Engineering thermostability in archaebacterial glyceraldehyde-3-phosphate dehydrogenase

Hints for the important role of interdomain contacts in stabilizing protein conformation

Jutta Biro, Stefan Fabry, Wolfgang Dietmaier, Christoph Bogedain and Reinhard Hensel
Mfax-Phanck-Instilut für Bionchomic, D-s03.: Afartinstiod, FRC;

Received 15 August 1990
Construction of hybrid enzymes between the giyceraldehyde-3.phosphate dohydrogenases from the mesophilic Afethambertrium brvanti and the

 3-phosphate dehydrogenases which is involved in the contaets between the two domains of the ename subanit. Site-direted mutagenesis experiments indicate that hydrophobic interactions play an important role in these contacts.

Thermostability; Glyceraldehyde-3.phosphate dehydrogenase: Site-directed mutagenesis: Chimeric gene: Rydrophobic interaction: Arehaebacteria

1. INTRODUCTION

To investigate the factors responsible for thermostability of enzyme proteins of thermophilic archaebacteria growing near and above $100^{\circ} \mathrm{C}$ we analyzed the phenotypic properties and primary structure of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from different mesophilic and thermophilic species [1-4]. The high sequence similarity of the enzyme homologues from Methanobacterium bryantii (optimal growth temperature: $37^{\circ} \mathrm{C}$ [5]), Methanothermus fervidus (optimal growth temperature: $83^{\circ} \mathrm{C}$ [6]) and Pyrococcus woesei (optimal growth temperature: $100^{\circ} \mathrm{C}$ [7]) provides a good opportunity not only to get hints about the structural features of thermoadaptation oy sequence comparison but also to use the similar structure of the homologous enzymes for an experimental determination of thermophily-specific structural elements.

In order to determine the structural elements responsible for thermostability of the protein conformation we constructed chimeric genes using parts of the gap gene of the thermophile $M t$. fervidus together with

Correspondence address: R. Hensel, Max-Planck-Institut für Biochemie, Am Klopferspitz D-8033 Martinsried, FRG

Abbreviations: DSM, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Eraunschweig, JRG); GAPDH, glyceral-dehyde-3-phosphate dehydrogenase; gap, gene encoding GAPDH; Mb., Methanobacterium; Mt., Methanothermus
parts of the respective gene of the mesophile $M b$. bryantii and studied the properties of the hybrid gene products. To define more precisely the intramolecular interactions stabilizing the protein conformation we use the GAPDH of Mt. fervidus as target for engineering lower and higher thermostability by site-directed mutagenesis. For the respective experiments the less stable Mb. bryantii GAPDH and the more stable P. woesei enzyme served as model.

2. MATERIALS AND METHODS

2.1. Bacterial strains

Cells of Methanobacterium bryantii (DSM 863) were grown in the Iaboratory of K.O. Stetter (Universitat Regensburg, FRG). For cloning and expressing the mutated gap genes the E. coli $\mathrm{K}-12$ strains JM83 [aras(lac-ppoAB)strAthi $\phi 80 \mathrm{~d} / a c 2$ M15] [8] and DH5a [F-endAl hsdR17 $\left(\mathrm{r}_{\mathrm{K}}{ }^{-} \mathrm{m}_{\mathrm{K}}{ }^{+}\right) \operatorname{stapE44}$ thi-1 λ^{-}recAl gyrA96 relA 1 Δ (lacZYA-argF) U169 $\phi 80 \mathrm{~d} / a c Z$ M15] [9] were used. E. coll WK6 [Δ (lac-proAB) galE sIrA/F'lacr ${ }^{\prime} 2$ M15 pro $A^{+} B^{+}$] and E. coli WKGmutS [\triangle lac-proAB) galE strA mutS::Tnso/F' lacr Z $M 15 p r o A^{+} B^{+}$] [10] were applied in the mutagenesis experiments.

2.2. Plasimids, phages, enzymes, chemicals

The vectors for cloning and sequencing were pUC18 and M13mp18/19 [11]. The twin plasmids pMa/c5-8 [12] for mutagenesis were a gift from H.-J. Fritz (Universität Göttingen, FRG). For expression of the mutated genes the vector pJF118EH [13] was used. The expression vector pHK256 was a gift from M. Kröger (Universitat Giessen, FRG). M13K07 [14] (gift from H.-J. Fritz, Universitä: Göttingen, FRG) was the helper phage in preparing single-stranded plasmid derivatives for mutagenesis. The sources of the restriction endonucleases and DNA-modifying enzymes, the material for DNA sequencing and gene expression experiments, the chemicals for enzyme

preparation and enaymatic lests and dio inpectients for media wers the same as given in [1:-4].

2.3. Standard enname assul

 measured its deseribed $[1,4]$. The assay mixture for the \mathbf{A} / h. hirsumio

 The activity was measured bs following the redmetion of NADP ${ }^{+}$at $45^{\circ} \mathrm{C}$. The test condtions for the mutant (iAl'Dits were the sime ar applied for the Mfr, fervidus entyme.

2.4. P'arificotion of the Mb. bryantii (i.APDH

20 g fromen cells of $\mathrm{A} h$. Arsemti were thawed in 20 ml of 20 mM potassiun phosphate buffer, pH7.5, conmaning 30 mM mercapthethanol (buffer A) and pressed 3 times through a Frencll pressure cell at 1200 bar. The homogenate was then enentifuged 30 min at 37000×8. During the following ammonium sulfate frationation the (iAPDH precipitated at $65-90 \%$ saturation. After centrifugation (20 min at $10000 \times g$) and resuspension in buffer A the CiAPDH fraction was dialyzed against buffer A overnight and then applied to a 70 ml hydroxyapatite columan equilibrated with buffer A. The colunn was washed with buffers of inereasing phosphate concentration from $50 \mathrm{mM}, 90 \mathrm{mM}, 100 \mathrm{mM}$ to 150 mM . The elared enzyme fractions were pooled, dialyzed against buffer A and loaded on a $100 \mathrm{~m} /$ Blue Sepharose CL.-6t3 column ($3.2 \times 6 \mathrm{~cm}$) equilibrated with the same buffer. The column was washed first with 2000 ml buffer A containing 140 mM NaCl and then with 150 ml buffer A containing 3 mM NAD** Finally, the pure eneyme was eluted by addition of 0.6 mM NADI " to buffer A. A representative purification protocol is given in Table 1.
2.5. Mfuturatesis of the Mt, forvidus sap seme
oligonactentidedirected mbtagenests was performed wsing the sapped duplen the hod (12,15), The rap sene of A fi fervidus was excised from a recombiname ful plasmid and maried between the A:oki and Pstl sites of the multiple stoning site of the plasmid pMas-s (12). The following mutakenic deosyoligomucleotides (synthesized on the DNA symthesizer 380 A trom Biosystems) were usett:
 a new Stal site) S' OTPAGTTTTATMTATAGATITCXATTTATC-

 (construction of the Y'sis mutant).

The whole mateotide sequence of the mutated genes were confirmed by the dideoxy chan termination method [16] prior to inserfion into the pillish: expression vector.

2.6. Comstruction of the recombinath gap genes

All recombinations between the gap genes of M St. forvidus and $M b$. bryantii were performed using the plasmids pJFgap-2 and EX. 6 (Fig. 1) which contain the respective wild-type gap genes. For the constuction of the chimerie genes ree 42, rec 94 and Pec 1603^{\prime}-frapments of the Aft. forvidus gap gene were substituted by homologous fragments of the $M b$. bryantio gene. The hybrid gap gene revfec represents a derivative of rec 160 , in which a 129 bp fragment at the 3'-end was exchanged by the homologous region of the Mt. fervidus gene.

The chimeric gene rec 42 was constructed by ligating the 857 bp EcoRl-Nepl fragment of pJFgap- 2 containing the 5^{\prime}-part of the M. fervidus gap gene with the 129 bp 3 - terminal fragment of the $M b$. bryantii gene prepared from EX-6 by a $N s p / / F i n d I I I$ digest.

For generating rec 94 first a Styl restriction site had to be created

Fig. 1. Structure of the recombinant plasmids pJFgap-2 and Ex-6 used for the construction of the chimeric gapgenes. pJFgap-2 and EX-6 represent derivatives of pJF1 18EH and pHK256, respectively, which itself is derived from pJF118EH by deletion of 29.2% of the sequence (M. Kröger, personal communication). lacpl, lac repressor gene; bla, β-lactamase gene.

Fig. 2. Temperature dependence of irreversible inactivation of the GAPDH from Mb. bryantii, Mt. Jervidus and Pc. woesei. The logarithms of the half-life of inactivation were plotted against the reciprocal of absolute temperature. The difference in thermostability is given as difference in temperature at which the half-ife of inactivation is equal to 10 min .
in the Mt. fervidus gene by site-directed mutagenesis. The 753 bp EcoRI-Styl fragment of the mutated gene was then recombined with the 314 bp Styl-HindIII fragment of EX-6.

Rec 160 was constructed by combining the 538 bp EcoRI-Drall fragment from pJFgap-2 with the S1S bp Drall-HindIII fragment from EX-6.

The chimeric gene revrec was constructed by recombination of the 538 bp EcoRI-Drall and 186 bp NspI-HindIII fragments of pJFgap-2 and the 357 bp DraII-NspI fragment of EX-6.
2.7. Production of the mutated GAPDHs in E. coli and enzyme purification
The conditions for production of the GAPDHs in E. coll as well as the purification protocol for the mutant enzymes $Y_{323} S$ and $Y_{323} W$ were the same as described previously for the MI. fervidus wild-type enzyme [2]. The heat treatment of the less thermostable hybrid enzymes was performed at $70^{\circ} \mathrm{C}$. To compensate the lower purification efficiency, a two-step ammonium sulfate fractionation ($0-65 \%$, $65-90 \%$ saturation) was included in the procedure prior to the affinity chromatography on matrix red A gel. All enzyme preparations were homogeneous as proven by SDS-polyacrylamide gel electrophoresis.

The heat stability tests were conducted as reporied previously [4].

3. RESULTS AND DISCUSSION

3.1, Thermostability of the wild-type enzymes of Mb .

 bryantii, Mt. fervidus and Pc. woeseiAs shown previously, the GAPDH of Mt. fervidus and Pc. woesei are efficiently expressed in E. coli $[2,4]$. For preparative reasons the heterologously expressed enzymes of both thermophilic organisms were used in the following experiments. Lacking a suitable expression system for the $M b$. bryantii GAPDH, however, this enzyme has to be isolated from the original organism yet.
The heat stability of the enzymes was determined by following the velocity of irreversible inactivation. The half-lives of inactivation were deduced from semilogarithmic plots of the inactivation kinetics. The plots showed linearity up to 40% residual activity but deviated from linearity at lower values. This deviation may be due to superposition of at least two inactivation processes. Since the inactivation curve did not change

Table II
Structure of he hybrid GAPDHs and their specific activity and thermostability compared to the properties of the parental enzymes

Name	Structure ${ }^{\text {a }}$	Phenotypic properties	
		Spec. act. at $70^{\circ} \mathrm{C}$ (U/mg)	Thermostability relative to stability of the parental Mt. fervidus GAPDH ${ }^{\text {b }}$ $\Delta T\left({ }^{\circ} \mathrm{C}\right)$
Parental Mt. fervidus GAPDH	RCLDLDL1L2	$5 s$	0.0
Rec 42	CLCLCLDLC	54	-9.0
	294		
Rec 94	CLCLLCLIL2	47	-10.0
	242		
Rec 160	COLCLCLCD	47	-10.5
	176		
Revrec	CCLCLCLCL	73	-4.6
	17611		
Parental Mb. bryantii GAPDH		n.d.	-12.3

[^0]

Fig. 3. Temperature dependence of irreversible inactivation of the hybrid and mutant GAPDHs.
by varying the protein concentration between 30 and $150 \mu \mathrm{~g} / \mathrm{ml}$, dissociation processes can be excluded as rate limiting steps under the conditions used.

For comparison of the thermostabilities we determined the temperature with the half-life of 10 min deduced from the first fast inactivation reaction (Fig. 2). From this, the GAPDH from Pc. woesei is found to be by $20^{\circ} \mathrm{C}$ and $32^{\circ} \mathrm{C}$ more stable than the enzymes from Mt . fervidus and from Mb. bryantii, respectively.

3.2. Construction of chimeric genes between the gap genes of Mt . fervidus and Mb . bryantii and thermostability of the gene products

From the 3'-terminus of the Mt. fervidus gap gene fragments of different length ($126 \mathrm{bp}, 282 \mathrm{bp}, 477 \mathrm{bp}$) were substituted by equivalent parts of the $M b$. bryantii gap gene. The chimeric genes (rec 42, rec 94, rec 160) were expressed in E. coli and the respective GAPDH hybrids (Rec 42, Rec 94, Rec 160) were purified and analyzed with respect to specific activity and thermostability.
All three enzymes possess specific activities which are comparable to that of the wild-type enzyme from $M t$. fervidus (Table II). However, the thermostabilities of the hybrid enzymes differ significantly from that of the wild-type enzyme from Mt. fervidus: the exchange of the short 42 amino acid fragment in the Mt. fervidus GAPDH (Rec 42) - corresponding to a real substitution
of only 10 residues - results in a decrease of stability by $9^{\circ} \mathrm{C}$, whereas the exchange of larger fragments (Rec 94 , Rec 160) yields only an additional decrease of thermostability by $1.3^{\circ} \mathrm{C}$ (Fig. 3, Table II).

The obvious importance of the short C-terminal fragment for the conformational stability was supported by substitution of the corresponding C -terminal part of the hybrid Rec 160 by the 42 amino acid fragment of the Mt. fervidus GAPDH (Revrec). As shown in Fig. 3 and Table II, this reverse change of the C-terminal fragment yielded an over-average effect: the substitution of only one fourth of the mesophilic part in Rec 100 by the thermophilic sequence (Revrec) resulted in a 50% restoration of the thermostability.

3.3. Site-directed mutagenesis of the GAPDH from Mt. fervidus

To define the interactions, by which the short Cterminal fragment stabilizes the native conformation of the GAPDH from Mt. fervidus, single residues in that region were exchanged and the effect of the replacement on thermostability was tested. For the exchange we focused on position 323 where the respective residues in the different GAPDHs show an increase in hydrophobicity from mesophilic to thermophilic structures: at that position the enzymes from the closely related mesophilic methanogens $M b$. bryantii and $M b$. formicicum possess Ser, the more thermostable enzyme from Mt. fervidus Tyr and the enzyme from Pc. woesei with the highest thermostability Trp (Fig. 4).

As can be deduced from Fig. 3, the change to Ser (mutant GAPDH Y ${ }_{323}$ S) resulted in an decrease of thermostability by $4.5^{\circ} \mathrm{C}$, the change to Trp (mutant GAPDH $\mathrm{X}_{32} \mathrm{~W}$) in an increase of thermostability by $1.3^{\circ} \mathrm{C}$ as compared to the wild-type enzyme.
For detailed structural interpretation of the observed data the knowledge of the three-dimensional structure of the Mt. fervidus and Mb. bryantii enzyme would be necessary, which, however, is not yet available. Therefore, we interpret our data on the basis of the known structures of eubacterial and eukaryotic GAPDHs [17-19]. As demonstrated by the respective spatial models of these enzymes, the C-terminal 20-25 residues form an amphipathic α-helix (helix α_{3}) contacting the β_{E}-strand of the extended parallel β-sheet of the N-terminal, nucleotide-binding domain. Exclusively

Fig. 4. Amino acid sequence of the 42 residues comprising C-terminal fragment of the GAPDH from Mr. fervidus [3] compared to the homologous sequences of the enzymes from the mesophiles Mb. bryantii and Mb. formicicum $[3]$ as well as from the hyperthermophile Pc. woesei [4]. Dots denote gaps introduced for optimal alignment. Residues at position 323, where the exchanges were made, are in bold type.
these comtacts elamp the (remmimal, so-called eatalytic
 togethor. Assmming a respective artangement in the at
 formed exchanges on themostability ean be explained by the involvement of the residue at position 32,3 in ins terdomain comtacts governing the rigidity and thas the stability of the proten contomation.

Obviously, hydrophobic interactions play a cruciat role in chese interdomain contacts. The participation of aromatic restdues in these contacts in the thermophitie archaebacterial CiAPDHE supports our sugpestion that especially these residues are of importance for the conformational stability of emymes from organsms living at extremely high temperatures [4].

Acknowhedgements: The work was suppoged by grants of the Deutsche Forschmesgemeinsehaft and by the loonds der Chemischen
 site-directed muagenesis. Thamks are alsodactoki.O. Stetter for providing us with cell mass of Alh, breamiti.

REIIRLINCLS

 H1月5 lett. 23, 213-21?.
 (1089) Itur. J. Hoshem: 170, d0s, 113.
 (1w\%) 1. Hatertish (in press).

(a) Steter, K. (o. Thomm, N.. Wimer, J. Wilderuber, (i., Haber. II.. Zillis. W'. Janckovic. D.. Konis. II.. I'alan. I', and
 160 178.
 Ithekovic, 1)., tmad, I. and Itass, 14. (1987) Systenn. Appl. Nicrubiol, 9. (23.70.
[$[$] Massing. J. (1979) Recombinant DNA Tcch. 13ull. 2. 43.48 .
(v) lessy. 1. (1980) focus 8 , 9. 10 .

(11) Normader, S., Kempe. T. and Messins, J. (I98.?) Gene 26, 101-106.
[12] Stimssens, P., Opsomer. ('h.. MeKeown, Y.N.. Kramer, W., Kabeath, M. and Erio, H.-J. (1989) Nucleic Acids Res. 17. $4+41-4.45+1$.

[^0]: ${ }^{\text {a }}$ Numbers indicate the length (number of residues) of the exchanged peptide, numbers in brackets give the real residue changes in the recombinant structure
 ${ }^{0}$ For calculation of the relative thermostabilities see legend to Fig. 2

