
Linear Algebra and its Applications 437 (2012) 581–588

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier .com/locate/ laa

Kleiner’s theorem for unitary representations of posets

Yurii Samoilenkoa, Kostyantyn Yusenkob,∗
a
Institute of Mathematics, Tereschenkivska 3, Kyiv, Ukraine

b
Department of Mathematics, University of São Paulo, Brazil

A R T I C L E I N F O A B S T R A C T

Article history:

Received 26 September 2011

Accepted 22 February 2012

Available online 5 April 2012

Submitted by V. Sergeichuk

AMS classification:

15A63

15A21

16G20

Keywords:

Representations of partially ordered sets

Representation-finite type

Kleiner’s theorem

A subspace representation of a poset S = {s1, . . . , st} is given by

a system (V; V1, . . . , Vt) consisting of a vector space V and its sub-

spaces Vi such that Vi ⊆ Vj if si ≺ sj . For each real-valued vector

χ = (χ1, . . . , χt) with positive components, we define a unitary

χ-representation of S as a system (U;U1, . . . ,Ut) that consists of

a unitary space U and its subspaces Ui such that Ui ⊆ Uj if si ≺ sj
and satisfies χ1P1 + · · · + χtPt = 1, in which Pi is the orthogonal

projection onto Ui .

We prove that S has a finite number of unitarily nonequivalent

indecomposable χ-representations for each weight χ if and only if

S has a finite number of nonequivalent indecomposable subspace

representations; that is, if and only if S contains any of Kleiner’s

critical posets.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Kleiner [6] described all partially ordered sets (posets) with finite number of nonequivalent inde-

composable representations. We extend his description to unitary representations of posets.

The notion of poset representations was introduced by Nazarova and Roiter [11] (see also [2,14]). A

matrix representation of a finite poset S = {s1, . . . , st} over a fieldF is a blockmatrixA = [A1| . . . |At]
over F. Two representationsA = [A1| . . . |At] and B = [B1| . . . |Bt] are equivalent ifA can be reduced

to B by elementary row transformations, elementary column transformations within Ai, and additions

of linear combinations of columns of Ai to columns of Aj if si ≺ sj . The direct sum of A and B is the

representation

A ⊕ B :=
⎡⎣ A1 0 A2 0 . . . At 0

0 B1 0 B2 . . . 0 Bt

⎤⎦ .
∗ Corresponding author.
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A representation is called indecomposable if it is not equivalent to a direct sumof two representations. It

is sufficient toclassifyonly indecomposable representations sinceeachrepresentation isequivalent toa

direct sumof indecomposable representations, uniquely determinedup to isomorphismof summands.

Kleiner [6] (see also [2, Theorem 5.1] and [14, Theorem 10.1]) proved that a poset S has only a finite

number of nonequivalent indecomposable representations if and only if it does not contain a full poset

whose Hasse diagram is one of the form

•
• •

• • • •
• • • • • • • •

��
�� • •

• • • • , • • • , • • • , • • • , • • • .

(1)

An equivalent definition of poset representations can be given in terms of subspaces. A subspace

representationofS = {s1, . . . , st} is a tupleV = (V; V1, . . . , Vt), inwhichV is avector spaceoverFand

V1, . . . , Vt are its subspaces such thatVi ⊆ Vj if si ≺ sj (that is each representation is a homomorphism

fromS to the poset of all subspaces ofV). Two subspace representationsV = (V; V1, . . . , Vt) andW =
(W;W1, . . . ,Wt) are equivalent if there exists a linear bijection g : V → W such that g(Vi) = Wi for

all i. For each subspace representation V = (V; V1, . . . , Vt), one can construct amatrix representation

A = [A1| . . . |At] in such a way that (i) for each i the columns of all Aj with sj � si generate the

subspace Vi and (ii) two subspace representations are equivalent if and only if the corresponding

matrix representations are equivalent; see [14, Chapter 3].

From now on, all representations that we consider are over the field C of complex numbers. By

a unitary representation of dimension d, we mean a subspace representation U = (U;U1, . . . ,Ut) in
which U is a unitary space of dimension d. Two unitary representations U = (U;U1, . . . ,Ut) and
V = (V; V1, . . . , Vt) of a poset S are unitarily equivalent if there exists a unitary bijection ϕ : U → V

such that ϕ(Ui) = Vi for all i. The orthogonal sum of unitary representations U and V is the unitary

representation

U ⊥ V := (U ⊥ V;U1 ⊥ V1, . . . ,Ut ⊥ Vt),

inwhichU ⊥ V denotes the orthogonal sumofU and V . A unitary representation is called orthogonally

indecomposable if it is not equivalent to an orthogonal sum of two unitary representations.

Note that the problem of classifying unitary representations is hopeless even for the poset S =
{s1, s2, s3 | s1 ≺ s2} since by [10, Theorem 4] it contains the problem of classifying an operator on

a unitary space, and hence it contains the problem of classifying any system of operators on unitary

spaces [10,13]. The classification becomes possible for a broader class of posets if we impose additional

conditions on unitary representations.

We denote the orthogonal projection onto a subspace M ⊂ U by PM and the set of positive real

numbers byR+.We say that a unitary representationU = (U;U1, . . . ,Ut) is a representation ofweight

χ = (χ1, . . . , χt) ∈ R
t+ (or χ-representation) if

χ1PU1
+ · · · + χtPUt

= 1; (2)

such relations appear in many areas of mathematics, see for example [1,7,9,15,16] and references

therein.

Our goal is to prove that Kleiner’s theorem holds for χ-representations too:

Theorem 1. The following conditions are equivalent for each finite poset S with t elements:

(i) For each χ ∈ R
t+, S has only a finite number of indecomposable unitarily nonequivalent χ-

representations.
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(ii) For eachχ ∈ R
t+ and d ∈ N, S has only a finite number of indecomposable unitarily nonequivalent

χ-representations of dimension d.

(iii) S does not contain a full poset whose Hasse diagram is one of the form (1).

2. Preliminaries

In what follows we suppose that the elements of a poset S are numbered from 1 to |S|. A poset

is called primitive and is denoted by (t1, . . . , ts) if it is the disjoint (cardinal) sum of linearly ordered

sets of orders ti. The diagrams (1) and corresponding posets are called critical. The poset which cor-

responds to the last diagram in the list (1) is denoted by (N, 4). To simplify the notation we denote

a subspace representation (V; V1, . . . , Vt) of S by (V; Vi)i∈S . The similar notation will be used for

unitary representations and weights.

A subspace representation V = (V; Vi)i∈S is called schurian if all its endomorphisms are trivial;

that is, the ring End(V) := {g ∈ Mdim V (F) | g(Vi) ⊆ Vi, i ∈ S} is isomorphic to F. Any schurian

representation is indecomposable.

Any unitary representation U = (U;Ui)i∈P can be viewed as a subspace representation; the for-

getful map is denoted by F . If U is an indecomposable χ-representation, then F(U) is schurian (see [9,

Theorem 1]).

Lemma 2. Let Pi,Qi ∈ Mn(C), i = 1, . . . ,m be orthogonal projections such that

χ1P1 + · · · + χmPm = χ1Q1 + · · · + χmQm (3)

for (χ1, . . . , χm)with positive realχi. Let there exist a diagonalmatrixD = diag(r1, . . . , rn)with positive

components such that PiDQi = DQi for all i. Then r1 = · · · = rn and Pi = Qi for all i.

Proof. Write Pi = [p(i)k,l], Qi = [q(i)k,l], PiDQi = [t(i)k,l], where t
(i)
k,l = ∑n

j=1 rjp
(i)
k,jq

(i)
l,j . Without losing

generality, we may assume that r1 = max{r1, . . . , rn}. Since D
∑m

i=1 χiQi = ∑m
i=1 χiPiDQi, we have

r1

m∑
i=1

χiq
(i)
1,1 =

m∑
i=1

χi

n∑
j=1

rjp
(i)
1,jq

(i)
1,j � r1

∣∣∣∣∣∣
m∑
i=1

χi

n∑
j=1

p
(i)
1,jq

(i)
1,j

∣∣∣∣∣∣ . (4)

For

x := [√χ1p
(1)
1,1, . . . ,

√
χ1p

(1)
1,n, . . . ,

√
χmp

(m)
1,1 , . . . ,

√
χmp

(m)
1,n ]T ∈ C

nm,

y := [√χ1q
(1)
1,1, . . . ,

√
χ1q

(1)
1,n, . . . ,

√
χmq

(m)
1,1 , . . . ,

√
χmq

(m)
1,n ]T ∈ C

nm,

we have

(x, y) =
nm∑
i=1

xiyi =
m∑
i=1

χi

n∑
j=1

p
(i)
1,jq

(i)
1,j.

Note that

|x|2 =
nm∑
i=1

xixi =
m∑
i=1

χi

n∑
j=1

p
(i)
1,jp

(i)
1,j =

m∑
i=1

χip
(i)
1,1.

Similarly, |y|2 = ∑m
i=1 χiq

(i)
1,1. By (3), we have

∑m
i=1 χip

(i)
1,1 = ∑m

i=1 χiq
(i)
1,1, hence |x| = |y|. By the

Cauchy–Schwartz inequality,∣∣∣∣∣∣
m∑
i=1

χi

n∑
j=1

p
(i)
1,jq

(i)
1,j

∣∣∣∣∣∣ �
√√√√ m∑

i=1

χip
(i)
1,1

√√√√ m∑
i=1

χiq
(i)
1,1 =

m∑
i=1

χiq
(i)
1,1.

Comparing this inequality with (4), we have r1 = · · · = rn and Pi = Qi for all i. �
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Theorem 3. Two χ-representations U = (U;Ui)i∈S and U ′ = (U′;U′
i )i∈S are unitarily equivalent if and

only if the corresponding subspace representations F(U) and F(U ′) are equivalent.

Proof. If U is unitarily equivalent to U ′, then F(U) is equivalent to F(U ′). Let us prove the converse

statement. F(U) is equivalent to F(U ′) if and only if there exists an invertible g : U → U′ such
that

g−1PU′
i
gPUi

= PUi
, gPUi

g−1PU′
i
= PU′

i
, i ∈ S.

Let g = ϕψDψ∗ be the polar decomposition of g, where ϕ : U → U′ and ψ : U → U are unitary

maps and D is a positively defined diagonal operator. Then

(ψD−1ψ∗ϕ∗)PU′
i
(ϕψDψ∗)PUi

= PUi
, i ∈ S.

Hence (ψ∗ϕ∗PU′
i
ϕψ)D(ψ∗PUi

ψ) = D(ψ∗PUi
ψ) for all i. Since U and U ′ are χ-representations,

∑
i∈S
χi(ψ

∗ϕ∗PU′
i
ϕψ) = I,

∑
i∈S
χi(ψ

∗PUi
ψ) = I.

Lemma 2 ensures that ψ∗ϕ∗PU′
i
ϕψ = ψ∗PUi

ψ for all i. Therefore, ϕ∗PU′
i
ϕ = PUi

for all i, and so U is

unitarily equivalent to U ′. �

Remark 4. By similar argumentation, one can show that χ-representation U is orthogonally inde-

composable if and only F(U) is indecomposable. The connection between usual and orthoscalar rep-

resentations of quivers was established [9, Theorem 1] in the same way as in Theorem 3.

A representationV = (V; Vi)i∈S ofweightχ = (χi)i∈S is calledχ-stable if
∑

i∈S χi dim Vi = dim V

and ∑
i∈S
χi dim(Vi ∩ M) < dimM

for any proper subspace 0 �= M ⊂ V .

Lemma 5. If U = (U;Ui)i∈S is an indecomposable χ-representation, then F(U) is χ-stable.

Proof. Equating the traces of both sides in (2), we obtain
∑

i∈S χi dimUi = dimU. If M is any

proper subspace of U, then
∑

i∈S χiPUi
PM = PM . Equating the traces of both sides in the last equality,

we get∑
i∈S
χitr(PUi

PM) = dimM.

By [4, Theorem 2], tr(PM1∩M2
) � tr(PM1

PM2
) for each two subspaces M1 and M2, and so

∑
i∈S
χitr(PUi∩M) �

∑
i∈S
χitr(PUi

PM) = dimM.

It remains to prove that the last inequality is strict. Indeed, assume that tr(PUi∩M) = tr(PUi
PM) for all

i. Then each PUi
commutes with PM . Hence the subspaceM is invariant with respect to the projections

PUi
and the representation U is decomposable. This contradicts the assumption. �
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The converse statement to Lemma 5 also holds: if a representation V = (V; Vi)i∈S isχ-stable, then
one can choose a scalar product in V in such away that V becomes aχ-representation; see [5, Theorem
3.5]. Using results from [5,7,15], one can prove the following theorem.

Theorem 6. An indecomposable unitary representation U is a χ-representation if and only if the corre-

sponding subspace representation F(U) is χ-stable.

3. Proof of Theorem 1

The implication (i) ⇒ (ii) is trivial.
(iii) ⇒ (i). Assume that the Hasse diagram of S does not contain any of critical diagrams (1).

If S has an infinite number of indecomposable unitarily nonequivalent χ-representations for some

weight χ , then by Theorem 3 it has an infinite number of nonequivalent indecomposable subspace

representations. By Kleiner’s theorem, S contains a critical diagram; a contradiction.

(ii) ⇒ (iii).Wesay that aposetS isunitary representation-infinite if there existd ∈ NandχS ∈ R
|S|
+

such that S has an infinite number of indecomposable unitarily nonequivalent χS-representations of
dimension d. Our aim is to prove that critical posets are unitary representation-infinite.

One can show that critical primitive posets are unitary representation-infinite using

[1,8,12]. Namely, there exists a correspondence between the χ-representations of a given poset S
and the representations of a certain ∗-algebra A�,ω associated with a star-shaped graph �, which

is determined by the Hasse diagram of S , and the parameter ω is determined by the weight χ .
If � is an extended Dynkin graph (which corresponds to some primitive critical S), then one can

choose the parameter ω such that A�,ω has an infinite number of unitarily nonequivalent irreducible

representations. The complete description of such representations was given in [1,8,12] (see also

Remark 11). But we use another method that handles both primitive and non-primitive

cases.

Denote by e
(n)
i (or ei if no confusion can arise) the n-dimensional vector in which the ith coordinate

is 1 and the others are 0. Denote by ei1...ik the vector ei1 + · · · + eik and by 〈x1, . . . , xm〉 the vector

space spanned by x1, . . . , xm ∈ C
n.

For each critical poset S , we define a family of its subspace representations Vλ(S) that depend on

a complex parameter λ ∈ C.

• If S = (1, 1, 1, 1), then Vλ(S) consists of the space C
2 and its subspaces

〈e1〉 〈e2〉 〈e1 + e2〉 〈e1 + λe2〉

• If S = (2, 2, 2), then Vλ(S) consists of the space C
3 and its subspaces

〈e123, e1 + λe3〉 〈e1, e2〉 〈e2, e3〉

〈e123〉
��

〈e1〉
��

〈e3〉
��

• If S = (1, 3, 3), then Vλ(S) consists of the space C
4 and its subspaces

〈e1, e4, e2 + λe3〉 〈e1, e2, e3〉

〈e1, e4〉
��

〈e2, e3〉
��

〈e123, e24〉 〈e4〉
��

〈e3〉
��
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• If S = (1, 2, 5), then Vλ(S) consists of the space C
6 and its subspaces

〈e1, e2, e3, e4, e5 + λe6〉

〈e1, e2, e3, e4〉
��

〈e2, e3, e4〉
��

〈e1, e2, e5, e6〉 〈e3, e4〉
��

〈e123, e245, e16〉 〈e5, e6〉
��

〈e4〉
��

• If S = (N, 4), then Vλ(S) consists of the space C
5 and its subspaces

〈e1, e2, e3, e4〉

〈e2, e3, e4〉
��

〈e235, e134, e5, e3 + λe4〉 〈e1, e2, e5〉 〈e3, e4〉
��

〈e235, e134〉
��

〈e5〉
��������������

��

〈e4〉
��

Denote by VS
λ the only subspace from Vλ(S) that depends on the parameter λ and denote by a the

element fromS that corresponds toVS
λ . DeletingV

S
λ fromVλ(S),weobtain the subspace representation

V(Sa) = (VS; VS
i )i∈Sa of primitive poset Sa := S \ {a}.

Proposition 7. Vλ(S) is not equivalent to Vμ(S) if λ �= μ for each critical poset S . All subspace repre-

sentation V(Sa) are schurian.

Proof. This proposition is proved by straightforward computations. �

Let S be a critical poset. The poset Sa is primitive and does not contain any of the critical posets,

its subspace representation V(Sa) is schurian. By [3, Proposition 3.1], there exists a weight which we

denote by χa, such that V(Sa) is χ
a-stable. Write

R := min
{
dimM − ∑

i∈Sa
χa
i dim(VS

i ∩ M)
∣∣∣M is a proper subspace of VS}

.

The subspace representation V(Sa) is χ
a-stable, hence R > 0. Let ε be such that R > ε > 0. Write

T := 1 + (R − ε)(dim VS)−1 and

χS = (χS
i )i∈S, χS

i :=
{
χa
i · T−1, if i ∈ Sa,

(R − ε) · (dim VS
λ )

−1 · T−1, if i = a.

Proposition 8. The subspace representations Vλ(S) are χS-stable for all λ and S .

Proof. Note that∑
i∈S
χS
i dim VS

i = T−1
∑
i∈Sa

χa
i dim VS

i + χS
a dim VS

λ

= T−1 dim VS + (1 − T−1) dim VS = dim VS .
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LetM be any proper subspace of VS . Then∑
i∈S
χS
i dim(VS

i ∩ M) = T−1
∑
i∈Sa

χa
i dim(VS

i ∩ M)+ χS
a dim(VS

λ ∩ M)

� T−1
(
dimM − R + (R − ε)(dim VS

λ )
−1 dim(VS

λ ∩ M)
)

� T−1(dimM − ε) < dimM.

Hence Vλ(S) is χS-stable. �

Proposition 9. Critical posets are unitary representation-infinite.

Proof. By Proposition 7 and Proposition 8, any critical poset S has an infinite number of nonequiva-

lent χS-stable subspace representations. By Theorem 6, S has an infinite number of indecomposable

unitarily nonequivalent χS-representations. �

Proposition 10. If a poset S contains a critical poset (as a full subposet), then S is unitary representation-

infinite.

Proof. Suppose that S contains a critical poset Sc . By Proposition 9, there exists a weight χ c such that

Sc has an infinite number of indecomposable unitarily nonequivalentχ c-representations of dimension

d. Define the following subset of S:
Smax := {a ∈ S | b ≺ a for some b ∈ Sc }.

For each χ c-representation U = (U;Ui)i∈Sc , define the unitary representation U ′ = (U;U′
i )i∈S of S

as follows:

U′
i :=

⎧⎪⎨⎪⎩
0, if i /∈ Smax ∪ Sc,

Ui, if i ∈ Sc,

U, if i ∈ Smax.

It is easy to check that U ′ is χ ′-representation, in which χ ′ = (χ ′
i )i∈S is defined by

χ ′
i :=

{
χ c
i · (1 + |Smax|)−1, if i ∈ Sc,

(1 + |Smax|)−1, otherwise.

Hence S is unitary representation-infinite. �

The implication (ii) ⇒ (iii) follows from Proposition 10. This finishes the proof of Theorem 1.

Remark 11. Define the following weights:

χ(1,1,1,1) := 1

2
(1, 1, 1, 1),

χ(2,2,2) := 1

3
(1, 1, 1, 1, 1, 1),

χ(1,3,3) := 1

4
(2, 1, 1, 1, 1, 1, 1),

χ(1,2,5) := 1

6
(3, 2, 2, 1, 1, 1, 1, 1),

χ(N,4) := 1

5
(2, 1, 1, 2, 1, 1, 1, 1).
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Each weight χS obtained from the minimal imaginary root of the quadratic form related to a critical

poset S . We checked (describing all possible subdimension vectors) that the representations Vλ(S)
are χS-stable for any λ ∈ C \ {0, 1}. Hence they give rise to an infinite family of nonequivalent

χS-representations. For primitive S one can obtain the precise description of projections for such

representations using the results from [1,8,12]. The description in the case S = (N, 4) is unknown.

Acknowledgments

We would like to thank S.A. Kruglyak, V.L. Ostrovskii, and L.B. Turowska for useful discussions

and advises and also V.V. Sergeichuk for numerous helpful remarks. The second author was partially

supported by DFG Grant SCHM1009/4-1 and Fapesp Grant 2010/15781-0.

References

[1] S. Albeverio, V. Ostrovskyi, Yu. Samoilenko, On functions of graphs and representations of a certain class of ∗-algebras, J. Algebra
308 (2) (2007) 567–582.

[2] P. Gabriel, A. Roiter, Representations of finite-dimensional algebras, Springer, 1997.

[3] R. Grushevoy, K. Yusenko, On the unitarization of linear representations of primitive partially ordered sets, Oper. Theory Adv.
Appl. 190 (2) (2009) 279–294.

[4] P.R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969) 381–389.
[5] Yi Hu, Stable configurations of linear subspaces and quotient coherent sheaves, Q. J. Pure Appl. Math. 1 (1) (2005) 127–164.

[6] M.M. Kleiner, Partially ordered sets of finite type, J. Soviet Math. 3 (1975) 607–615.

[7] A.A. Klyachko, Stable bundles, representation theory and hermitian operators, Selecta Math. 4 (1988) 419–445.
[8] S.A. Kruglyak, I.V. Livinskyi, Regular orthoscalar representations of the extended Dynkin graph Ẽ8 and ∗-algebra associated
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