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In the fire-proneWestern U.S., the scale of surrounding forest density can be realized by homebuyers as an ame-
nity for aesthetics and cooling effects, or as a disamenity in termsofwildfire risk. There has been a lack of academ-
ic attention to understanding this duality of forest density preferences for homebuyers in at-riskWildland Urban
Interfaces (WUIs). To fill this gap, we investigated the influence of forest density onWUI house sales in four high
fire-risk zones in dry, mixed conifer forests of theWestern U.S with a spatial hedonic pricing model. Explanatory
attributes related tohouse structure, neighborhood, and environmental amenitieswere assessed, alongwith a set
ofWUI variables that included forest density ranges at two buffer levels— a 100m radius level and a 500m radius
level. Results indicate a strong preference for lower forest density at the 100m level, but a countering preference
for higher forest density at the larger 500 m buffer. These findings suggest the need to reconsider broad ap-
proaches in public awareness campaigns and regional planning, as well as fire management policies and strate-
gies. Preference for higher density forests implies that if left to homeowners, fuel treatments in public spaceswill
be underinvested.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Keywords:
Wildfire economics
Hedonic pricing
Wildland-urban interface (WUI)
Forest density
1. Introduction

Expansion of the wildland-urban interface (WUI) has been identi-
fied as the primary cause of rapid increases in wildfire-related losses
in the United States (Keeley et al., 1999; Radeloff et al., 2005), Canada
(McFarlane et al., 2011; Goemans and Ballamingie, 2013), Australia
(Mell et al., 2010) and the Mediterranean (Darques, 2015). This is par-
ticularly true for ecosystems that once burned frequently with low-
moderate intensity before old-growth logging, overgrazing, and, per-
haps most significantly, fire exclusion (Covington, 2000). Many forests,
especially across the western United States, have experienced declining
ecological health and increased risk of uncharacteristically large and se-
verewildfires (GAO, 2009a; GAO, 2015). Reducingwildlandfire risk and
damage within residential developments in theWUI has become one of
the most pressing issues in managing U.S. public lands (Stetler et al.,
2010).

Some of the most complicating factors for managing wildland fire
risk are the costs of fire suppression and risk reduction, and who pays
for fire management. The costs of fighting wildland fires have been es-
calating continuously in the United States, doubling to more than $2.9
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. This is an open access article under
billion annually during 2001–2007 from an average $1.2 billion annually
during 1996–2000 (GAO, 2009b).Many studies have investigated the fac-
tors affecting wildland fire suppression costs (e.g. Calkin and Gebert,
2006; Gebert et al., 2007; Liang et al., 2008; Abt et al., 2009; Yoder and
Gebert, 2012). The primary factors that explained the majority of varia-
tion inwildland fire suppression costs, other than fire size, were those re-
lated to the WUI, including proximity to the WUI and the proportion of
private land within fire perimeters. About 897,000 properties (estimated
reconstruction value at $237 billion) in the western U.S. are now located
in high or very high wildfire risk areas (CoreLogic, 2015). Expansion of
theWUI is likely to continue in the future, especially in the intermountain
west states where the risk of large and severe fires is ever increasing
(Theobald and Romme, 2007). The majority of wildfire suppression
costs are born at the federal level (Gude et al., 2008). Although more
than 30% of total wildfire costs can be attributed to defending private res-
idences (Rasker, 2015), there is little incentive for state, county, or local
governments who make land use decisions to curb the development
within the WUI (Gude et al., 2008; Abrams et al., 2015).

Homebuyers, alongwith locally elected officials, may underestimate
the dangers and financial consequences of fire-prone forests (Abrams et
al., 2015). By assuming much of the fire suppression and management
burden, the federal government may be providing a perverse incentive
to locate in hazardous areas (Busby and Albers, 2010). Homebuyers' de-
cisions to buy homes in theWUI are influenced by their preferences for
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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natural amenities aswell as their perceived risk of natural disasters. For-
est cover provides certain amenities, including shade, privacy, noise re-
duction and aesthetics, while too many trees may manifest as
disamenities for blocking viewsheds and increasing the chance of
home ignitions duringwildfires. This dualitymakes it hard to effectively
communicate with home owners about the needs for reducing forest
density in the WUI and to inform policy decisions that need to be ap-
plied in the landscape level. With forest cover representing both ameni-
ties and disamenities in high fire risk areas, there is a need to
understand the influence of surrounding forest density on property
values in the WUI (Venn and Calkin, 2011; Hansen et al., 2014).

In this study, we focus our attention on properties in the drymixed-
coniferWUI ecosystems of the American west where the rising trend of
wildfire risk is particularly severe. The trend is expected to worsen in
the future with higher frequency of fire occurrences and longer dura-
tions of wildland fire seasons with warmer and earlier springs
(Westerling et al., 2006).With limited evidence of forest density prefer-
ences of WUI homebuyers, a primary research question remains: How
does forest density influence sales value in high fire risk WUI regions,
and to what scale? To investigate this question, we applied a spatial he-
donic pricing model to a set of high fire risk WUI house sales in four
Western regions.

1.1. Literature review: WUI forest density and hedonic pricing

By observing home sale prices in the market, we can discern the
preferences of homebuyers for different attributes of homes in aggre-
gate form. The idea of measuring the value of certain implicit character-
istics of property, i.e. hedonic pricing, dates back many years. The first
application of the hedonic method in residential properties was by
Ridker andHenning (1967), where they investigated the association be-
tween air quality and property values. Since then, there have beenmany
hedonic studies in urban housing markets that show evidence of nega-
tive impacts of poor air quality on housing prices (e.g. see the meta-
analysis of more than 160 separate estimates from 37 studies by
Smith and Huang, 1993).

However, the influence of tree density on housing prices has been
found to be both positive and negative, making results hard to general-
ize. Although there are many benefits of increasing canopy covers in
communities, especially in urban areas, there are also costs, such as in-
creased fire risk, energy costs and water usage (Nowak et al., 2010).
Thus, homebuyer preferences for tree density depend on the degree of
urbanization in the area (Cho et al., 2008) and the relative scarcity of
trees in the neighborhood (Netusil et al., 2010). Natural amenity values
of forests can vary spatially and temporally depending on forest-patch
size and density (Cho et al., 2009) and can vary based on prevailing eco-
logical, social, and economic conditions (Nowak et al., 2010). Addition-
ally, variations in tree density at the household level can create positive
and negative externalities for adjacent land owners and can influence
neighbors' efforts at creating defensible space (Shafran, 2008).

Givenmixed findings of direction and scale for forest density prefer-
ences, we view forest density as a blessing and a curse depending on lo-
cation-specific and behavioral contexts reflecting home buyers'
knowledge, attitude, and preferences. Economists treat environmental
amenities, or avoidance of environmental disamenities, as spillover ef-
fects that are typically external (externality) to the measurement of
total economic trade-offs (Mendelsohn and Olmstead, 2009; Mishan,
1974). Hedonic pricemodels arewell suited for determining the ameni-
ty or disamenity influence of a perceived attraction or hazard on a par-
ticular market segment of home buyers. However, hedonic models
assume buyers and sellers have full and accurate information about
housing characteristics and that housing markets are mobile enough
to reflect current preference or risk (Mendelsohn and Olmstead, 2009).

The assumption of complete information may be particularly prob-
lematic for homeowner's perception of wildfire risk and the financial
consequences of experiencing a wildfire. Abrams et al. (2015) found a
large discrepancy between community fire risks perceived by local
homeowners and assessed by fire officials. Mozumder et al. (2009)
found positive willingness to pay among WUI residents for updated
wildfire riskmaps, indicating that residents do not have complete infor-
mation. Donovan et al. (2007) found no preference for the level of sur-
rounding vegetation density (e.g., high or low) for WUI homeowners
outside of Colorado Springs, Colorado, despite finding a decrease in
prices after thefire department initiatedwildfire risk ratings for individ-
ual houses. Champ et al. (2009) surveyedWUI homeowners in the same
location and found little consideration (only 27% of WUI homeowners)
for wildfire risk when purchasing their house. They also found higher
preference for homes closer to “dangerous topography” in terms of
wildfire risk (Champ et al., 2009). Similarly, high natural amenity loca-
tions are typically correlated with high hazard risk (Loomis, 2004).
This suggests that in some areas, the attraction of thewilder natural fea-
tures that are typically associated with greater wildfire risk outweigh
the disamenity, or hazard, represented by wildfire risk.

None of the published hedonic studieswere able to separate changes
in wildfire risk perception and natural amenities (Venn and Calkin,
2011), as it likely requires the use of survey-based stated preferences
methods as opposed to revealed preference methods. There is little in-
formation on the role of wildfire risk on homebuyer preferences in
fire-prone areas (Champ et al., 2009). Even for homebuyers with some
awareness, the full level of risk is poorly defined as many wildfire risk
variables are difficult to quantify at the WUI parcel-specific level. Fur-
thermore, homebuyer's risk perceptions in high natural hazard areas
have largely been shown to be inaccurate formany natural disasters, in-
cluding fire, flooding, and earthquakes (Mueller et al., 2009). So in this
case, complete information is unknown and homebuyers have incom-
plete and varied level of risk assumptions. This is complicated by the
fact that the federal government assumes much of the fire suppression
and management burden, providing a government subsidy to WUI
homeowners (Gude et al., 2008; Busby and Albers, 2010). Federal aid
and assistance for victims of natural disasters is common practice, but
the reactionary nature of federal payments and resources used to help
residents in high risk natural areas (e.g., WUI, floodplain, or coast) pro-
vides an incentive to locate in hazardous areas (Kim and Hjerpe, 2011).
This incentive creates amarket failure leading to excessive risk takingby
individuals with insurance and federal assistance, generating free-rider
effects whose tabs are collectively paid by society (Loomis, 2004;
Talberth et al., 2006; Cavallo and Noy, 2009; Busby and Albers, 2010).

The hedonic fire risk literature has largely been focused on empirical
ex post investigations of wildfires (Huggett, 2004; Loomis, 2004;
Mueller and Loomis, 2008; Mueller et al., 2009; Stetler et al., 2010).
They have generally found negative associations between housing
prices and proximity to a wildfire. A couple exceptions to the ex post in-
vestigations in the hedonic fire risk literature include investigations of
the effects of a wildfire risk rating (Donovan et al., 2007; Champ et al.,
2009) and forest density variation for one community (Kim and Wells,
2005). Hedonic studies of other natural disasters, such as hurricanes
and floods, showed the effects of recent experience with a disaster on
perceived risk and property values (Bin and Polasky, 2004; Morgan,
2007). Although experiences with a disaster tend to increase perceived
risk and negatively affect property values, those impacts may be short
lived (Atreya et al., 2013). Much less is known about ex ante behavior
ofWUI homebuyers before experiencing a closefire. Preferences for for-
est density, prior to major fires, as well as the mechanisms through
which forest density is processed in home owners' preferences, are in
need of further investigation and hold important policy implications
for correcting market failures.

2. Methods

Wefirst specified a comprehensiveWUIhedonic pricemodel a priori
of existing data, and then generated a sampling methodology that
would best fit our model specification. Once our hedonic model was



Table 1
Description of variables included in the analysis.

Variable name Definition
Expected
sign

Dependent variable:
log (adj sale price)

Natural log of sale price of the home in locally
time-adjusted markets for Quarter 2, 2013 ($)

Explanatory variables
Structural variables (S)

Log living area
(sq. ft)

Natural log of house square footage +

Bathrooms Number of bathrooms +
Bedrooms Number of bedrooms +
Log lot area

(acreage)
Natural log of lot acreage +

Year built Year house was built ?
Neighborhood
variables (N)

WUI City
Flagstaff, AZ If sale was in Coconino Co., AZ, dummy = 1 ?
Bend, OR If sale was in Deschutes Co., OR, dummy = 1 ?
S. Lake Tahoe,

CA
If sale was in El Dorado Co., CA, dummy = 1 ?

Missoula, MT If sale was in Missoula Co., MT, dummy = 1 ?
Log income Natural log of census tract-level median

income in $2013
+

sqrt proximity to
shopping

Square root of house distance (meters) to city
center

−

Buyer location Dummy variables for In-Region and
Out-of-Region buyers

?

Environmental
amenity variables (E)

Log proximity to
public forests

Natural log of house distance (meters) to
closest USFS boundary

−

Log proximity to
water body

Natural log of house distance (meters) to
closest lake or reservoir

−

Log proximity to
river

Natural log of house distance (meters) to
closest perennial river

−

WUI variables (W)
WUI or WUI-mix Dummy variables for WUI designation

Interface or Intermix
?

Log proximity to
fire station

Natural log of house distance (meters) to
closest fire station

−

Forest density
(100 m)

Low100 If house's 100 m buffer was Low Forest
Density, dummy = 1

?

Medium100 If house's 100 m buffer was Med Forest
Density, dummy = 1

?

High100 If house's 100 m buffer was High Forest
Density, dummy = 1

?

Forest density
(500 m)

Low500 If house's 500 m buffer was Low Forest ?

58 E. Hjerpe et al. / Forest Policy and Economics 70 (2016) 56–66
fully specified and populated with observational data, we conducted
numerous model and regression diagnostics.

2.1. Specifying a WUI hedonic price model

A house can be thought as a package of many characteristics. For ex-
ample, the price of a house is determined by size, number of rooms, and
natural amenities, as well as proximity to business centers or schools. In
other words, the ith house price (phi0 ) is a function of housing structure
vectors (Si), neighborhood characteristic vectors (Ni), and location-spe-
cific environmental amenity vectors (Ei).

p0hi ¼ ph Si;Ni; Eið Þ ð1Þ

Previous hedonic price models for WUI houses are limited to a few
studies and generally include the traditional explanatory attributes of
S, N, and E (e.g., Donovan et al., 2007; Mueller et al., 2009; Stetler et
al., 2010). However, our interest was to isolate surrounding forest den-
sity as a potentially explanatory attribute in themost at-riskWUI areas.
Thus,we incorporate a set ofWUI (W) variables that are defined by des-
ignation of fire-risk (Interface or Intermix), proximity to fire stations,
and forest density levels surrounding WUI homes at two proximities
(100 m and 500 m radius circular density buffers). Our hedonic price
model is specified as:

p0hi ¼ ph Si;Ni; Ei;Wið Þ ð2Þ

or statistically as:

P ¼ cþ β Xð Þ þ ε ð3Þ

where P is the WUI house sales price, c is a vector of constants, X is a
vector of house characteristics S, N, E, and W, β is the vector of coeffi-
cients, and ε is a vector of error terms.

Following previous literature (Graves et al., 1988; Palmquist, 1983;
Stetler et al., 2010),we have considered a number of structural variables
known to be significant in determining the property price, such as lot
and living area sizes, total numbers of bedrooms and bathrooms, and
age of house at the time of purchase. For neighborhood variables, prop-
erties were categorized by census tracts and social-economic informa-
tion was estimated at census-tract level according to the 2010 US
Census. The variables included the WUI city (Flagstaff, Bend, S. Lake
Tahoe, and Missoula), income level of the neighborhood, distance to
shopping and business centers (downtowns), and buyer location. Over-
all, the four WUI regions contained 24 individual census tracts.
Homebuyer addresses were used to classify all WUI property sales to
in-region or out-of-region buyers. Zip codes of homebuyers were
cross-examined with Google Earth ecosystem imagery to indicate
whether or not the homebuyerwas located in a similar dry-mixed coni-
fer and high wildfire risk area. Additional neighborhood variables were
explored, such as traditional hedonic variables including education
levels, quality of schools, and crime rates. However, our final set of
WUI homes was similar enough that there was little variation in these
more urban-oriented variables, leading us to keep them out of the
model.

Three environmental amenities were included in our hedonic func-
tion model—distance of the WUI house to national forest lands,1 dis-
tance to a lake or reservoir, and distance to a perennial river. WUI
variables includedmeasures of forest density,WUI designation as either
WUI Interface or Intermix, and distance tofire stations. Givenfindings of
past wildfires influencing house sales prices, we considered including
recent wildfires as an explanatoryWUI variable in ourmodel. However,
1 Ham et al. (2012) illustrated that the influence of surrounding public lands on house
values was dependent on heterogeneity in types of land uses allowed (e.g., motorized
vs. non-motorized, resulting noise impacts, etc.). To account for this heterogeneity, we
have sampled from multiple WUI areas with similar forest types and land uses.
based on aerial imagery, the four regionshave not experiencedmany re-
cent wildfires within the WUI zones, limiting the representation of this
variable. WUI designations were modeled as dummy variables. Forest
density was measured in two different sizes of buffers around each
housing unit: 100 m radius and 500 m radius. We hypothesized that
homeowners' preference for forest densitymay differ for the immediate
surroundings and for the larger vicinity. To control for different regional
forest densities and variations in climate and geomorphology that affect
each regions' wildfire regime, forest density was classified into three
categories for each city: high, medium, and low. The high, medium,
and low classification represented even allocation (one-third each) of
each region'sWUI house forest density percentages. These forest densi-
ty ranges were entered as dummy variables so they could be combined
with other regions so as to observe any relative influence of local forest
Density, dummy = 1
Medium500 If house's 500 m buffer was Med Forest

Density, dummy = 1
?

High500 If house's 500 m buffer was High Forest
Density, dummy = 1

?
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density in these highfire risk regions. A full description of variables used
in our analysis is presented in Table 1.

2.2. Sampling methodology

We obtained sales records of single family residential housing units
for four fire-prone WUI regions for multiple years (2011–2014) and
carefully selected residential development within the WUI only. Our
primary research question was aimed at isolating the potential influ-
ence of forest density variation on house values in Western fire-prone
forests. To do this, we selected WUI areas with similar forest types,
fire regimes, and natural environmental amenities. Market segmenta-
tion across locations, geographies, and environmental attributes can
be a concern for a combined hedonic price function of multiple regions
and needs to be considered and accounted for in econometric analysis.
We employed a sampling design that would ensure consistency in
both the demand and supply structures of each sub-region (Freeman,
1993) and the subsequent vector of coefficients for each region (Haab
and McConnell, 2003), allowing for the estimation of a single hedonic
price function.

2.2.1. Study area selection
The four WUI cities selected were: Bend, Oregon, Flagstaff, Arizona,

South Lake Tahoe, California and Missoula, MT (see Fig. 1).
Fig. 1. Selected western dry, m
These four Western communities have similar degrees of urbaniza-
tion and economic conditions (See Table 1), and can all be categorized
as natural amenity-based towns that include many outdoor recreation
and tourism industries and services. AllWUI cities are in close proximity
to national forest lands and have relatively high percentages of second-
home ownership. All four cities also have similar ecological conditions
of dry, mixed conifer and have substantial wildfire risk in the surround-
ing forests. For example, approximately 13,000 houses in Deschutes
County, Oregon have been designated as “High” or “Very High” risk for
wildfire damage, representing a combined total reconstruction value es-
timated at more than $3.4 billion (CoreLogic, 2015). As seen in Table 2,
all four regions contain numerous houses in the WUI.

2.2.2. Geo-data selection and tabulation
Sales prices and descriptive characteristics for over 20,000 houses

from the four Western counties (Coconino, AZ; Deschutes, OR; El Dora-
do, CA; andMissoula, MT) from 2011 to 2014were acquired from a real
estate firm. Data were cleaned and filtered to remove duplicates, miss-
ing data, corrupt or incongruous data, and notable outliers. Geographi-
cal coordinates for each parcel centroid were used to display houses in
a GIS layer. Numerous manual checks were conducted to make sure
the coordinates were accurate at high resolution. We obtained National
Agriculture Imagery Program (NAIP) aerial imagery at 1m ground sam-
ple distance (http://www.fsa.usda.gov/programs-and-services/aerial-
ixed-conifer WUI regions.

http://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/index


Table 2
Description of selected WUI cities.

WUI city Dominant WUI forest typea Population 2013 WUI houses in countyb Median income Median housing price

Flagstaff, AZ Ponderosa pine woodland 68,700 13,983 $49,800 $266,200
Bend, OR Ponderosa pine woodland 81,236 17,536 $53,000 $255,800
S. Lake Tahoe, CA Mesic mixed conifer forest and woodland 21,387 29,504 $41,000 $319,800
Missoula, MT Dry-mesic montane mixed conifer forest 69,100 6771 $40,700 $237,600

Source: US Census Bureau, State and County Quick Facts: http://quickfacts.census.gov/.
a NAIP Land Cover Imagery.
b Headwaters Economics at: http://headwaterseconomics.org/dataviz/wui-development-and-wildfire-costs
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photography/imagery-programs/naip-imagery/index) and overlaid
wildland-urban interface (WUI) GIS layers as defined by Radeloff et al.
(2005) and presented by the SILVIS Lab at the University of Wisconsin
(http://silvis.forest.wisc.edu/maps/wui_main). The WUI classifications
from Radeloff et al. (2005) use the Federal Register 66 (USDA and
USDI, 2001) WUI definition and include both Intermix and Interface
WUI areas.2 All houses not designated as either WUI Intermix or Inter-
face (e.g., uninhabited or too low of housing density) were filtered
out. Intermix and Interface were then classified as dummy variables.
The National Hydrography Data set was used for identifying house dis-
tances to lakes, reservoirs, and rivers (http://nhd.usgs.gov/index.html),
and Google Earth was used to indentify house distances to fire stations.

Following a stepwise selection process, we mapped city boundaries
for each region, implemented a 7.5-mile buffer surrounding the city
boundary, and removed all houses from inside the city boundaries.
We were left with a doughnut-shaped WUI zone surrounding each
city (see Fig. 2). The 7.5-mile outer WUI buffer was clipped to our
Land Cover/Forest Area and populated with recently sold houses. Out-
side of 7.5miles beyond city boundaries in general, housing density rap-
idly decreased and became too low compared to our WUI datasets. The
WUI buffer was created to separateWUI homes based near popular nat-
ural amenity cities from homes in more remote, rural settings. Homog-
enizing the most at risk WUI homes for each city was our priority as
rural homebuyers may exhibit different preferences and demographics
than our sample. Finally, through visual observation, we eliminated
WUI buffer areas with very low or no vegetation cover, such as open
grass lands, water bodies, and golf courses. Additionally, houses located
in land cover dominated by other forest types, such as pinyon/juniper,
were removed.3 Final selected WUI houses are illustrated in Fig. 2.

To determine our forest density WUI variables, each transacted
property in our WUI region was buffered at two distances. Two circles
were drawn around each parcel centroid—one with a 100 m radius
(3.14 ha/7.8 acres) and one with a 500 m radius (78.5 ha/194 acres).
Background land cover allowed us identify “tree” or “no tree” at a one
squaremeter resolution. Forest density buffers at the 100 and 500m ra-
dius-level were tabulated by totaling tree and no-tree units. With two
unique tree percentages for each WUI house, we were able to classify
and isolate the influence of forest density in WUI house sales at a
broad level and at a more immediate level.

Our data were from a 3 year span from 2011 to 2014. To control for
regional market trends and timing, both seasonally and annually, we
2 Intermix and Interface definitions from the SILVIS Lab documentation: “TheWildland-
Urban Interface (WUI) is composed of both interface and intermix communities. In both in-
terface and intermix communities, housing must meet or exceed a minimum density of
one structure per 40 acres (16 ha). Intermix communities are places where housing and
vegetation intermingle. In Intermix, wildland vegetation is continuous, more than 50%
vegetation, in areas with more than 1 house per 16 ha. Interface communities are areas
with housing in the vicinity of contiguous vegetation. Interface areas have more than 1
house per 40 acres, have less than 50% vegetation, and are within 1.5 mi of an area (made
up of one or more contiguous Census blocks) over 1325 acres (500 ha) that is more than
75% vegetated. The minimum size limit ensures that areas surrounding small urban parks
are not classified as interface WUI.”

3 Pinyon pine/juniper forests occur in only two of our four regions and houses located in
pinyon/juniper were generally of lower value when compared to the primary ponderosa
and dry-mixed conifers forests of the WUI. Due to these differences, we excluded house
sales in pinyon/juniper forests to focus on a more homogenous set of WUI homes.
adjusted all property sales to a common year (2013) and quarter (2).
We used quarterly housing price index from the US Federal Housing Fi-
nance Agency at the three-digit zip code level.

2.3. Hedonic regression analytics

The hedonic pricing method is a nonmarket valuation technique
used to estimate the influence of latent housing characteristics by gaug-
ing their individual contribution to overall selling prices. Advancements
in hedonic methods have addressed a number of analytical issues
concerning spatial dependence, multicollinearity, and interpretation of
regression results. Below, we detail our treatment of these hedonic
considerations.

2.3.1. Spatial dependence and hedonic regression
OurWUI dataset representsmultiple neighborhoods across four dis-

parate regions.While we have included asmany potentially influencing
variables as possible, there is still a chance that clustering of houses, or
their proximity to neighboring houses, may have an influence on their
sales price. This spatial dependence was first formally stated by Tobler
(1970) and the first law of geography: “everything is related to every-
thing else, but near things are more related than distant things.”

Anselin and Bera (1998) define spatial autocorrelation as the coinci-
dence of value similarity with locational similarity. Positive spatial auto-
correlation is the clustering in space of similar values, whereas negative
spatial autocorrelation describes the dissimilar values associated with
different neighborhoods farther out in space. Two types of spatial de-
pendence can occur. Spatial lag refers to spatial dependencies across ob-
servations of the dependent variable, while spatial autocorrelation
refers to dependence across error terms. Maximum likelihood is a com-
mon technique used for spatial estimation.

Mueller and Loomis (2008) analyzed effects of correcting for spatial
dependence in hedonic property models examining amenities and
disamenities of natural hazards and awildfire riskmodel. Their findings
showed small differences between modeled spatial dependence and
spatially uncorrected OLS estimates, but highlight that the small differ-
ences can have serious implications for final interpretations and implicit
prices. Donovan et al.'s (2007) WUI hedonic model, however, did find
large differences for estimated coefficients in spatially corrected regres-
sions versus uncorrected OLS regressions. Given the numerous findings
of spatial dependence in hedonic price functions, we investigated this
issue in our dataset and addressed the problem in our final regression
models.

Because spatial data typically violate the assumption of observation
independence required by ordinary regression methods (Anselin and
Bera, 1998; LeSage, 2014), we analyzed our data in multiple spatial
models. Our motivation for accounting for spatial dependence was to
limit potential omitted variable bias by estimating the spatial effects of
house clusters (neighborhoods) within each region and to account for
potential house price association with neighbors (e.g., Anselin and
Bera, 1998, LeSage and Pace, 2009). Individual houses receive and
exert influence on other neighbors just by being in close proximity to
each other (e.g., selling values are often comprised of average surround-
ing selling prices)— a focus of the spatial lag function. We also hypoth-
esize that there may be other explanatory variables (characteristics)

http://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/index
http://silvis.forest.wisc.edu/maps/wui_main
http://nhd.usgs.gov/index.html
http://headwaterseconomics.org/dataviz/wui-development-and-wildfire-costs
http://headwaterseconomics.org/dataviz/wui-development-and-wildfire-costs
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shared by certain neighbors thatwewere unable to isolate in our overall
model specification. These shared characteristics could be a road, a
unique natural feature, or a particular school that could lead to spatial
autocorrelation among the error terms of WUI house price estimations.
These unknown variables may have an influence on home prices of
houses spatially clustered around them, indicating the need for a spatial
error model.

Estimating spatial models requires the construction of a spatial
weights matrix that can be applied to our final functional form in Eq.
(3) to estimate spatial lag, spatial error, and combinations of the two
(e.g., Durbin or mixed). Spatial dependencies across the dependent var-
iable result in a spatially lagged model. The specified model for spatial
lag becomes:

P ¼ ρW1Pþ βXþ ε; ð4Þ

where P is a vector of house selling Prices, X is vector of house charac-
teristics, β is a vector of characteristic coefficients, and ε is a vector of
the i.i.d error term. W1 is an N × N spatial weighting matrix describing
the spatial lag process, and ρ is the scalar spatial lag coefficient
(Donovan et al., 2007).

If individual error terms of WUI house prices are spatially
autocorrelated, spatial error dependence will be present. The spatial
error model can be represented as:

P ¼ βXþ ε;where ε ¼ λW2εþ μ; ð5Þ

where P, X, and β are the same vectors of house price, characteristics,
and coefficients. However, in the spatial error model, ε represents a
combined error term that has a spatially weighted matrix (W2) applied
to the error terms, λ is the scalar spatial error coefficient, and μ is a vec-
tor of the error term (Elhorst, 2014).

With two broad categories of spatial dependence, lag and error, and
sub categories representing the variousmanners inwhich theymanifest
(i.e., exhibited on dependent variable, independent variables, and/or
error term), there aremultiple spatialmodels that provide for combined
lag and/or error spatial dependence estimates. Two popular models are
the spatial mixed model (or SAC) and the spatial Durbin model. The
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spatial mixedmodel allows for lag and error autocorrelation and can be
represented as:

P ¼ ρW1Pþ βXþ ε;where ε ¼ λW2εþ μ; ð6Þ

where matrixW1 may be set equal toW2, and the vectors are the same
as in Eqs. (4) and (5) (LeSage and Pace, 2009). The spatial Durbinmodel,
on the other hand, allows for spatial lags of the dependent variable and
the explanatory variables, or:

P ¼ ρW1Pþ βXþW1Xθþ ε; ð7Þ

where the new addition, W1Xθ, represents the exogenous interaction
effects among the independent variables (Elhorst, 2014).

2.3.2. Regression diagnostics
Variables were observed in scatterplots, histograms, and kernel den-

sity plots to investigate normality and heteroskedasticity. Our depen-
dent variable exhibited non-normal probability distributions, being
skewed to the right. Numeric and visual transformation tests in STATA
showed that a logarithmic transformation worked the best in reducing
skewness and kurtosis for the property values (smallest chi-square),
and more importantly for their residuals. There is little guidance on
functional form for hedonic property models (Taylor, 2003; Mueller
and Loomis, 2008; Hussain et al., 2013) and logarithmic transformation
of our dependent variable is consistentwith previous research. Based on
data exploration, seven independent variables were transformed to log
and one was estimated as a square root function. Interaction effects
among primary explanatory variables and the four sub-markets illus-
trated similar preference structure of attributes on the demand side,
though some interaction coefficients indicate that supply structures
are not exact matches among sub-markets. Further analysis showed
that regional WUI houses were more similar toWUI houses in other re-
gions, in terms of attributes, than when compared to houses found in
adjacent city limits. Finding homogeneity among the four WUI housing
markets provided confidence that inclusion of regional dummies gener-
ated appropriate intercept shifts so as to estimate a single hedonic price
function.

Summary statistics and basic correlations were investigated and a
set of diagnostic tests were used to determine if multicollinearity or
heteroskedasticity remained problems. A White's Test on
heteroskedasticity led us to use Huber-White robust standard errors
in our final analysis. Multicollinearity is especially problematic for he-
donic pricingmodels, given the inclusion of similar yet distinct housing
attributes such as the number of bathrooms and the number of bed-
rooms (Hussain et al., 2013). While some degree of multicollinearity
will always be present (Stewart, 2005), we employed various testing
of the degree and scale of correlation among our hedonic pricing attri-
butes to help estimate the most relevant model specification. Variance
inflation factors (VIF) for all variables were determined, along with
overall model condition numbers. These diagnostics led to the removal
of four variables from our final model specification due to high correla-
tionswith other variables: bedrooms, year built, income, and distance to
river. Ourfinalmodel estimated had a condition number of 17.02,which
is in the optimal range between 10 and 30 as suggested by Gujarati
(1998).

A Moran's I Test indicated the presence of spatial autocorrelation in
our communities (p= 0.000), requiring the use of spatial error and lag
models. A spatial weights matrix and eigenvalue vectors were generat-
ed and applied to our spatial regression. We used an inverse-distance
spatial weights matrix as recommended by Mueller and Loomis
(2008). Sensitivity analysis of varying band distances revealed robust
results largely insensitive to neighbor distance delineations. Under our
spatial weights matrix, parcels across regions are not considered neigh-
bors. Our distance band used was 3 km. The diagonal elements are
zeroes while the off diagonal elements are the weighted average of
the particular neighborhood, where rows sum to one. At less than
3 km, we began to see a few islands (houses with no neighbors) and a
sparse matrix.

Prior to spatial regressions, spatially uncorrected OLS regressions
were estimated and retained for comparison. Estimate statistics such
as Akaike Information Criterion (AIC) and Bayesian Information Criteri-
on (BIC)were tabulated and used for guidance on preferredmodels. Ini-
tial OLS regressionswere estimated as generalized linearmodels (GLM)
so as to obtain comparison criteria to our spatial regressions. Based on
maximum likelihood estimates, and AIC and BIC stats, the spatial regres-
sions were shown to be a superior fit for our data over the spatially un-
corrected OLS regression.

The Moran's I Test provided for a first view of spatial dependence in
our sample. To get more details on the nature of the spatial dependency
in our communities, we estimated robust Lagrange Multipliers (LM) for
theweightsmatrix after anOLS specification. Startingwith a non-spatial
linear regression and then investigating whether or not to move to a
spatial regression is known as the specific-to-general approach
(Elhorst, 2014). The robust LMs indicated that the spatial lag process
was likely present in our sample (p=0.051), but that spatial error pro-
cess might not be present (p = 0.228). We continued to estimate four
spatial models: the lag, error, Durbin, and mixed (see Eqs. (4)-(7)).
However, as indicated by the robust LM tests, the spatial lag model
was ultimately the best specification.

The four spatial models were estimated using maximum likelihood
and evaluated based on the following model selection criteria: signifi-
cance of rho and lambda (the scalar coefficients for lag and error pro-
cess), log likelihood function, the AIC, and the BIC. The individual
spatial dependence models, lag and error, were better specified than
the combination spatial models and we present the criteria estimates
for the lag and error models in Table 4. Of the spatial lag and error
models, the lag model had the lower AIC and BIC and the larger log like-
lihood estimate.

Both the lag and error models yielded a significant rho estimate
(p = 0.053) and lambda estimate (p= 0.059). In the combined spatial
models (Durbin and mixed) however, neither individual rho nor lamb-
da were significant, and the AIC and BIC estimates were substantially
larger. The log likelihood estimates are not as comparable across the
four spatial models due to different degrees of freedom, as the com-
bined spatial models have interaction parameters along with the ex-
planatory variables. AIC and BIC incorporate penalties for greater
model parameters, whereas the log likelihood function does not
(Stewart, 2005). As a result, AIC and BIC are better suited for evaluating
the specification of multiple spatial models. Based on specification tests
for four spatial models of our data, the spatial lag model is preferred,
with the spatial error model being next preferred.
2.3.3. Regression interpretation: implicit prices
Thehedonic pricingmethod is a nonmarket valuation technique that

allows for the estimation of preferences for nonmarket attributes such
as forest density on housing prices. Partial derivatives of the attributes
are obtained and can be interpreted as implicit marginal prices for
those attributes. That is, the hedonic regression coefficients of attributes
measure the rate of change in house price with respect to a one unit
change in the attribute. These coefficients can be used to infer house-
holds' WTP for marginal changes in the level of WUI house
attributes—and is why they are termed implicit prices (Loomis, 2004).

Evaluation of attributes in a linear hedonic model is straightforward,
where attribute coefficients represent the dollar increase or decrease in
home selling value associated with an additional unit of the attribute. In
transformed functional models, such as the semilog model, coefficients
of attributes typically represent elasticities, where coefficients are a per-
centage that is applied to the house value. Interpretation of dummy var-
iable coefficients, however, is a bit more nuanced because they
represent relatively large changes in the dependent variable.



Table 3
Descriptive statistics for dry, mixed conifer WUI houses (N = 418).

Variable Mean Std. dev. Min Max

Dependent variable
Adjusted sale price: $2013,
regionally-adjusted

358,380 205,108.1 60,507 1,618,750

Explanatory variables
Structural variables (S)

Living area (sq. ft) 2116.041 940.766 469 6591
Bathrooms 2.469 1.030 1 6
Bedrooms 3.232 0.962 1 8
Lot area (acres) 1.384 2.737 0.013 25.050
Year built 1986.031 15.617 1926 2013

Neighborhood variables (N)
WUI City
Flagstaff, AZ 0.246 NA 0 1
Bend, OR 0.148 NA 0 1
S. Lake Tahoe, CA 0.401 NA 0 1
Missoula, MT 0.203 NA 0 1

Income ($) 59,534.26 10,221.38 35,398 86,211
Proximity to shopping (meters) 9013.7 5059.8 1295.1 28,612.6
Buyer location
Out-of-region 0.423 NA 0 1
In region 0.576 NA 0 1

Environmental amenity variables (E)
Proximity to public forests (meters) 824.5 1249.4 0.144 5750.8
Proximity to water body (meters) 5983.1 5740.2 22.6 28,605.1
Proximity to river (meters) 20,135.0 21,405.6 0.156 59,615.9

WUI Variables (W)
WUI or WUI-mix
Intermix 0.645 NA 0 1
Interface 0.354 NA 0 1

Proximity to fire station (meters) 5050.0 4342.5 146.3 25,311.9
Forest density (100 m)
Low100 0.330 NA 0 1
Medium100 0.339 NA 0 1
High100 0.330 NA 0 1

Forest density (500 m)
Low500 0.330 NA 0 1
Medium500 0.339 NA 0 1
High500 0.330 NA 0 1
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To interpret our regression coefficients, we incorporate interpretive
expressions for our semilog model illustrated by Kennedy (1981) and
Stewart (2005) and applied to a hedonic price function by Hussain et
al. (2013). Specifically, the implicit price expression used for continu-
ous, non-transformed explanatory variables is:

IMPBathrooms ¼ β1 � AdjSalesPrice: ð8Þ

For explanatory variables measured in logarithms:

IMPLivingArea ¼ β1
AdjSalesPrice
LivingArea

� �
: ð9Þ

But, for discrete explanatory variables such as dummies, treating at-
tribute coefficients as direct elasticities as done above results in a heavi-
ly biased estimator (Stewart, 2005). This is because a large absolute
change in binary variables (e.g., going from high, tomedium, to low for-
est density) represents a relatively large change in our dependent vari-
able (WUI house sale price); whereas applying coefficients directly as
done in the case of continuous variables captures smaller changes at a
finer scale, resulting in less biased estimators. Thus, we use Kennedy's
(1981) estimator to reduce bias for interpreting our WUI dummy vari-
ables:

IMPForestDensity ¼ exp β1−0:5s2β1

� �
−1

h i
AdjSalesPrice; ð10Þ

where s is the standard error of the ForestDensity dummy variable.
Additionally, a spatial multiplier may exist when local spillover ef-

fects result in further neighborhood house price adjustments. Spillover
effects can be incorporated into the model resulting in a set of indirect
effects. Indirect effects occur when neighboring house values influence
the observed house sales price in that neighborhood, as is often the
case with real estate markets. So beyond the direct effects of spatially
corrected regression coefficients calculated above in Eqs. (8)-(10),
theremay be indirect spatial spillover effects that need to be interpreted
for finalmarginal implicit price calculations. Kim et al. (2003) define the
spatial multiplier as the sum of each row of the inverse matrix of row-
standardized spatial weights, or 1 / (1 − ρ), if a unit change were in-
duced at every location. Adding this to Eq. (8), we have a final implicit
price expression of:

IMPBathrooms ¼ β1 � AdjSalesPrice �
1

1−ρ
� �

; ð11Þ

where the scalar parameter ρ is the coefficient for the spatial lag
process.

The spatial error model does not allow for the estimation of indirect,
or spillover, effects. Our Eq. (11) illustrates an implicit price estimation
adjustmentwhenusing the spatial lagmodel or the spatialmixedmodel
(SAC). Elhorst (2014) illustrates that the ratio of spillover effects to di-
rect effects under the lag and mixed models is the same for every ex-
planatory variable, meaning that one general spatial multiplier is
applied to all variables. In many cases however, each explanatory vari-
able may have a unique spatial multiplier that can be difficult to isolate.
For advanced interpretation of spatial multipliers for numerous spatial
specifications see LeSage and Pace (2009) and Elhorst (2014).

3. Results

After the spatial delineation described in Section 2.2.2, we had 418
property sales records from four communities. Table 3 shows summary
statistics for the dependent and independent variables in our model.
Our dependent variable is the log of adjusted home sale prices. Average
home sale prices in our sample was $358,380 in adjusted 2013 prices,
which is higher than the average prices of all four cities where the
study sites are located. Higher house values can be explained by the
fact that residential properties built in WUI areas tend to be quite a bit
larger than those in urban centers (averaging 2100 sq. ft., or 195 sq.
m. in our dataset), and are located on much larger parcel sizes (mean
WUI lot size was 1.3 acres, or 0.53 ha. in our dataset).

We present the results from both the spatial error and lag models in
Table 4. However, with lower AIC and BIC estimates and a higher log-
likelihood statistic (closer to zero), we focus our presentation of results
in the text on the spatial lag model. Some of the results followed our
general expectation. For example, larger houses with more bathrooms
were sold at higher prices. Housing prices tend to be higher in the
WUI area in California than places in other states. However, a few de-
scriptor variables such as proximity to shopping, buyer location, prox-
imity to public forests, WUI designation (Interface or Intermix), and
distance to fire station were not significant.

One of the most important findings was that forest density prefer-
ences of home owners vary for different buffer sizes. Atmore immediate
proximity (100 m buffer) and holding all other attributes constant, we
find that WUI homebuyers prefer low forest density in close vicinity of
a house (100 m buffer). Specifically, results of our spatial lag model
show a $37,910 decrease (p=0.006) inWUI house valuewhenmoving
from low forest density to medium forest density at the 100 m buffer
level, and a $26,499 decrease (p = 0.060) when comparing low to
high forest density. The interpreted implicit prices illustrate a convex
demand function where the price decrease is greatest between low
and medium density (see Fig. 3).

At the 500m forest density buffer however, higher density was pre-
ferred. Results indicate a $29,529 decrease (p = 0.044) when moving
from high to low forest density, and a $25,573 decrease (p = 0.053) in
WUI home value when comparing high forest density to medium and



Table 4
Spatial regression estimates for dry, mixed conifer WUI houses.

Spatial error modela Spatial lag modela

Coef. Robust std. err. P N |z| Implicit price ($)b Coef. Robust std. err. P N |z| Implicit price ($)b

Structural variables (S)
Log living area (sq. ft)⁎ 0.6630 0.0692 0.000 112.3 0.6633 0.0692 0.000 112.3
Bathrooms⁎ 0.1218 0.0303 0.000 43,651 0.1218 0.0302 0.000 43,651
Log lot area (acreage)⁎⁎⁎ 0.0392 0.0230 0.088 10,145 0.0396 0.0230 0.086 10,249

Neighborhood variables (N)
WUI City (base S. Lake Tahoe, CA)
Flagstaff, AZ⁎ −0.1894 0.0621 0.002 −62,408 −0.1911 0.0627 0.002 −62,922
Bend, OR⁎ −0.3146 0.0645 0.000 −97,277 −0.3153 0.0650 0.000 −97,468
Missoula, MT* −0.3826 0.0938 0.000 −115,007 −0.3829 0.0943 0.000 −115,092

sqrt proximity to shopping (m) −0.0009 0.0014 0.525 −0.0009 0.0014 0.509
Buyer location (base in region)
Out-of-region 0.0076 0.0387 0.844 0.0080 0.0387 0.837

Environ. amenity variables (E)
log proximity to public forests (m) 0.0041 0.0126 0.744 0.0040 0.0127 0.751
log proximity to water body (m) −0.0357 0.0237 0.133 −0.0359 0.0238 0.131

WUI variables (W)
WUI or WUI-mix (base Interface)
Intermix −0.0610 0.0366 0.661 −0.0156 0.0366 0.670

Log proximity to fire station (m) −0.0079 0.0369 0.830 −0.0078 0.0371 0.834
Forest density 100 m (baseLow100)
Medium100⁎ −0.1114 0.0401 0.005 −38,038 −0.1110 0.0401 0.006 −37,910
High100⁎⁎⁎ −0.0764 0.0404 0.058 −26,631 −0.0760 0.0404 0.060 −26,499

Forest density 500 m (base High500)
Low500⁎⁎ −0.0855 0.0424 0.044 −29,664 −0.0851 0.0424 0.045 −29,532
Medium500 −0.0631 0.0409 0.123 −0.0631 0.0409 0.123

Model statistics
Number of observations 418 418
Lambda (λ)⁎⁎⁎ −0.00012 0.059
Rho (ρ)⁎⁎⁎ −0.00007 0.053
Variance ratio 0.634 0.642
AIC 300.30 300.27
BIC 376.97 376.95
Log-likelihood −131.15 −131.13
robust Lagrange Multiplier 1.456 0.228 3.809 0.051

a Inverse distance band (0 3) used for spatial weights matrix.
b Implicit prices represent the amount an additional attribute contributes to overall price, while holding all other attributes constant. Only significant variables are calculated.
⁎ Statistical significance for both models at the 99% level.
⁎⁎ Statistical significance for both models at the 95% level.
⁎⁎⁎ Statistical significance for both models at the 90% level.
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low densities combined. The difference of moving fromhigh forest den-
sity to medium forest density for the 500 m buffer was barely insignifi-
cant (p=0.123), with a smaller coefficient than comparing high to low
density. In this case, implicit prices illustrate a flatter decreasing de-
mand function for broad level forest density preference in the WUI
when comparing high, medium, and low forest densities.
Fig. 3. Implicit demand curves for WUI forest density levels.
4. Discussion

For western dry-mixed conifer WUI regions of the U.S., we see that
forest density in close proximity to WUI homes (100 m radius) is nega-
tively associated with house values, as denser forests are realized as a
net disamenity. Expanding a WUI property's forest density buffer out
to the 500 m radius-level, however, shows a positive association with
proximate forest density, being realized as a net amenity. The conflict-
ing scales ofWUI homebuyer preferences illustrate the push and pull ef-
fects of forests surrounding the examined natural amenity cities.

In surveys ofWUI residents, Brenkert–Smith et al. (2006) noted con-
fliction among residents concerning the tradeoffs associatedwithmain-
taining certain aesthetics and views as compared to reducing or
increasing forest density of individual properties. While it is difficult to
dis-entangle amenity and view effects related to forests from effects as-
sociated with fire risk perception, it is likely that fire risk is being capi-
talized into WUI homebuyer preferences. Our study shows that forest
density is figured into homeowners' preference in different ways de-
pending on the location, which has important policy implications.
Knowing these preferences can help identify home owners most in
need of wildfire information and awareness programs, can identify re-
gions where cost-sharing of fire management funds might be most op-
timal, and can be tracked over time to determine trends.

Assuming thatwildfire risk perceptions ofWUI homebuyers are par-
tially responsible for the preference associated with varying forest den-
sity, we consider a few explanations. First, the preference for lower
density forests in the immediate vicinity of homes (100 m) suggests
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that western WUI homebuyers are concerned with the immediate fire
risk surrounding their properties. The number of structures burned by
wildfires has been increasing from an average of 209 structures per
year lost to wildfire in the 1960's to 2726 structures per year in the
2000's (insurance claims for structure losses in the WUI averaged
$800 million/year) (ICC, 2008). Existing WUI homeowners have more
awareness and incentives to reduce fuels on their properties. Preference
for lower density forests immediately surrounding WUI homes repre-
sents a market signal that wildfire risk is being considered for these
communities, which is notable given that 42% of sampled WUI house
sales were purchased by out-of-region and potential second-home
buyers. New arrivals to high risk WUI regions has been a commonly in-
vestigated theme, being offered as contributing factor to incomplete and
underestimated fire risk information (Paveglio et al., 2015). In separate
correlation tests, we found no significant association between in-region
and out-of-region WUI homebuyers and forest density levels; nor was
there an association between newmigrants andWUI house sales price.

At the broader context however, we see that WUI homebuyers pre-
fer to be close to higher forest density and higherwildfire risk areas. De-
mand for higher forest density can be explained by personal preferences
for living in more remote areas with classic natural amenities such as
public forests and “dangerous topography” (Champ et al., 2009). Our re-
sults implied homeowners only value lowdensity in their immediate vi-
cinity, which may be due to partial evaluation of their risk. Real estate
and insurance industries are now urged to recognize property losses
due to wildfires caused by windblown embers and pay attention to
risk in larger landscapes (CoreLogic, 2015). With rapidly increasing
fire risk in these areas, and rapid expansion ofWUI house development,
we believe that two forms of market failure are likely influencing forest
densities net amenity status at the broader level.

Missing and incomplete information concerning the level of wildfire
risk is the first form of market failure. Many WUI homebuyers are sim-
ply not fully aware of the accompanying wildfire risk and are willing to
pay for more information (Mozumder et al., 2009). Donovan et al.'s
(2007) findings of changed house prices based on a parcel-level wildfire
risk rating conducted by themunicipality suggests that information and
awareness campaigns can be effective in changing the homebuyer's fi-
nancial accounting of wildfire risk. As wildfire risk awareness increases,
market failures due to incomplete information should decrease.

The second form of market failure stems from federal andmunicipal
subsidies in the form of fire suppression and response, alongwith insur-
ance premiums that do not fully reflect the natural disaster risk.4 These
market failures provide incentives for WUI expansion and have shifted
the burden of fire management in theWUI to the public.WUI residents,
on the other hand, are receiving partial free-rider effects because they
are not fully responsible for their decisions to locate in fire-prone for-
ests. The results of our empirical analysis are in line with the findings
from a game theoretic model by Busby and Albers (2010). They con-
cluded that public liability to protect private values inmixed ownership
areas like the WUI essentially encourages private landowners to do too
little fuel treatments. Similar to how suppressing fire today increases
fire suppression need in the future, assistance and replacement values
from both federal policies and insurance during and after wildfires cre-
ates greaterWUI expansion and protection needs in the future and thus,
ever increasing taxpayer-funded fire management.

5. Conclusions and policy recommendations

Evidence that variation in forest density influences house sales
prices in the most at-risk western WUI areas is critical and novel infor-
mation that should be incorporated in the larger calculus of developing
broader wildfiremanagement policies. Our findings suggest the need to
4 Despite the fact that in some high fire risk areas insurance providers are beginning to
require some averting activities as a condition of insurance coverage (Talberth et al.,
2006).
reconsider broad approaches in awareness campaigns (e.g., Firewise
communities), community wildfire protection plans (CWPP), regional
development polices, and preventive versus reactionary fire manage-
ment strategies. For example, fuel reduction treatments are a primary
policy mechanism for decreasing wildfire threats and our results indi-
cate that parcel-level defensible space creation and immediately adja-
cent fuel reduction efforts may increase WUI home values. However,
preference for higher density forests implies that if left to homeowners,
fuel treatments in adjacent public spaces may be underinvested and
may be opposed by a portion of WUI homeowners. Larger or more ag-
gressive publicly funded fuel treatments may have a reducing effect
onWUI house values in the short run andmay exacerbate existingmar-
ket failures by providing further subsidies and incentives to WUI
homebuyers.

The preference for high forest density inWUI areas at the larger scale
(500 m radius-level) may be the result of incomplete information that
does not accurately reflect the wildfire hazard. Recommendations for
reducing these market failures and shifting the burden of wildfire risk
to the WUI homebuyer include greater accounting of societal costs
and benefits of wildfire management, greater education and outreach
efforts concerningwildfire risk andmitigation, and greater coordination
among federal, state, county, and local governments when considering
their development policies within high fire risk areas. Often, local policy
can influence the direction of WUI development.

We recommend further research on who pays for wildfire manage-
ment andwho benefits from it. Research should include close examina-
tions of economic incentives and disincentives created by wildfire
insurance, local wildfire management and education, and federal wild-
fire management policies. For forest density in the American West,
greater sampling of additional communities and homes would provide
formore robust estimation. Increased collection of parcel characteristics
that comprise fire risk and avoidance such as building/roof materials
and slope may identify important variables. Further research on sepa-
rating the implicit values of view and amenity effects related to forest
density from fire risk perception is also needed. For example, stated
preference techniques could be used to survey the same sample used
in our revealed preference study and comparisons could be made be-
tween revealed and stated forest density preferences, along with
being able to directly interpret reasons and drivers for density
preferences.

Likewise, there is a need to understand WUI homebuyer behavior
and preference in the very rural and forested communities. We restrict-
ed our sample of WUI cities to natural amenity towns greater than
20,000 people so as to boost our sample size. As such, our findings
should not be generalized to the small communities and isolated houses
far from any communities. Additional research is needed on these fire-
prone property owners, as they likely represent a large share of the
wildland fire management responsibility and may behave differently.
For example, people living in very dense forests in at-risk hinterlands
may prefer low density openings due to their scarcity in their region.
Theymay also have very different budgets and different housing charac-
teristic preferences from those in our study, along with different local
development and fire policies.
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