of random variables. It is
to be remembered that the definition of a random variable was never given explicitly until
the appearance of Kolmogorov’s 1933 axiomatization of probability theory; indeed, even
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eminent writers like Lévy, Fréchet and others continued to shy away from an exact defini-
tion of a random variable as late as 1950. For these authors (as for Hausdorff in 1923) a
real random variable x is something with which one associates a probability measure � in
R and all calculations and reasonings concerning x are then done with �. For more remarks
on this, see [7] and our comments in vol. 5 of [9]. Except for this reservation, we have
found Hausdorff’s writings (including all his manuscripts) whether in probability theory or
elsewhere exemplary for their rigour and clarity; there may be occasional slips but the desire
to present matters as succinctly and precisely as possible seem evident in all his writings.

Hausdorff’s collected works have been planned to be published in 9 volumes (of which
four have already appeared); these will include his considerable philosophical and literary
production (2 volumes) and his far-flung and interesting correspondence (vol. 9). Vol. 1
should contain a detailed biography; of this we note only the following tragic element:
persecuted by the Nazi regime, he was driven to commit suicide along with his wife and
sister-in-law. His only daughter lived until 1991 and with the help of others, managed to
preserve all the scientific Nachlass of Hausdorff. Awaiting the appearance of vol. 1 of the
collected works [9], readers can find much of interest about Hausdorff in [2].

Appendix. May 2006

A referee has reminded us of two useful historical references:
(i) S.L. Zabell, Alan turing and the central limit theorem, Amer. Math. Monthly 102

(1995) 483–94.
(ii) L. LeCam, The central limit theorem around 1935, Statist. Sci. 1 (1986) 78–91

(followed by comments of Trotter, Doob, Pollard).
In (i), Zabell points out that Alan Turing (in an unpublished 1934 manuscript, his fel-

lowship dissertation, which I have not seen) gives a proof of a version of the Central Limit
Theorem along lines similar to that of Lindeberg. In (ii), LeCam, amongst other things,
mentions the possibility of extending Lindeberg’s method to infinite-dimensional vector
spaces. However, neither (i) nor (ii) states Lindeberg’s original condition.

It is clear from Theorems 1 and 2 that the limit measure � which appears there must be
Normal. A trivial way to see this is to take each �j appearing there to be Normal. A deeper
observation is that since Theorem 2 implies its validity for the case of independent and
identically distributed random variables, the limit measure � must be a stable probability
measure having finite variance, whence it must be Normal; for an explanation of this last
statement, see Chapter 7 of [7]. I do not feel that Lindeberg’s method, as presented here,
can give any deeper characterization of the Normal distribution.
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