
doi: 10.1016/j.procs.2015.05.453 

Parallelization of an Encryption Algorithm

Based on a Spatiotemporal Chaotic System

and a Chaotic Neural Network

Dariusz Burak

West Pomeranian University of Technology, Szczecin, West Pomerania, Poland
dburak@wi.zut.edu.pl

Abstract

In this paper the results of parallelizing a block cipher based on a spatiotemporal chaotic system
and a chaotic neural network are presented. A data dependence analysis of loops was applied
in order to parallelize the algorithm. The parallelism of the algorithm is demonstrated in
accordance with the OpenMP standard. The efficiency measurements of a parallel algorithm
working in standard modes of operation are shown.

Keywords: parallelization, OpenMP, encryption algorithm, chaotic neural network, coupled map lattice

1 Introduction

One of the very important functional features of cryptographic algorithms is cipher speed.
This feature is significant in case of block ciphers since they usually work on large data sets.
Thus even small differences of speed may cause the choice of the faster cipher by the user.
Therefore, it is all-important to parallelize encryption algorithms in order to achieve faster
processing using multi-core processors or multiprocessing systems. In recent years, besides
classical ciphers such as AES or IDEA, alternative approaches of constructing ciphers based
on application of the theory of chaotic dynamical systems has been developed. Furthermore
neural networks are introduced to design encryption algorithms considering the complicated
and time-varying nature of the structures. Chaotic neural networks (CNNs) are particulary
suitable for data protection. Nowadays, there are many descriptions of various ciphers based
on chaotic neural networks, for instance [8, 11, 13, 7, 9, 4]. The critical issue in such ciphers is
program implementation.

Unlike parallel implementations of classical block ciphers, for instance AES [2], IDEA [1],
there are only a few parallel implementations of block ciphers based on chaotic neural networks,
for example [3]. Being seemingly a research gap it is absolutely fundamental to show real
functional advantages and disadvantages of the encryption algorithm using software or hardware
implementation. The main contribution of the study is developing a parallel algorithm in

Procedia Computer Science

Volume 51, 2015, Pages 2888–2892

ICCS 2015 International Conference On Computational Science

2888 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81965959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.453&domain=pdf


accordance with OpenMP standard of the cipher designed by Wang Xing-Yuan and Bao Xue-
Mei and presented in [12] based on transformations of a source code written in the C language
representing the sequential algorithm.

2 Description of the Block Cipher Based on a Spatiotem-

poral Chaotic System and a Chaotic Neural Network

The encryption process consists of the following steps:

1. Splitting a 160 bit binary sequence K into sixteen groups.

They are mapped into the sixteen initial conditions of the coupled map lattice (CML) [5]
using the following rule:

x(0) =
Kj

210
, j = 1, 2, ..., 16.

2. Dividing the plain image P into l blocks of 4 pixels.

3. Encrypt the i-th plaintext block Pi (the initial value of i is 1), and iterate the CML once
to obtain xi(j)(j = 1, 2, ..., 16). Then, construct matrices Pi (the input of the 4-neuron
layer), Wi (4 × 4 weight matrix), Ai (4 × 1 integral matrix), and Bi (the bias matrix).

4. To generate the ciphertext block Ci the following operations are applied to the plaintext
block Pi:

Y1,i = WiPi +Bi, (Y1,i is a 4 × 1 matrix).

5. Perform the following preprocessing operation:

Pi = Pi ⊕ Y3,i−1, (Y3,i−1 is a 4 × 1 matrix).

For the first plaintext block, skip this operation. Then, go to Step 3.

The decryption process is the reverse of the encryption one. More detailed description of
cipher designed by Xing-Yuan and Xue-Mei is given in [12].

3 Parallelization Process of Encryption Algorithm

Given that the proposed algorithm can work in block manner it is necessary to prepare a C
source code representing the sequential encryption algorithm working in Electronic Codebook
(ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB) and
Counter (CTR) modes of operation. The source code of the encryption algorithm in the essential
ECB mode contains twenty eight for loops. Some of these loops are time-consuming. Thus their
parallelization is critical for reducing the total time of the parallel algorithm execution.

In order to find dependencies in program a research tool for analyzing array data depen-
dencies called Petit was applied [6].

The process of the encryption algorithm parallelization can be divided into the following
stages: carrying out the dependence analysis of a sequential source code in order to detect
parallelizable loops and non-parallelizable loops, selecting parallelization methods based on
source code transformations and constructing parallel forms of program loops in accordance
with the OpenMP standard.

To find the most time-consuming loops of the algorithm, it was carried out experiments for
an about 4 megabytes input file.

Parallelization of an Encryption Algorithm . . . Burak

2889



It appeared that the algorithm has two computational bottlenecks: the first is enclosed in
the function xing enc() and the second is enclosed in the function xing dec(). The xing enc()
function enables enciphering of any number of data blocks and the xing dec() one does the
same for deciphering process (analogically to similar functions of the classic block ciphers like
DES- des enc(), des dec() presented in [10]). Thus the parallelization of for loops included in
these functions is a crucial for parallelization process.

Taking into account of both functions only the first one is examined. Subsequently this
analysis is valid in the case of the second one. The body of the xing enc() function is as
follows:

void xing_enc(xing_context *ctx,UINT8 *input,UINT8 *output,int input_length){

for (int i = 0; i<NBLOCKS; i++) {

Encryption(ctx, input, output);

input+= BLOCKSIZE;

output+= BLOCKSIZE;

}

}.

In order to apply the data dependencies analysis of the loop included in xing enc() function
the body of the Encryption() function should be put in this loop.

The actual parallelization process of the loop included in xing enc() function consists of the
five following stages:

• removal of the preprocessing operation, the chaotic parameter generation operation and
construction of matrices Pi, Wi, Ai, and Bi from xing enc() function; all calculations
placed in the preprocessing operation, the chaotic parameter generation and the construc-
tion of matrices (step 3 of encryption process) have to be executed sequentially before
starting the chaotic neuron layer operations;

• insertion in the beginning of the loop body the following statements: plaintext = &in-
put[BLOCKSIZE*i]; and ciphertext= &output[BLOCKSIZE*i];

• removal from the end of the loop body the following statements: input+= BLOCKSIZE;
and output+= BLOCKSIZE;

• suitable variables privatization using OpenMP (based on the results of data dependence
analysis) for the loop indexing by i;

• adding appropriate OpenMP directive and clauses for the loop indexing by i.

The steps above result in the following parallel form of the loop include in xing enc()
function function in accordance with the OpenMP standard:

#pragma omp parallel private (i,ii,plaintext,ciphertext,pi,wi,bi,ai,y1i,y21i,y3i)

#pragma omp for

for (i=0; i<nblocks; i++) {

plaintext=&input[BLOCKSIZE*i];

ciphertext = &output[BLOCKSIZE*i];

for(ii=0; ii<t; ii++) {

sum_blocks(ciphertext,pi,wi,bi,S);

normalization(ciphertext,y1i,S);

xor_blocks(ciphertext,ai,y21i,S);

f(y3i,ciphertext);

}

}.

Parallelization of an Encryption Algorithm . . . Burak

2890



4 Experimental results

In order to study the efficiency of the presented encryption algorithm eight Quad- Core Intel
Xeon Processors 7310 Series - 1.60 GHz and the Intel C++ Compiler (version 13.1.1 20130313
that supports the OpenMP 4.0) were used. The results received for an about 4 megabytes input
file (8 bit per pixel image) using two, four, eight, sixteen and thirty-two cores versus the only
one have been shown in Table 1, Table 2 and Table 3. The number of threads is equal to the
number of processors.

The total running time of the presented encryption algorithm consists of the following
operations: reading data from an input file, data encryption, writing encrypted data to an
output file, data decryption and writing decrypted data to an output file.

Thus the total speed-up of the parallel encryption algorithm depends heavily on the following
factors: the degree of parallelization of the loop included in the xing enc() function, the degree
of parallelization of the loop included in the xing dec() function, the method of reading data
from an input file and the method of writing data to an output file.

The results confirm that the loops included both in xing enc() function and in the xing dec()
function are parallelizable with high speed-ups (see Table 1).

Number of threads 1 2 4 8 16 32
Speed-up of encryption process 1 1.95 3.78 6.02 6.22 5.98
Speed-up of decryption process 1 1.99 3.92 6.32 6.45 6.04
Speed-up of whole algorithm 1 1.48 1.91 2.32 2.52 2.29

Table 1: Speed-up of the parallel encryption algorithm in the ECB mode

The block method of reading data from an input file and writing data to an output file
was used. The following C language functions and block sizes was applied: fread(), 1024-bytes
blocks for data reading and fwrite(), 128-bytes blocks for data writing.

In accordance with Amdahl’s Law the maximum speed-up of the encryption algorithm is
limited to 4.739, because the fraction of the code that cannot be parallelized is 0.211.

The encryption algorithm was also parallelized in the following standard modes of operation
(CTR, CBC and CFB). The results are presented in Table 2 and Table 3.

Number of threads 1 2 4 8 16 32
CTR mode 1 1.90 3.60 5.90 6.10 5.90
CFB mode 1 1.00 1.00 1.00 1.00 1.00
CBC mode 1 1.00 1.00 1.00 1.00 1.00

Table 2: Speed-up of encryption process in the CTR, CFB and CBC mode

Number of threads 1 2 4 8 16 32
CTR mode 1 1.95 3.60 6.00 6.15 5.95
CFB mode 1 1.95 3.60 6.00 6.15 5.95
CBC mode 1 1.95 3.60 6.00 6.15 5.95

Table 3: Speed-up of decryption process in the CTR, CFB and CBC mode

When the encryption algorithm operates in the ECB and CTR modes of operation, both the
encryption and decryption processes are parallelizable and speed-ups of the whole algorithm

Parallelization of an Encryption Algorithm . . . Burak

2891



are similar (see details- Table 2 and Table 3).
For the CBC and CFB modes only the decryption process is parallelized so the values of

speed- up are lower than for the ECB and CTR modes of operation (see- Table 2 and Table 3).

5 Conclusions

In this paper, I describe the parallelization process of the encryption algorithm designed by
Wang Xing-Yuan and Bao Xue-Mei which was divided into parallelizable and non-parallelizable
parts. I have shown that the time-consuming for loops included in the functions responsible
for the encryption and decryption processes are parallelizable. The experiments have shown
that the application of the parallel encryption algorithm for multiprocessor and multi-core
computers would considerably boost the time of the data encryption and decryption. I believe
that the speed-ups received for these operations are satisfactory. Moreover, the developed
parallel encryption algorithm can be also helpful for hardware implementations or GPGPU
implementation.

References

[1] Vladimir Beletskyy and Dariusz Burak. Parallelization of the idea algorithm. In Computational

Science-ICCS 2004, pages 635–638. Springer, 2004.

[2] Wlodzimierz Bielecki and Dariusz Burak. Exploiting loop-level parallelism in the aes algorithm.
WSEAS Transactions on Computers, 5(1):125–132, 2006.

[3] Dariusz Burak. Parallelization of encryption algorithm based on chaos system and neural networks.
In Parallel Processing and Applied Mathematics, pages 364–373. Springer, 2014.

[4] Tariq Adnan Fadil, Shahrul Nizam Yaakob, R Badlishah Ahmad, and Abid Yahya. A chaotic neural
network–based encryption algorithm for mpeg–2 encoded video signal. International Journal of

Artificial Intelligence and Soft Computing, 3(4):360–371, 2013.

[5] Kunihiko Kaneko. Spatiotemporal intermittency in coupled map lattices. Progress of Theoretical

Physics, 74(5):1033–1044, 1985.

[6] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and David Won-
nacott. New user interface for petit and other extensions. User Guide, 1:996, 1996.

[7] Shiguo Lian. A block cipher based on chaotic neural networks. Neurocomputing, 72(4):1296–1301,
2009.

[8] Shiguo Lian, Guanrong Chen, Albert Cheung, and Zhiquan Wang. A chaotic-neural-network-based
encryption algorithm for jpeg2000 encoded images. In Advances in Neural Networks-ISNN 2004,
pages 627–632. Springer, 2004.

[9] Shiguo Lian and Xi Chen. Traceable content protection based on chaos and neural networks.
Applied Soft Computing, 11(7):4293–4301, 2011.

[10] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code in C. john wiley &
sons, 2007.

[11] Di Xiao and Xiaofeng Liao. A combined hash and encryption scheme by chaotic neural network.
In Advances in Neural Networks-ISNN 2004, pages 633–638. Springer, 2004.

[12] Wang Xing-Yuan and Bao Xue-Mei. A novel image block cryptosystem based on a spatiotemporal
chaotic system and a chaotic neural network. Chinese Physics B, 22(5):050508, 2013.

[13] Wenwu Yu and Jinde Cao. Cryptography based on delayed chaotic neural networks. Physics

Letters A, 356(4):333–338, 2006.

Parallelization of an Encryption Algorithm . . . Burak

2892


