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Abstract-A simplified proof is given for a result of Klamkin and Rhemtulla on the two- 
office ballot problem. 

INTRODUCTION 

In order to average out the effect of ordering on a ballot in an election of officers, it may 
be desirable to prepare several versions of a ballot with the candidates’ names in various 
orders, so that in the complete set of ballots no candidate occupies any given position in 
the list more often than any other candidate for the same office. This leads to the problem 
of determining the minimum number of different ballots required. Klamkin and Rhem- 
tulla[l] solved this for the case of two offices with m and n candidates respectively, 
showing the minimum number to be m + n - gcd(m, n), where gcd denotes the greatest 
common divisor. Their proof, however, was rather complicated. This paper gives a much 
simpler proof of the same result, which the author believes provides additional insight 
into the general problem. For more than two offices, the problem is still open. 

MAIN RESULT 

Consider the two-office ballot problem, in which m candidates are running for office 
1, and n candidates are running for offlce 2. Let R and C be particular candidates for 
offices 1 and 2, respectively. Given a set of ballots, we can sort them, at least initially, 
according to the positions of these two candidates. We thus form a matrix of nonnegative 
integers A = (a~), in which ati is the number of ballots on which candidate R appears in 
the ith position and candidate C in the jth. 

Now let 

n 

Yj = 2 Uij fori = 1,. . . ,m 
j=l 

and 

Cj = 2 ati forj = 1, . . . , n. 

Clearly rj is the total number of times candidate R appears in the ith position, and cj is 
the total number. of times C appears in the jth. 
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Suppose now that for each office every candidate appears the same number of times 
in each given position. It is easy to see then that each given candidate appears the same 
number of times in every position-i.e. yl = r2 = .*a = r, and c, = c2 = ... = cn. We 
will call the matrix A “magic” if it satisfies this condition. (The adjective derives from 
“magic squares,” a well-known subject in recreational number theory. Benjamin Franklin 
was a connoisseur of magic squares.) 

Conversely, given a magic matrix, we can immediately construct a set of ballots sat- 
isfying the supposition above by simply using cyclic permutations of the names in the two 
lists. In this way the problem of finding the minimal number of different ballots required 
to satisfy the supposition is solved by finding the minimal number of nonzero entries 
possible in a magic matrix. (Of course we exclude the “null” case, ati = 0 for all i, j.) 

We shall call a magic matrix “minimal” if it has a minimal number of nonzero (hence 
positive) entries. Let M(m, n) denote this number: The number of nonzero entries in an 
m x n minimal magic matrix. Our object is to give a simple proof of the following 

THEOREM. M(m, n) = m + n - gcd(m, n). 

The proof of the theorem is indeed simple: one merely applies induction to the following 
lemma and proposition. 

Lemma. M(m, n) = M(n, m), and M(m, m) = m. 

Proposition. If m < n, then M(m, n) = m + M(m, n - m). 

The lemma is trivial: one merely transposes M to obtain the first statement, and ob- 
serves that the identity matrix Z always provides a minimal magic-square matrix. The rest 
of our work comes in proving the proposition. We shall do this by proving inequalities 
5 and 2 for the relation between M(m, n) and m + M(m, n - m). 

Lemma. M(m, n) 5 m + M(m, n - m). 

Proof. Let Al be a minimal magic matrix of size m x n - m, and let c be the common 
sum of its columns. Let A be the m x n matrix formed by adjoining the m x m scalar 
matrix cl to the left of A, ; for example, if 

2 0 
A,= 0 2 , 

[ 1 1 1 

then 

(The dotted lines are added for emphasis.) The matrix A is clearly magic, and has exactly 
m + M(m, n - m) nonzero entries. The lemma follows. 

We shall call a matrix A “diagonalized” if it has the form (cl 1 A,) as above. Clearly, if 
A is magic, then so is A,. Moreover, if A is minimal, then A1 is also. 
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Lemma. M(m, n) 2 m + M(m, n - m). 

Proof. It suffices to show that there is always a minimal magic matrix in diagonalized 
form. We shall prove this by showing how any magic matrix with m < n can be diagonalized 
by a procedure which does not decrease the number of zero entries. The procedure is 
based on the following 

Sublemma. Suppose A is a magic matrix with m < n. Then every row of A contains 
at least two nonzero entries. 

Proof of the sublemma. Suppose there were a row with only one nonzero entry r. 
Then r is the common sum of all the rows. From the relation rm = cn, where c is the 
common column-sum, we have c = rmln < r, which is contradicted by the column con- 
taining the entry r (since negative entries are not permitted). 

We can now describe the procedure for diagonalizing A. By permuting rows and col- 
umns as necessary, we may assume that all # 0. By the sublemma, ay # 0 also, for some 
j > 1. Suppose now that ai1 f 0. Consider the submatrix 

and let (Y = min(ail, au). Define a new matrix A’ = (a;) by 

and aAk = ahk for all other entries. It is easy to see that A’ is again a magic matrix, that 
A’ has at least as many zeros as A, and that a,$ < ail. By repeating this process a finite 
number of times, we eventually have ah = 0, and this can be done for all i = 2, . . . , 
m. 

Having “diagonalized” the first column, a straightforward induction argument shows 
that columns 2, . . . , m can likewise be diagonalized, leaving a diagonalized magic matrix 
A’ having at least as many zeros as A. If A is minimal to start with, then A’ is also minimal 
and we have concluded the proof of the lemma, and thus of the theorem. 

REMARKS 

1. Nonnegativity of the ati’s is essential, as the example 

shows. The proof here used the fact that the au’s were integers, but rational entries do 
not change the result: one merely multiplies through by the greatest common denominator. 
It is also fairly simple to show that using positive real coefficients cannot lower the min- 
imality number either: The set of magic matrices with non-zero entries in M prescribed 
positions can be described as the intersection of m + n - 2 rationally defined hyperplanes 
in R”, so that rational magic matrices are consequently dense in this set. 
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2. The preliminary discussion, which related the ballot problem for two offices to the 
problem of finding minimal magic matrices, holds also for the general case with N offices, 
except we have to deal with N-dimensional arrays of integers in place of ordinary matrices. 
Unfortunately, the diagonalization procedure does not work in general or, at least, not 
in such a simple manner. One can still juxtapose a solution to the problem M(mr, m2, 
. . . ) mN - ml) (assuming 1 < ml < m2 < ... < mN) with a “diagonal embedding” of 
a solution to M(m,, m2, . . . , mNP1) to obtain a “magic matrix,” but the result will not 
be minimal. 

REFERENCE 

1. M. Klamin and A. Rhemtulla, The ballot problem. Mathematical Modelling 5, l-6 (1984). 


