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a b s t r a c t

The fracture and fatigue properties of porous materials are strongly influenced by stress concentrations
around the pores. In addition, failure of structural components initiates at locations of high stress concen-
tration which is often caused by holes, inclusions or other discontinuities. In view of this, the stress con-
centration around a spheroidal cavity embedded in an elastic medium is studied under dynamic loading
conditions. While solutions abound for static loads, only limited solutions exist for dynamic loads. The
stress field around a spheroidal cavity is determined by using a hybrid methodology that combines the
finite element technique with a spherical wave function expansion method. The stress concentrations
within the matrix are found to be dependent on the frequency of excitation, aspect ratio of the cavity
and the Poisson’s ratio of the matrix. The study reveals that dynamic stress concentrations can reach
much higher values than those encountered under static loading.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction plate subjected to static tensile loading. Many investigations have
A certain volume of empty space tends to occur in any material.
This space is distributed within the solid material in the form of
cavities of various shapes and sizes. When the material is subjected
to a load, a stress concentration develops around the cavities.
Determination of this stress concentration is a problem of consid-
erable interest in many branches of material science and applied
mechanics, since it effectively lowers the overall strength, fracture
and fatigue properties of the material.

The influence of stress concentrations on the mechanical prop-
erties of porous materials has long been recognised (Hasselman
and Fulrath, 1964; Wang, 1984; Panakkal et al., 1990; Danninger
et al., 1993; Maitra and Phani, 1994; Boccaccini et al., 1995;
Boccaccini, 1998). For instance, an equation of the form

E ¼ E0ð1� pÞm

has been shown to predict the Young’s modulus (E) of sintered pow-
der metals and porous ceramics (Maitra and Phani, 1994). In the
above, E0 is the Young’s modulus of the nonporous material, p is
the volume fraction of pores and m is related to the stress concen-
tration factor around the pores. Similar relationships have also been
proposed to calculate the fracture strength of porous materials
(Danninger et al., 1993).

In the applied mechanics literature, the study of stress concen-
trations goes back to Kirsch (1898) who considered an infinite
ll rights reserved.
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since been conducted for cavities and other forms of stress raisers
such as notches, inclusions and reinforcements. The review articles
by Sternberg (1958) and Neuber and Hahn (1966), although some-
what dated, provide a wealth of information on the subject which
continues to attract the attention of researchers. The monograph
by Tan (1994) provides a comprehensive coverage on stress con-
centrations in laminated composites. Some recent works on stress
concentrations caused by holes or cavities may be found, for in-
stance, in the works of Yu et al. (2008), Yang et al. (2008), and
Prokic et al. (2009).

All these investigations considered static loading, where the
inertia of the medium can be ignored. This simplification cannot
be made when dynamic loading is considered. The energy of the
dynamic load is transmitted in the form of waves travelling
through the medium. At a discontinuity, these waves are reflected,
refracted and scattered giving rise to elevated local stress states.
The phenomenon of dynamic stress concentration may, therefore,
be regarded as one of scattering of elastic waves.

Scattering of elastic waves by a discontinuity such as a cavity or
an inclusion has been the subject of many investigations. The
excellent monograph by Pao and Mow (1973) gives a comprehen-
sive coverage of this and other related subjects. Solutions for two
dimensional problems have been presented by Bogan and Hinders
(1993) and others. In three dimensions, scattering by spherical,
spheroidal and ellipsoidal discontinuities has been studied by
Datta (1977), Willis (1980), Paskaramoorthy et al. (1988) and many
others. More recent contributions on this subject have been pre-
sented by Meguid and Wang (1997), Hayir and Bakirtas (2004),
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Iturrarán-Viveros et al. (2008), and Yu and Dravinski (2009). Unlike
the above studies where the emphasis was on the scattered wave
pattern, results for dynamic stress concentration are somewhat
limited. One of the early works on this subject was by Ying and
Truell (1956) who studied the dynamic stress field around a rigid
spherical inclusion. In recent years, Paskaramoorthy and his
co-workers (1999, 2000, 2009) have presented dynamic stress
concentration results for spherical and spheroidal geometries
embedded in an elastic medium. Solutions for poroelastic and
functionally graded materials have also been reported in the liter-
ature. In this regard, an interested reader is referred to the works of
Wang et al. (2005), Fang et al. (2009) and the reference works cited
therein.

In this paper, the work of Paskaramoorthy and Meguid (2000) is
extended for a prolate spheroidal cavity subjected to an asymmet-
ric dynamic load. Even though the geometry is axisymmetric, the
loading is asymmetric rendering the problem three dimensional.
As a result, all three displacement components need to be
considered in the formulation rather than just the two in the
axisymmetric problem studied previously (Paskaramoorthy and
Meguid, 2000). In addition, in the previous study it was found that
the dynamic stress concentrations could be 100% greater than the
quasi-static values. However, due to the asymmetric nature of the
loading considered in this paper, these effects are expected to be
different.

The objective of this work is to study the stress state in the
matrix medium and quantify the severity of the stress concentra-
tion on the surface of the cavity for a range of frequencies and
cavity aspect ratios. For simplicity, the effect of the interaction
of neighbouring cavities is ignored. The presence of nearby cavi-
ties causes multiple scattering. This subject is very complex and
it will be dealt with in a future communication. Fig. 1a shows
the geometry of a single prolate spheroidal cavity embedded in
an infinitely large matrix; the z-axis is the axis of symmetry.
The cavity is excited by an incident plane shear wave propagating
along the z-axis and polarised along the x-axis. The problem could
be solved by using a number of different methods such as spher-
ical wave function expansion technique (Sanchez-Sesma, 1983;
Lee, 1984; Eshraghi and Dravinski, 1989a,b), indirect boundary
integral equation method (Mossessian and Dravinski, 1989c,
1990), and boundary element method (Manolis and Beskos,
1988). In addition, the method of finite elements could also be
used in conjunction with infinite elements, absorbing surfaces
or non-reflecting boundaries (Givoli, 1991; Sarma et al., 1998).
All of these methods could possibly give a highly accurate solu-
tion for the stress concentration in the matrix medium. In the
present paper, a different approach that combines the finite ele-
ment methodology with the wave function expansion technique
is used. To this end, a fictitious spherical boundary B is drawn
such that it encloses the cavity and a finite region of the elastic
medium. The region between the cavity and the boundary B is re-
ferred to as the interior region and is modelled by using an assem-
bly of finite elements. The solution in the region exterior to the
boundary B is represented by spherical wave functions. Equations
to determine displacements for the nodes lying on the boundary
B are obtained by imposing the continuity of the displacements
and traction forces between the interior and exterior regions.
These, in turn, are used to obtain both the displacements of the
interior nodes and the unknown coefficients associated with the
spherical wave functions. The displacements are then used to
determine the stress field.
2. Statement of the problem

The surface of the cavity, denoted by S, is defined by
x2

a2 þ
y2

a2 þ
z2

b2 ¼ 1: ð1Þ

where a and b are the semi-axes of the cavity along the x and z axes
respectively. The domain of the medium is denoted by D. The mate-
rial is assumed to be homogeneous, linearly elastic and isotropic.
Only time-harmonic excitation is considered. Thus, all the field
quantities have a time dependence e�ixt, where x is the frequency
of excitation.

The equation of motion of the domain D for the steady state is
specified by

ðkþ 2lÞrðr � UÞ � lr�r� Uþ qx2U ¼ 0 x 2 D; ð2Þ

where U = (u,v,w) is the displacement vector, x is the position vec-
tor, q is the density, and k and l are the Lamé constants of the
medium.

The boundary conditions on the surface S of the cavity are of the
form

rijnj ¼ 0 x 2 S; ð3Þ

where n is the unit normal vector to the surface S and the summa-
tion convention for repeated indices is assumed. A solution to Eq.
(2) that satisfies Eq. (3) is sought. In addition, the solution should
be regular at infinity.

3. Formulation of the problem

3.1. Interior region

The interior region contains the cavity and a small portion of
the surrounding matrix. This region is modelled by using 9-noded
isoparametric finite elements. A typical finite element mesh is
shown in Fig. 2 where the mid-side and interior nodes are omitted
for clarity. The formulation is presented in the cylindrical coordi-
nate system (r,/,z) shown in Fig. 1b. In the analysis of axisymmet-
ric bodies subjected to non-axisymmetric loadings, both loads and
displacements are expanded in Fourier series in the circumferen-
tial direction. For instance, the displacement components may be
written, in cylindrical coordinate system, as

urðr;/; z; tÞ ¼
X1
m¼0

�urmðr; zÞ cos m/þ ûrmðr; zÞ sin m/½ �e�ixt ; ð4Þ

uzðr;/; z; tÞ ¼
X1
m¼0

�uzmðr; zÞ cos m/þ ûzmðr; zÞ sin m/½ �e�ixt ; ð5Þ

u/ðr;/; z; tÞ ¼
X1
m¼0

��u/mðr; zÞ sin m/þ û/mðr; zÞ cos m/
� �

e�ixt ; ð6Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

, the overbar denotes amplitude of the displacement
components symmetric about the / = 0 axis, the hat denotes the
antisymmetric components and m is the circumferential harmonic
number. The negative sign before �u/mðr; zÞ has the effect of giving
identical stiffness matrices for both symmetric and antisymmetric
components. The primary unknowns in this formulation are ampli-
tudes of the displacement components which are functions of r and
z only and do not depend upon /. Since the polarization of the inci-
dent wave is in the xz-plane, the resulting loading will be symmet-
ric about / = 0. Consequently, only the symmetric part of the
displacement components is used. This paper considers only the
case of incident wave propagating along the z-axis with polariza-
tion along the x-axis. This results in further simplification in that
only one harmonic number, namely m = 1, survives. Consequently,
the displacement field can be written as

urðr;/; z; tÞ ¼ �urðr; zÞ cos /e�ixt ; ð7Þ



Fig. 1. Problem geometry with cylindrical and spherical coordinate systems.

 

Cavity 

Boundary B 

Fig. 2. Finite element mesh of the interior region for b/a = 3
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uzðr;/; z; tÞ ¼ �uzðr; zÞ cos /e�ixt; ð8Þ

u/ðr;/; z; tÞ ¼ ��u/ðr; zÞ sin /e�ixt; ð9Þ
where the index m in the subscript of barred terms has been
dropped for notational convenience.

The amplitude of displacements within an element is interpo-
lated from the nodal displacement amplitude as

f�ug ¼ ½N�f�qg; ð10Þ

where [N] contains interpolation functions, f�qg is the vector of no-
dal displacement amplitudes, and

f�ug ¼ h�ur �uz �u/iT : ð11Þ

In the above, the superscript T denotes transpose. Explicit expres-
sions for [N] may be found in the book by Cook et al. (1989) or in
many other standard reference books on finite elements.

The governing equation of motion, which can be obtained by
following the conventional finite element methodology for axi-
symmetric elements subjected to nonaxisymmetric loads (Cook
et al., 1989), is given by

½S�f�qg ¼ fPg; ð12Þ

where

½S� ¼ ½K� �x2½M�; ð13Þ

in which [K] and [M] are the respective stiffness and consistent
mass matrices of the interior region, f�qg is the vector of nodal dis-
placement amplitudes, and fPg is the vector of nodal load
amplitudes.

If the vector f�qg is separated into two parts, f�qBg corresponding
to the amplitude of nodal displacements at the boundary B, and
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f�qIg corresponding to the amplitude of nodal displacements else-
where in the interior region, Eq. (13) can be written as

SII SIB

SBI SBB

� �
�qI

�qB

� �
¼

0
PB

� �
; ð14Þ

in which the fPBg represent the amplitudes of interaction forces be-
tween the interior and exterior regions.

3.2. Exterior region

The incident and scattered waves are denoted by the super-
scripts i and s respectively. The displacement vector U has contri-
butions from both incident and scattered waves. While the
incident wave field is known, the scattered wave field is unknown.

3.2.1. Scattered waves
A solution for Us satisfying Eq. (2) and far-field radiation condi-

tions can be written in the spherical coordinate system of Fig. 1c as
(Pao and Mow, 1973)

U ¼ ruþ 1
b
r�rðRvÞ � eR þrðRwÞ � eR; ð15Þ

where eR is the unit vector in the R–direction and u, v and w are
given by

uðR; h;/Þ ¼
X

a1nhnðaRÞP1
nðcos hÞ cos /e�ixt ; ð16Þ

vðR; h;/Þ ¼
X

a2nhnðbRÞP1
nðcos hÞ cos /e�ixt ; ð17Þ

wðR; h;/Þ ¼
X

b3nhnðbRÞP1
nðcos hÞ sin /e�ixt ; ð18Þ

In the above, and in the following, all the summations are over inte-
gral values of n from one to infinity, a1n, a2n and b3n are as yet un-
known amplitude coefficients, hn is the spherical Hankel function of
the first kind and order n, P1

n is the associated Legendre function of
first order and degree n, a and b are wave numbers defined by

a2 ¼ x2q
ðkþ 2lÞ ; b2 ¼ x2q

l
: ð19Þ

Substituting Eqs. (16)–(18) in Eq. (15), we obtain

uRðR; h;/; tÞ ¼ �uRðR; hÞ cos /e�ixt ¼ e�ixt cos /
X

�un
R; ð20Þ

uhðR; h;/; tÞ ¼ �uhðR; hÞ cos /e�ixt ¼ e�ixt cos /
X

�un
h ; ð21Þ

u/ðR; h;/; tÞ ¼ �u/ðR; hÞ sin /e�ixt ¼ e�ixt sin /
X

�un
/; ð22Þ

where

�un
R ¼ a1n

n
R

hnðaRÞ � ahnþ1ðaRÞ
h i

P1
n þ a2nnðnþ 1ÞhnðbRÞ

bR
P1

n; ð23Þ

�un
h ¼ a1n

hnðaRÞ
R

dP1
n

dh
þ a2n ðnþ 1ÞhnðbRÞ

bR
� hnþ1ðbRÞ

� �
dP1

n

dh

þ b3nZnðbRÞ P1
n

sin h
; ð24Þ

��un
/ ¼ a1n

hnðaRÞ
R

P1
n

sin h
þ a2n ðnþ 1ÞhnðbRÞ

bR
� hnþ1ðbRÞ

� �
P1

n

sin h

þ b3nhnðbRÞ dP1
n

dh
: ð25Þ

In the above, the argument (cosh) for P1
n and its derivative has been

suppressed for notational convenience. The stress field associated
with the displacements of Eqs. (20)–(22) are given by
rRRðR; h;/; tÞ ¼ �rRRðR; hÞ cos /e�ixt ¼ e�ixt cos /
X

�rn
RR ð26Þ

rRhðR; h;/; tÞ ¼ �rRhðR; hÞ cos /e�ixt ¼ e�ixt cos /
X

�rn
Rh ð27Þ

rR/ðR; h;/; tÞ ¼ �rR/ðR; hÞ sin /e�ixt ¼ e�ixt sin /
X

�rn
R/; ð28Þ

where

�rn
RR ¼ a1n

2l
R2 n2 � n� 1

2
b2R2

	 

hnðaRÞ þ 2aRhnþ1ðaRÞ

� �
P1

n

þ a2n
2l
R2

nðnþ 1Þ
b

ðn� 1ÞhnðbRÞ � bRhnþ1ðbRÞ½ �P1
n; ð29Þ

�rn
Rh ¼ a1n

2l
R2 ðn� 1ÞhnðaRÞ � aRhnþ1ðaRÞ½ �dP1

n

dh
þ a2n

2l
R2

� 1
b

n2 � 1� 1
2

b2R2
	 


hnðbRÞ þ bRhnþ1ðbRÞ
� �

dP1
n

dh

� b3n
l
R

bRhnþ1ðbRÞ � ðn� 1ÞhnðbRÞ½ � P1
n

sin h
; ð30Þ

��rn
R/ ¼ a1n

2l
R2 ðn� 1ÞhnðaRÞ � aRhnþ1ðaRÞ½ � P1

n

sin h
þ a2n

2l
R2

� 1
b

n2 � 1� 1
2

b2R2
	 


hnðbRÞ þ bRhnþ1ðbRÞ
� �

P1
n

sin h

� b3n
l
R

bRhnþ1ðbRÞ � ðn� 1ÞhnðbRÞ½ �dP1
n

dh
; ð31Þ

Let p be the number of significant terms in Eqs. (20)–(22), and (26)–
(28). Evaluating Eqs. (20)–(22) at each node lying on the boundary
B, we can construct a matrix [G] relating the nodal displacement
amplitudes to the unknown coefficients as.

f�qs
Bgsph ¼ ½G�fag; ð32Þ

where f�qs
Bgsph is the array of amplitude of displacements, in spher-

ical coordinates, at the nodes on the boundary B, {a} contains the
unknown coefficients a1n, a2n and b3n with n = 1, . . . ,p. It can be seen
that the matrix [G] is complex valued. If NB is the number of nodes
on the boundary B, the [G] matrix will have dimensions 3NB � 3p.

Similarly, a relationship between the amplitude of nodal forces,
fPs

Bg, at the boundary B and the unknown coefficients, {a}, can be
established by evaluating the stresses rs

RR; rs
Rh and rs

R/ at each
node on B and multiplying them by the corresponding tributary
area:

fPs
Bgsph ¼ ½F�fag: ð33Þ

A relationship between the load vector fPs
Bg and the displacement

vector f�qs
Bg can now be established by eliminating {a} from Eqs.

(32) and (33). To this end, we first write the Eq. (32) as (see
Appendix)

fag ¼ ½H�f�qs
Bgsph; ½H� ¼ ð½G��T ½G�Þ�1½G��T ð34Þ

and substitute it in Eq. (33) to obtain

fPs
Bgsph ¼ ½F�½H�f�qs

Bgsph: ð35Þ

The arrays fPs
Bg and f�qs

Bg in the above equation are in the spherical
coordinate system. When they are transformed into cylindrical
coordinates, Eq. (35) takes the form

fPs
Bg ¼ ½Sf �f�qs

Bg; ð36Þ

where

½Sf � ¼ ½L�t½F�½H�½L�;

in which [L] is the transformation matrix.



Fig. 3. Comparison of stresses along the circumference of a spherical cavity for
x⁄ = 0.01.

Fig. 4. Comparison of stresses along the circumference of a spherical cavity for
x⁄ = 3.0.
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3.2.2. Incident wave
Let the incident wave be represented by the displacement field

in the Cartesian coordinate system as

U ¼ exeibz�ixt ; ð37Þ

where ex is the unit vector in the x direction. This being a plane
wave propagating in the z direction, its extent covers the whole
x–y plane. The components of the displacement field can be ex-
pressed in the cylindrical coordinate system of Fig. 1b as

ui
r ¼ eibz cos /e�ixt; ð38Þ

ui
/ ¼ �eibz sin /e�ixt ; ð39Þ

ui
z ¼ 0; ð40Þ

It can be seen that the variation of the displacement components
with respect to the angular coordinate / is similar those presented
in Eqs. (7)–(9). The resulting stress field is given by

ri
rz ¼ ilbeibz cos /e�ixt ; ð41Þ

ri
/z ¼ �ilbeibz sin /e�ixt ; ð42Þ

ri
r/ ¼ ri

rr ¼ ri
zz ¼ ri

// ¼ 0; ð43Þ

It is obvious that the displacement and stress fields are asymmetric
about the / = 0 axis.

For later use when satisfying the continuity conditions, an array
containing the amplitudes of the nodal displacements on the
boundary, f�qi

Bg, can be constructed by evaluating Eqs. (38)–(40)
at each node on the boundary B. Similarly, an array containing
the amplitudes of the nodal forces on the boundary, fPi

Bg, can also
be constructed from Eqs. (41)–(43). Each of these arrays will have
3NB elements.

3.3. Global solution

The continuity of displacements and stresses across the bound-
ary B can be imposed by setting the displacements and stresses
from the interior region to be equal to those from the exterior
region:

fqBg ¼ fqi
Bg þ fqs

Bg; ð44Þ

fPBg ¼ fPi
Bg þ fP

s
Bg; ð45Þ

Since the /-variation of the displacement and force components in
both interior and exteriors regions are similar, Eqs. (44) and (45)
can be written in terms of the amplitudes as

f�qBg ¼ f�qi
Bg þ f�qs

Bg; ð46Þ

fPBg ¼ fPi
Bg þ fPs

Bg; ð47Þ

In view of Eqs. (46), (47) and (36), Eq. (14) takes the form

SII SIB

SBI SBB � Sf

� �
�qI

�qB

� �
¼

0
Pi

B � Sf �qi
B

� �
: ð48Þ

Once the above equation is solved for the nodal displacements, the
stress field in the interior region can be obtained from conventional
procedures used in finite element analysis.

4. Numerical results and discussion

In this study, the dynamic excitation is provided by an incident
SV-wave defined by Eq. (37). In the absence of the cavity, the stress
field at any point in the medium can be expressed in rectangular
coordinates as

rxz ¼ rzx ¼ ibleibz�ixt ð49Þ

with all other stress components being zero. The maximum value of
the stresses is lb.

In the presence of the cavity, the stress field is significantly dif-
ferent from that given by Eq. (49) due to scattering. The nonzero
stresses on the surface of the cavity are rtt, r// and rt/ where t
is the tangential vector on the surface of cavity as shown in
Fig. 1a. The results have the general form

r ¼ ðRþ iIÞf ð/Þe�ixt ; ð50Þ

where the f(/) is either cos/ or sin/, the real part R represents the
solution at t = 0 and T/2, and the imaginary part I represents the
solution at t = T/4 and 3T/4, T being the period of excitation. The
absolute value (R2 + I2)1/2 is the maximum stress which occurs at
some instant of time depending on the phase-shift.



Fig. 5. Angular distribution of stresses on the surface of the cavity (m = 0.25,b/a = 1). Fig. 6. Angular distribution of stresses on the surface of the cavity (m = 0.25,b/a = 3).
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These stresses are expressed in dimensionless form by normal-
izing with respect to the maximum value of the incident stress
field, lb:

r�ij ¼
jrijj
lb

i; j ¼ t;/: ð51Þ

Thus the values of r�ij can be considered as dynamic stress concen-
tration factors (Pao and Mow, 1973). They depend on the aspect ra-
tio of the cavity and the frequency of excitation; the latter is
expressed in nondimensional form through

x� ¼ xa
ffiffiffiffi
q
l

r
; ð52Þ

where a, as defined earlier, is the radius of the cavity in the x–y
plane.

The nature of the dynamic excitation is better appreciated by
considering the limiting static case. When the frequency ap-
proaches zero, the applied stress field at infinity approaches

rxz ¼ rzx ¼ r0; ð53Þ
rxx ¼ ryy ¼ rzz ¼ rxy ¼ ryz ¼ 0; ð54Þ

where r0 is a constant. The stress field of Eqs. (53 and 54) is pure
shear. Thus, the results presented herein are for the dynamic coun-
terpart of this shear load.
In order to assess the accuracy of the numerical procedure,
stresses on the surface of a spherical cavity of radius a were com-
puted by the present method and compared with the analytical
solution. In Figs. 3 and 4, the results are presented in nondimen-
sional form for two representative values of nondimensional fre-
quencies of 0.01 and 3.0. Agreement between the analytical and
numerical results can be seen to be excellent for both frequencies.
The wave length corresponding to the nondimensional frequency
of 0.01 is approximately 300 times the diameter of the cavity.
Therefore the dynamic effects are not expected to be significant
at this wave length and the dynamic solution must be close to
the static solution corresponding to the loads given by Eqs. (53)
and (54). A separate static analysis indeed confirmed that the
two solutions hardly differed. In contrast, the dynamic solution
for the nondimensional frequency of 3.0 is quite different from
the solution corresponding to the nondimensional frequency of
0.01. This is because at the higher frequency, the wave length is
about the same size as the diameter of the cavity and significant
dynamic interaction is expected.

The accuracy of the hybrid model is influenced by three factors.
First, the fineness of the mesh will obviously affect the results. It
must be gradually increased until convergence is reached. Second,
the number of wave functions p considered in Eqs. (32) and (33)
will also affect the results. In theory, p must be less than or equal
to NB. In addition, p must be sufficiently large to guarantee conver-
gence of the series in Eqs. (20)–(22), and (26)–(28). A simple strat-
egy to satisfy these requirements is set p equal to NB and gradually



Fig. 7. Angular distribution of stresses on the surface of the cavity (m = 0.25,b/a = 5).
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refine the mesh which, in turn, increases both NB and p. While this
worked well for low frequencies, numerical underflow and over-
flow problems were encountered at high frequencies. The numer-
ical instability was caused by the magnitudes of Bessel and
Hankel functions since, for p number of wave functions, the highest
order of Bessel and Hankel functions to be evaluated is p + 1 and
the magnitudes of these functions increases at a rapid rate with
the order. Our recommendation is to start with p = NB/2 and refine
the mesh. This worked well for all frequencies. The last factor the
influences the accuracy of the results is the location of boundary
B. The radius of this boundary, RB, should be large enough to com-
pletely enclose the cavity. However, a very large RB is undesirable
since the arguments of the Bessel and Hankel functions linearly in-
crease with RB and the algorithms available to calculate Bessel and
Hankel functions become moderately less accurate for large argu-
ments. It is therefore recommended that RB be kept in the range
of 1.1b–1.5b, where b is the larger semi-axis of the cavity.

We shall now consider a spheroidal cavity. The problem can be
solved analytically by using spheroidal coordinates. The mathe-
matics of this approach is, however, complex and intricate. The
problem is solved in this work by using the hybrid approach de-
scribed earlier. Figs. 5–7 illustrate the angular distribution of r�tt
and r�// for three cavity aspect ratios and five nondimensional fre-
quencies. The stress component r�t/ is not shown since its values
consistently fall between those of r�tt and r�//. It can be seen that
both the nondimensional frequency and the cavity aspect ratio
have a significant influence on the stress distribution. At the
nondimensional frequency of 0.01, hardly any dynamic effect is ex-
pected and the dynamic solution can be regarded as a quasi-static
one. The corresponding loading is given by Eqs. (53) and (54)
which exhibit antisymmetry with respect to the z = 0 plane. The
corresponding solution for stresses must exhibit antisymmetry
with respect to the z = 0 plane. However, when the absolute values
are plotted, they should exhibit symmetry. One can see in Figs. 5–7
that this is indeed the case for all aspect ratios. In addition, the
maximum values of r�tt and r�// for b/a = 1 occur at 45� and 135�.
As the cavity aspect ratio increases from unity the position of max-
imum stress moves progressively towards the poles. For reasons of
clarity, stresses around a small region near the pole have been
highlighted in Fig. 7. When the nondimensional frequency in-
creases from 0.01, considerable scattering takes place and this
changes the stress distribution. It can be seen that the maximum
values of r�tt are always greater than 1 in the range of frequencies
considered. This indicates stress concentration. In addition, stress
concentration values as high as 4.3 can be seen for r�tt in Fig. 7. It
is somewhat surprising to note that the stress peaks on the inci-
dent side of the cavity are lower than those on the shadow side.
This effect is more prominent for higher frequencies.

The influence of frequency on the peak stress concentration val-
ues for r�tt and r�// is shown in Fig. 8 for various aspect ratios. Solu-
tions for nondimensional frequencies higher than 2.5 for b/a = 5
could not be obtained due to numerical overflow problems. Vari-
ous matrix conditioning schemes were tried with little success.
For all aspect ratios, the peak stress concentration values are seen



Fig. 8. Effect of cavity aspect ratio b/a on peak stress concentration values
(m = 0.25).

Fig. 9. Effect of Poisson’s ratio on stress concentration values (b/a = 1).
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to increase with frequency. For nondimensional frequencies higher
than 1.7, increase in aspect ratio corresponds with an increase in
the peak stress value for any given frequency. However, this trend
is reversed for nondimensional frequencies lower than 1.5. While
the maximum static stress concentration is around 2.5, the maxi-
mum calculated dynamic stress concentration of 4.76 occurs for
b/a = 3 at x⁄ = 3.0. This corresponds to a 90% increase in dynamic
stress concentration from the static value.

Figs. 9 and 10 depict the effect of the material Poisson’s ratio. An
increase in the Poisson’s ratio of the medium is seen to increase the
dynamic stress concentration and this effect is more pronounced
for r�// than for r�tt . Despite this, r�tt still dominates since its values
are much higher than those of r�//.

5. Concluding remarks

A hybrid method has been presented to study the stress concen-
tration around a cavity embedded in an elastic medium. The meth-
od combines the finite element technique with spherical wave
functions to obtain the solution. The accuracy of the method was
verified by analyzing a spherical cavity. The results from the hybrid
method compare well with those obtained analytically. The results
for a spheroidal cavity indicate that the dynamic stress concentra-
tion is strongly influenced by the excitation frequency, the aspect
ratio of the cavity and the Poisson’s ratio of the material. In general,
the dynamic stress concentration factors are considerably higher
than the quasi-static values, and in certain cases, they can be as
high as 90% more than the quasi-static value.
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Appendix A

Assuming f�qs
Bgsph is known, Eq. (32) may be solved for {a} by

minimizing the least square error of the error function {�} defined
by

f�g ¼ ½G�fag � f�qs
Bgsph: ðA1Þ

The square of the error �2, which is a scalar, is given by

�2 ¼ f��gTf�g: ðA2Þ

Substitution of (A1) in (A2) leads to

�2 ¼ fa�gT ½G��T ½G�fag � f�qs�
B g

T
sph½G�fag � fa�g

T ½G��Tf�qs
Bgsph

þ f�qs�
B g

T
sphf�qs

Bgsph: ðA3Þ



Fig. 10. Effect of Poisson’s ratio on stress concentration values (b/a = 5).
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Minimizing the square of the error with respect to {a} yields

½G��T ½G�fag ¼ ½G��Tf�qs
Bgsph: ðA4Þ

Since [G⁄]T[G] is a square matrix, the equation (A4) can be solved for
{a} as

fag ¼ ½H�f�qs
Bgsph; ðA5Þ

where

½H� ¼ ½G��T ½G�
� ��1

½G��T : ðA6Þ

For p 6 NB, [H] is the generalized inverse of [G] and the uniqueness
of the operation is assured (Lancaster, 1969).
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