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ABSTRACT. – In this paper are studied immersions of surfaces into toR3 whose
nets of asymptotic lines are topologically undisturbed under small perturbations of
the immersion. These immersions are called structurally asymptotic stable. Sufficient
conditions to belong to this class are established here. These conditions focus on
the stable patterns around parabolic points, parabolic separatrix connections, periodic
asymptotic lines (including those that intercept the parabolic lines) as well the exclusion
of recurrent asymptotic lines. The class of immersions that are structurally stable in this
sense is open in theC5-topology. Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Dans ce travail sont étudiées les plongements des surfaces dans l’espace
R3 pour lequelles ces réseaux des lignes asymptotiques sont préservées topologiquement
pour les pétites déformations du plongement. Ces plongements sont appellés asympto-
tique structurellement stables. Ces conditions focalisent sur le comportement des lignes
asymptotiques dans une voisinage des lignes paraboliques, sur l’absence des connections
des séparatrices paraboliques, sur les lignes asymptotiques férmées et aussi sur l’absence
des récurrences non triviales des lignes asymptotiques. La classe des plongements struc-
turellement stable est ouverte dans la topologieC5.  Éditions scientifiques et médicales
Elsevier SAS
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1. Introduction

Consider aCr , r > 5, immersionα of a smooth, compact and oriented,
two-dimensional manifoldM into Euclidean spaceR3.

The Fundamental Formsof α at a pointp of M are the symmetric
bilinear forms onTpM defined as follows [26,25]:

TheFirst Fundamental Form:

Iα(p;v,w)= 〈Dα(p;v),Dα(p;w)〉.

TheSecond Fundamental Form:

II α(p;v,w)=−〈DNα(p;v),Dα(p;w)〉.

Here,〈. , .〉 is the Euclidean inner product onR3 andNα is the positive
normal of the immersion:

Nα = αu ∧ αv
|αu ∧ αv| ,

where(u, v) is a positive chart onM and∧ is the vector (wedge) product
associated to a once for all fixed orientation onR3, αu = ∂α

∂u
andαv = ∂α

∂v
.

A line ` = R.v, tangent at a pointp of M (i.e., v ∈ TpM\0), along
which thenormal curvature

kn(p;`)= II α(p;v, v)
Iα(p;v, v)

vanishes, is called anasymptotic direction ofα atp.
A maximal, regular curvec : (a, b)→M, parametrized by arc lengths,

whose tangent line is an asymptotic direction is called anasymptotic line
of α. That is, for everys in (a, b), it holds thatII α(c(s); c′(s), c′(s))= 0.

Through every pointp of thehyperbolic regionHα of the immersion
α, characterized by the condition that the Gaussian CurvatureKα =
det(DNα) is negative, pass two transverse asymptotic lines ofα, tangent
to the two asymptotic directions throughp. This follows from the usual
existence and uniqueness theorems on Ordinary Differential Equations.
In fact, onHα the local line fields are defined by the kernelsLα,1, Lα,2 of
the smooth one-formsωα,1, ωα,2 which locally splitII α = ωα,1⊗ ωα,2.
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ASYMPTOTIC LINES, PARABOLIC POINTS 601

The formsωα,i are locally defined up to a non-vanishing factor and
a permutation of their indices. Therefore, their kernels and integral
foliations are locally well defined only up to a permutation of their
indices.

Under the orientability hypothesis imposed onM, it is possible to
globalize, to the wholeHα, the definition of the line fieldsLα,1, Lα,2
and of the choice of an ordering between them, as follows:

Consider the fieldCα of tangent cones onHα, defined by the non-
negative part of the second fundamental form, i.e.,Iα(p;v, v) = 1;
II α(p;v, v) > 0, oriented compatibly withM. Call {e1(p), e2(p)} a
positive basis forTpM consisting of unit asymptotic vectors, positive
also forCα(p).

This choice of a basis can also be defined as follows:
Dα(p, e1(p))∧Dα(p, e2(p))=Nα(p) andII α(p;v, v) > 0, for v =

e1(p)+ e2(p).

There is only one other different choice,{e′(p), e′2(p)}, for such a
basis; both choices define the sameasymptotic line fieldsof α:
Lα,1(p)=R.e1(p))=R.e′1(p) andLα,2(p)=R.e2(p)=R.e′2(p).
These two line fields, called theasymptotic line fieldsof α, are smooth

on Hα; they are distinctly defined together with the ordering between
them given by the subindices{1,2} which define theirorientation
ordering: “1” for the first asymptotic line fieldLα,1, “2” for the second
asymptotic line fieldLα,2. They will be presented as an ordered pair
Lα = {Lα,1, Lα,2}.

Theasymptotic foliationsof α are the integral foliationsAα,1 of Lα,1
andAα,2 of Lα,2; they fill out the hyperbolic regionHα. The ordered
asymptotic netof the immersionα is the ordered pairAα = {Aα,1,Aα,2},
the index i = {1,2} will be called the orientation ordering of the
asymptotic foliation.

Clearly, an exchange in the orientations either ofM or ofR3 produces
an inversion in the orientation ordering of the asymptotic line fields.

When non-empty, the regionHα is bounded by the set (generically, i.e.,
for mostα′s, a regular curve [11,20,6,8])Pα of parabolicpoints ofα, on
whichKα vanishes. OnPα, the pair of asymptotic directions degenerate
into a single one or into the whole tangent plane at points whereII α = 0,
calledflat umbilic points.

The parabolic points will be regarded here as the singularities of the
asymptotic net. In fact, in the context of Singularity Theory,Pα is the
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singular set of the Normal MapNα from M to the unit sphereS2. On
the Elliptic RegionEα, defined byKα > 0, the asymptotic directions
are imaginary and will not be studied here. Thus the domain for real
asymptotic directions and their integral curves in the present work will
be the set{Kα 6 0} of non-elliptic points, which generically is either the
empty set or a manifold with boundary coincident with Clos(Hα).

An immersionα is said to beCs -local asymptotic structurally stable
at a compact setS in Clos(Hα) if for any sequenceαn converging to
α together with its firsts derivatives in a compact neighborhoodVS
of S there is a sequence of compact subsetsSn and a sequence of
homeomorphismshn mappingS to Sn, converging to the identity ofM
such that onVS it maps arcs of the asymptotic foliationsAα,i to arcs of
that ofAαn,i for i = 1,2.

An immersionα is saidCs -global structurally asymptotic stableif the
compact setS above is the closure of the the hyperbolic regionHα.

This implies that the parabolic set must be preserved by the homeomor-
phism defining the topological equivalence in the case of global structural
stability.

Asymptotic lines, together with geodesics and principal curvature lines
are studied in Classical Differential Geometry [19,10,12,9,21,7,5,22,24–
26].

For geodesics and principal lines, global structural stability and
genericity properties have been developed in [1,2,14–16]. Meanwhile,
for asymptotic lines the attention has been focused on their description in
a small neighborhood of the curvePα of parabolic points [3,20,5].

This paper is devoted to the study of the simplest qualitative aspects of
asymptotic lines on surfaces immersed into Euclidean space, focusing on
their local and global structural stability. The results establish sufficient
conditions for an immersionα to beCs -global structurally asymptotic
stable, s > 5. This extends the local results for parabolic points and
periodic asymptotic lines established in [13] and reviewed below.

2. Preliminares and formulation of the main results

On the projective bundlePM = {TM\0}/{v = rw, r 6= 0} of M,
consider the submanifoldHα defined by all the asymptotic directions.
That is by the zeros of the second fundamental form ofα. The first
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condition to be imposed onα is precisely that 0 is a regular value of
the projectivization ofII α, that isDKα 6= 0 at parabolic points.

The restriction of the projectionΠ of PM to Hα covers Clos(Hα).
Over Hα it is a double regular covering. OverPα it has a Whitney
fold [27,8]. Therefore the Euler–Poincaré characteristic are related by
χ(Hα)= 2χ(Hα).

Lifting to this manifold the line fieldsLα,1 andLα,2 defines a single
line field Lα,I on Π−1(Hα), which under the conditions of regularity
uniquely extends to a smooth line fieldLα defined on the wholeHα . Its
singularities, when present, are contained inPα =Π−1(Pα ). In a local
chart(u, v) the surfaceHα is defined implicitly by the equation,

F(u, v,p)= e+ 2fp+ gp2= 0, p = dv
du

and the line fieldLα,I is locally given by:

u′ =Fp,
X: v′ =pFp,
p′ =−(Fu + pFv).

The submanifoldHα is a compact and oriented surface and the line
fieldLα,I is locally defined by a vector field, but in general is not globally
orientable.

The restriction of the projectionΠ of PM to Hα covers Clos(Hα).
OverHα it is a double regular covering and overPα it has a Whitney fold
[27,8].

Lifting to this manifold the line fieldsLα,1 andLα,2 defines a single
line field Lα,I on Π−1(Hα), which under the conditions of regularity
uniquely extends to a smooth line fieldLα,I defined on the wholeHα. Its
singularities, when present, are contained inPα =Π−1(Pα ).

When the immersion is of classCr the line fieldLα,I is of classCr−3

on the surfaceHα.
The integral foliation of this line field is denoted byFα,I . The leaves

of Fα,I contains the pullback of the leaves of the pair of asymptotic
foliations Aα. The projection of the leaves ofFα,I into Clos(Hα) are
called thefolded asymptotic linesof α.

On the surfaceHα there is a canonical involutionϕ :Hα→Hα such
thatϕ|Pα = id.
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If (u, v, [p : q]) ∈ Hα thenϕα(u, v, [p1 : q1]) = (u, v, [p2 : q2]), i.e.,
ϕα sends an asymptotic direction[p1 : q1] into an asymptotic direction
[p2 : q2].

Notice that the involutionϕα , ϕα ◦ ϕα = id, is a diffeomorphism ofHα
under the regularity hypothesis of the parabolic points.

Now consider the line field onHα induced byϕα . That is,Lα,II =
(ϕα)∗Lα,I .

Denote byFα,II the integral foliation ofLα,II .
These two foliations are transversal inHα except at the parabolic

pointsPα where they are tangent.
In order to make a distinction between these foliations, we will say that
Fα,I is thefirst asymptotic foliationandFα,II is thesecond asymptotic
foliation.

Also, as the singularities ofLα,I are contained inPα and the involution
have the fixed points formed byPα it follows thatLα,I andLIα,I have the
same singular set.

Also, it is clear that the image ofFα,II by the projectionΠ :Hα→M
gives the asymptotic foliationsAα,1 andAα,2.

The following conditions (inspired in [14,16]) are essential for the
formulation of the main stability result of this paper.

(a) Condition on parabolic points: Denote byΣa the class of immer-
sionsα for which the singularities of the line fieldLα,I , which occur when
Lα,I is tangent toPα, are hyperbolic (non-vanishing real part of eigenval-
ues). Calculations shows that when the eigenspaces are one-dimensional
they are transverse toΠ−1(Pα).

There are three cases to consider: the saddle (eigenvalues of opposite
sign), the (proper)node (i.e., with distinct eigenvalues of the same sign)
and the focus (pair of complex conjugate eigenvalues).

These conditions are expressed in terms of the curvature functions of
α and will be reviewed in Section 2.

(b) Condition on hyperbolic closed asymptotic lines: Denote byΣb

the class of immersions for which all the regular and folded asymptotic
closed lines, i.e., the periodic integral curves ofLα,I are hyperbolic (i.e.,
the derivative of the return map is different from one).

This condition can be expressed in terms of integral formulas involving
the curvature functions ofα along the periodic asymptotic line, see
Section 3.
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(c) Condition on separatrices: Denote byΣc the class of immersions
such that there are no connection between sepatrices of singular points of
the foliationFα,I e consequently of theAα,1 andAα,2.

(d) Condition on limit sets: Denote byΣd the class of immersions such
that for every leave ofFα,I the limit set is a singular point or a closed
asymptotic line.

DefineΣr =Σr
(a,b,c,d)=Σa ∩Σb ∩Σc ∩Σd .

Asymptotic lines which violate (c) for being separatrices of two
parabolic points or double separatrices of the same parabolic point are
called parabolic connections; in the second case they are also called
parabolic loops.

An asymptotic line which violates (d) for being contained in its own
limit set, without being an closed asymptotic line, is callednon-trivial
recurrent asymptotic line. An example of this type of lines is given in
Section 6.

The main result of this paper is the following,

MAIN THEOREM. – Let α : M→ R3 be an immersion of classCr ,
r > 5, of a compact and oriented surfaceM of classCr . Then:

(i) The setΣr
(a,b,c,d) is open in Immr,s(M,R3), s > 5.

(ii) If α ∈Σr
(a,b,c,d) thenα isCs , s > 5, global structurally asymptotic

stable.

Remark. – In a forthcoming paper, [17], we will prove that the class
Σr
(a,b,c,d) is C2-dense in the space of immersions of compact surfaces.

This step will complete the analogy with lines of curvature for which the
C2-density have been proved in [14–16].

3. Asymptotic lines near parabolic points

In this section will be reviewed the local behavior of the asymptotic
foliations near parabolic points, in terms of geometric invariants of the
immersionα.

Let c : [0,L] →M2 be a regular arc of parabolic points, parametrized
by arc length u. To fix the notation, suppose thatk2|c = 0 andk1|c < 0,
wherek1 and k2 are the principal curvatures of the immersionα. Let
ϕ(u) the angle betweenc′(u) = t (u) and the principal directionL2(α),

corresponding tok2, at the pointc(u). Denote bykg(u) the geodesic
curvature ofc at the pointc(u).
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THEOREM 3.1. –Let c : [0,L] →M be a regular curve of parabolic
points as above. Then the following holds:

1◦ If ϕ(u) 6= 0, the asymptotic foliation, nearc(u), is as shown in Fig.
1(a) (cuspidal type).

2◦ If ϕ(u)= 0 andϕ′(u) 6= 0 there are three cases:
(a) kg(u)/ϕ′(u) < 1,
(b) 1< kg(u)/ϕ′(u) < 9,
(c) 9< kg(u)/ϕ′(u).

In cases(a), (b)and (c) above the asymptotic foliation is as shown in the
Figs. 1(b)–(d) respectively; and correspond, respectively, to the folded
saddle, focus and node types parabolic points.

3◦ The set of immersions whose parabolic points satisfy conditions1◦
and2◦ is open and dense inC5-topology.

4◦ The points described in1◦ and 2◦ are the only stable locally
asymptotic structurally stable parabolic points.

Remark. – The formulation above, in terms of the geometric invariants
of the immersion, is taken from [13]. See also [5,6].

4. Periodic asymptotic lines and their first return maps

In this section will be established an integral expression for the
derivative of the first return map of afolded periodic asymptotic line.
This derivative will be given in terms of curvature functions of the
immersionα.

The study of closed asymptotic lines disjoint from parabolic points was
carried out in [13].

4.1. Folded periodic asymptotic lines

Here will be established an integral expression for the derivative of
the first return map of a folded periodic asymptotic line in terms of the
curvature functions of the immersionα.

A folded periodic asymptotic lineis a closed asymptotic curve
c : [0,L] →M regular by parts, that is, there exist a finite sequence of
numbersai,0= a0< a1< · · ·< al = L, such that

ci = c|(ai ,ai+1) : (ai, ai+1)→ IntH
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(a)

(b)

(c)

(d)

Fig. 1. Asymptotic foliations near parabolic points.
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Fig. 2.

is an asymptotic line ofα and pi = c(ai) ∈ Pα for i = 1, . . . , l − 1.
In other words, afolded periodic asymptotic lineis the projection of a
closed integral curve of the single line fieldLα defined onHα , which
intersectsPα.

Let c be a folded periodic asymptotic line. Near each pointpi, consider
two transversal sections toc,Σ1,i and Σ2,i , and the Poincaré map
σi :Σ1,i→Σ2,i. Denote byuji = ci(ai, ai+1)∩Σj,i , j = 1,2. Denote by
πi+1,i :Σ2,i→ Σ1,i+1 the Poincaré map associated toci. It follows that
the Poincaré map associated toc,Π :Σ1,1→Σ1,1 is given by:

Π = πl−1,1 ◦ σl−1 ◦ · · · ◦ πi+1,i ◦ · · · ◦ π2,1 ◦ σ1.

The next lemma established in [13] it will be useful in what follows.

LEMMA 4.1. –Let c : [0,L] →M2 be an arc of an asymptotic line
parametrized by arc lengthu. Then the expression:

α(u, v)= (α◦c)(u)+v(N∧ t)(u)+[Hα(u)v2+A(u, v)v2]N(c(u)),(1)

whereA(u,0) = 0 andHα is the Mean Curvature ofα, defines a local
chart of classCr−2 aroundc.

PROPOSITION 4.2. –Let c : [0,L] →M2 be an arc of an asymp-
totic line parametrized by arc lengthu as in the lemma above and two
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transversal sections{u = u0} and {u = u1}. Then the derivative of the
holonomy mapΠ , associated to it is given by:

Π ′(0)= exp

[ u1∫
u0

τ ′g − 2kg(u)Hα(u)

2τg(u)
du

]
,

wherekg is the geodesic curvature ofc andτg = (−Kα)1/2 is the geodesic
torsion of c.

Proof. –The Darboux equations for the positive frame{t,N ∧ t,N}
are:

t ′(u)= kg(u)(N ∧ t)(u),
(N ∧ t)′(u)=−kg(u)t (u)+ τg(u)N(u),(2)

N ′(u)=−τg(u)(N ∧ t)(u).
Direct calculation gives that:

e(u,0)= 0, ev(u,0)= τ ′g − 2Hα(u)kg(u),

f (u,0)= τg(u) g(u,0)= 2Hα(u).
(3)

The differential equation of the asymptotic lines in the neighborhood
of the line{v = 0} is given by:

e+ 2f dv/du+ g(dv/du)2= 0.(4)

Denote byv(u, r) the solution of the (4) with initial conditionv(0, r)=
r . Therefore the return mapΠ is clearly given byΠ(r)= v(L, r).

Differentiating (4) with respect tor , it results that:

grvr(dv/du)
2+ (2gvur + 2fvvr)(dv/du)+ evvr = 0.

Evaluating atv = 0, it follows that:

2f (u,0)vur(u,0)+ ev(u,0)vr (u,0)= 0.(5)
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Therefore, using the expressions forf an ev found in (3), integration
of (5) it is obtained:

lnΠ ′(0)=
L∫

0

−τ ′g + 2Hαkg
2τg

du.

This ends the proof. 2
PROPOSITION 4.3. –Consider the asymptotic lines near a cuspidal

parabolic point and the return map defined in the sectionsσi : Σ1,i →
Σ2,i. Then the functionσi is differentiable.

Proof. –Near the pointpi take a local chart(U,V ) such that the
asymptotic lines are given by the differential equation(dU/dV )2 = U ,
[3,4]. In this system of coordinatesσi : {V = ε} → {V = ε} is clearly a
translationσi(u, ε)= (u+ c, ε). Thereforeσi is differentiable. 2

THEOREM 4.4. –Let c : [0,L] → M be a folded closed asymptotic
line, parametrized by arc lenghtu, of an immersionα.

If c is hyperbolic, thenα is Cs , s > 4, local asymptotic structurally
stable atc.

Remark. – Whenc is disjoint from the parabolic set the condition of
hyperbolicity ofc is expressed by

L∫
0

kgHα√−Kα du 6= 0.

See [13].

5. Proof of the Main Theorem

This section will be devoted to the proof of the main stability result of
this paper.

5.1. Openness ofΣr and canonical regions

Let α ∈Σr
(a,b,c,d), r > 5. Recall thatFα,I orFα,II share the same set of

singularities each of which is either anode, asaddle pointor else afocus.
The leaves ofFα,I (respectivelyFα,II ) will be called asfirst (respectively
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Fig. 3.

second) asymptotic lines. Letϕα : Hα → Hα be the diffeomorphism
takingFα,II (respectivelyFα,I ) to Fα,I (respectively toFα,II ) and such
thatϕα(p)= q if, and only if, π(p)= π(q). In particular,ϕα restricted
toPα is the identity.

The openness ofΣr in Immr,s(M,R3) follows from the local stability
of the singularities together with the local stability of hyperbolic asymp-
totic closed lines and the continuity (onα) of compact arcs of parabolic
separatrices.

A first (respectively second) canonical regionof α, with α ∈Σr , is a
connected component of the complement of the union of the singularities,
first (respectivelysecond) closed asymptotic lines, thefirst (respectively
second) strong stable separatrices of thenodes (with the orientation
of attractingnodes) andfirst (respectivelysecond) parabolic asymptotic
separatrices of thesaddle points.

The canonical regions can beparallel or cylindrical. In the first
case the line fieldLα,I (respectivelyLα,II ) restricted to the region is
topologically equivalent to∂

∂u
in R2, in the second one it is topologically

equivalent tou ∂
∂u
+ v ∂

∂v
in R2 \ {0}.

Fig. 3 shows some typical examples of cannonical regions. Dotted lines
in the pictures of thecanonical regionsrepresentcross sectionsof the
foliations in the region.

Let A be asecond(respectivelyfirst) parallel region ofα, thenϕα(A)
is afirst (respectivelysecond) parallel region ofα. In either case, ifS is a
non-empty connected component ofA ∩ Pα then S is a cross section
for both A and ϕα(A); also these are the onlycanonical regionsthat
meetS.
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(a) (b)

Fig. 4.

For a cylindrical region of an asymptotic foliation, it can be that either
(a) all the lines of the other foliation cross the region, as in Fig. 4(a),

or that
(b) the region contains at least one closed asymptotic line of the other

foliation, as in Fig. 4(b).
Thefirst (respectivelysecond) cylindrical regions of case (a) are called

transversally irreducible first(respectivelysecond) canonical regions;
those of case (b) are decomposed into the union of a finite number of
transversally irreducible second(respectivelyfirst) canonical regions
and twosemi-transversally irreducible first regions. The boundary of a
semi-transversally irreducible first(respectivelysecond) region is the
union of a first closed asymptotic line, to which thefirst asymptotic
lines tend, and asecondclosed asymptotic line, to which the foliation
is transversal.

In Fig. 4(b) appears afirst (respectivelysecond) canonical cylindri-
cal region decomposed into onetransversally irreducible second(respec-
tively first) canonical regionand twosemi-transversally irreducible first
(respectivelysecond) regions.

It can be found a neighborhoodV(α) of α in the open setΣr , r > 5,
such that, along a continuous arcαt , t ∈ [0,1], in V(α) joining α = α0

to β = α1, there is a unique way to continue the singularities, closed
asymptotic lines and asymptotic separatrices of thesaddle pointsand
nodal (strong separatrices) of bothFα,I andFα,II in such a way that there
is a natural unique continuation of thecanonical regionsof α0 into those
of αt , which defines a one-to-one correspondence between thecanonical
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regionsof α and those ofβ ∈ V(α). Such correspondence preserves the
type of canonical regions. Let ϕαt : Ht → Ht be the diffeomorphism
takingFαt ,II (respectivelyFαt ,I ) toFαt ,I (respectively toFαt ,II ).

The continuation procedure defines uniquely a partial topological
equivalenceht between the singular points ofFα,I and Fβ,I and the
set of points which are simultaneously on afirst andsecondasymptotic
separatrix or closed asymptotic line ofα with the similar set ofαt ,
t ∈ [0,1].

At this point, by using the method of canonical regions as in [23,14,16],
the continuation procedure may be used to define different topological
equivalences(Hα,Fα,I ) → (Hβ,FI,β) and (Hα,Fα,II ) → (Hβ,Fβ,II )
which extendht . Below it is indicated how to proceed in order to
extendht to a topological equivalence between(Hα,Fα,II ,Fα,I ) and
(Hβ,Fβ,II ,Fβ,I ). This extension is obtained by means of a sequence
of partial extensions. Onceht is defined in (part of) acanonical region
A, it will necessarily be defined inϕα(A) as the compositionϕαt ◦ ht ◦
ϕα
−1. This will be mentioned explicitly in most of the steps below.

As a consequence,ht will induce a topological asymptotic equivalence
Ht :Hα→Hβ between(Hα,Aα,1,Aα,2) and(Hβ,Aβ,1,Aβ,2).

5.2. Construction of the asymptotic equivalence

Step1.Given a parallelcanonical region, select a specific cross section
to it.

On eachsecondparallelcanonical regionR2 of α, choose—once for
all—a cross sectionS according to the following directions: IfR2 meets
Pα, a connected component ofR2 ∩ Pα will be taken as a cross section.
If R2 is disjoint ofPα , a cross section will be taken to be an arc of a
first asymptotic separatrix (which is always possible). The cross section
associated toϕα(R2) will be ϕα(S). In this way, to each parallel region
(eitherfirst or second) a cross section has been associated.

Step2.Definition ofht on the cross sections(and so on the orbit space)
of first andsecondparallel canonical regions.

Let R2 be a secondparallel canonical regionof α. Let S be its
associated cross section. IfS is an arc of afirst asymptotic separatrix
σ , the extremes,a andb of S have natural continuationsht(a) andht(b);
these points define the extremes of the natural continuationSt of the arc
onσt , the separatrix onSt which is the natural continuation ofσ . Define
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ht : S→ St to be any homeomorphism which extends the correspondence
already given on the extremes.

If S ⊂Pα, St is an arc contained inPαt , the definition ofht is similar to
the previous one. Recall that if an endpoint ofS is anode or saddle point
(respectively belongs to asecond asymptotic separatrix), its continuation
in St will also be of the same type.

Let R2 and S be as above and letR1 = ϕα(R2); in this case,
ht :ϕα(S)→ ϕαt (St ) is the compositionϕαt ◦ht ◦ϕα−1.Recall thatϕαt (St )
is the cross section associated to thefirst parallel regionR1t of αt .

Step3. Definition ofht on the intersection offirst andsecondparallel
canonical regions.

Let R2 andR1 be arbitrarysecondandfirst parallel regions, respec-
tively. LetS andT be their corresponding cross sections. Denote bys(p)
(respectivelyt (p)) the point of intersection of thesecond(respectively
first) asymptotic line throughp with S (respectivelyT ).

On each connected componentC of R2 ∩ R1, defineht of C onto its
natural continuationCt . Notice that it is already defined on the corners
of C, which are either singular points or intersections offirst with
secondseparatrices. At a pointp in C, defineht(p) as the point inCt
which is on the intersection of thesecondasymptotic line which passes
throughht(s(p)) ∈ St with thefirst asymptotic line which passes through
ht(t (p)) ∈ Tt . See Fig. 5.

Fig. 5.
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Notice that, wherever defined,ϕαt ◦ ht = ht ◦ ϕα and therefore this
procedure already defines an asymptotic topological equivalence between
α andαt , in the case in which there are no closed asymptotic lines.

Step4.Selection of a specific cross section associated to atransversally
irreducible second (respectivelyfirst) cylindrical region which is not
contained in afirst (respectivelysecond)region of type b).

Let R2 be a second transversally irreducibleregion of α. The
assumptions imply thatR2 meets at least one of the following:Pα
or a first asymptotic separatrix or else afirst closed asymptotic line.
Choose -once for all- a cross sectionS to R2 according to the following
instructions:

If R2 meetsPα , take (as a cross section) a connected componentS of
Pα ∩R2.

If R2 is disjoint ofPα but it meets afirst asymptotic separatrix, sayγ ,
select a connected componentS of γ ∩R.

If R is disjoint of Pα and of everyfirst asymptotic separatrix but it
meets afirst closed asymptotic line , select a connected componentS of
the intersection ofR with this closed asymptotic line.

Now, the associated cross section toϕα(R) will be ϕα(S). In this way,
it can be associated to eachtransversally irreducibleregion (eitherfirst
of second) a cross section to it.

Step5. Definition ofht on the cross section associated to a transver-
sally irreducible second(respectively first) canonical region.

Let R2 be a secondregion as in the assumption and letS be its
associated cross section.

Consider the continuationSt of S which is a cross section to the
continuationR2t of R2. The foliationFαt ,II |R2t

defines a Poincaré map
πt : St→ St with only two fixed points, one attractor and one repellor, in
the extremes ofSt . Take a topological conjugationθt : S→ St , between
π0 andπt , that is,π0= θ−1

t ◦ πt ◦ θt . Defineht |S = θt . In this way,ht is
a conjugacy between the return mapπ0 induced onS by Fα,II |R2 andπt
induced onSt byFαt ,II |R2t .

Let R2 and S be as above and letR1 = ϕα(R2); in this case,
ht :ϕα(S) → ϕαt (St ) is the compositionϕαt ◦ ht ◦ ϕαt−1. Recall that
ϕαt (St ) is the cross section associated to thetransversally irreducible first
canonical regionR1t = ϕαt (R2t ) of αt .

Step6.Definition ofht on the intersection of a cylindrical transversally
irreducible canonical region with a parallel canonical region.
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Fig. 6.

LetR2 (respectivelyR1) be atransversally irreducible second(respec-
tively parallelfirst) canonical region. LetC =R2∩R1. The definition of
ht considered on the cross section associated toR1 determines a one-to-
one correspondenceσ0→ σt between the leaves ofFα,I |C and those of
Fαt ,I |Ct , whereCt is the natural continuation ofC.

Extendht : C → Ct , so that—keeping the notations of Step 5—the
intersection ofC with the arc[p, π0(p)] of asymptotic line inFα,II (with
p ∈ S) is mapped onto the intersection ofCt with the arc[ht(p),πt(ht(p)]
of asymptotic line inFαt ,II , preserving the correspondenceσ0 → σt
indicated right above; see Fig. 6. Now, extendht to ϕα(C) so that,
rectricted toC, ht ◦ ϕα = ϕαt ◦ ht .

Step7. Definition ofht on the intersection of two cylindrical transver-
sally irreducible canonical regions.

LetR1 andR2 be suchfirst andsecond canonical region, respectively,
which intersect each other. Letλ0 (respectivelyσ0) be the cross section
associated toR1 (respectivelyR2). Recall thatht : λ0→ λt is a conjugacy
between the return maps induced onλ0 by thefirst asymptotic foliation
of α and that induced onλt by thefirst asymptotic foliationFαt ,I of αt .
HereR1t andλt are the corresponding natural continuations ofR1 and
λ0. The analogous statement is true forht : σ0→ σt .

Defineht on a connected component ofR1∩R2 by the same procedure
of Step 6: Givenp in R1 ∩ R2, it is on an asymptotic lineγ1(p) of Fα,I
andγ2(p) of Fα,II , which intersects, respectively,λ0 andσ0 on orbits of
the respective return maps. The asymptotic lines ofγ1t (p) of Fαt ,I and
γ2t (p) of Fαt ,II determined by theht -images of these orbits, onλt andσt,
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Fig. 7.

intersect on continuous curves (depending on the parametert) only one
of which,pt , passes throughp at t = 0. Defineht(p)= pt . See Fig. 7.

Notice that thefirst cylindrical canonical regionR1 can only intersect
secondcylindrical canonical regionsR2 of the kind being considered in
the present step as well assecond parallel canonical regions.

Step 8. Definition of ht on the intersection of a first(respectively
second) cylindrical canonical region with a closed asymptotic line of the
second(respectively first) asymptotic foliation.

Similar to that of Step 7.
Step9. Definition of ht on a closed asymptotic line of the second

(respectively first) asymptotic foliation and on the first(respectively
second) cylindrical canonical regions of type(a) which are contained
in second(respectively first) cylindrical canonical regions of type(b).

Take asecond cylindrical canonical regionR2 of type b) forα. Define
the homeomorphismht on a closed asymptotic lineγ0 of Fα,I contained
in R2 and its natural continuationγt in R2t . This defines a one to one
correspondence between the lines ofFα,II , in R2 and those ofFαt ,II in
R2t . Now, if R2 containsfirst cylindrical regions of type (a), defineht on
them following the procedure is Step 6, conjugating their return maps.
See Fig. 8.

Let R2,R2t be as above and letA (respectivelyAt ) be the subset
of R2 (respectively ofR2t ) whereht has already been defined. In this
case, extendht : ϕα(A)→ ϕαt (At) as the compositionϕαt ◦ ht ◦ ϕα−1. In
this way,ht has been defined on the closed asymptotic lines and on the
cylindrical canonical regionsof type (a) satisfying the assumptions for
this step.
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Fig. 8.

Step10. Definition ofht on the semi-transversally irreducible second
(respectively first) regions which are contained in second(respectively
first) cylindrical canonical regions of type(b).

Let R2 be such asecond semi-transversally irreducibleregion con-
tained in a cylindrical region of type (b). Notice that asecondclosed
asymptotic line of∂R2 is contained either in the union offirst parallel
canonical regionsor in a first cylindrical canonical regionof type (b).
This implies thatht must have already been defined in∂R2, by previous
steps.

Let p1 andp2 be points, respectively, on the closed asymptotic lines
in ∂R2 of the first and second asymptotic foliations. It may certainly be
assumed thatp1t = ht(p1) as well asp2t = ht(p2) depend continuously
on (p1, t) and(p2, t).

Let γ1t (p1) and γ2t (p2) denote respectively the curves ofFαt ,I and
Fαt ,II passing throughp1t and p2t , then for anyp in γ10(p1) ∩ γ20(p2)

there is a uniquept in γ1t (p1)∩ γ2t (p2) which is its natural continuation.
Defineht(p)= pt .

In this way, all the possibilities forcanonical regionshave been con-
sidered for the definition of the extension of the asymptotic equivalence
betweenα ∈Σr

α, r > 4, andβ ∈ V(α), whenV(α) is small enough. This
finishes the proof of the theorem.2
6. On a class of dense asymptotic lines

The goal of this section is to present examples of folded recurrent
asymptotic lines.
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Fig. 9.

PROPOSITION 6.1. –LetT 2 be the torus of revolution, obtained by the
rotation of the circle(x −R)2+ z2= r2, r < R, around thez axis. Then
the qualitative behavior of the asymptotic lines is as shown in Fig.9.

Moreover the return mapΠ : S(R)→ S(R), whereS(R)= {(x, y, z):
x2 + y2 = R2, z = −r}, is a rotation by an angle equal to4RT (r/R),
where

T

(
r

R

)
=
∞∑
n=0

2an
n!
(
r

R

)n
,

with

an = 1× 3× · · · × (2n− 1)

2n
0(1

2)0(2n+ 1
4)

0(2n+ 3
4)

.

Proof. –Consider the following parametrization of the torus of revolu-
tion:

(u, v)→ (cosv(R+ r cosu),sinv(R+ r cosu), r sinu).

Performing the calculation of the second fundamental form, it is
obtained that,

e(u, v)=R2, f (u, v)= 0,

g(u, v)=R(R+ r cosu)cosu.

Therefore the differential equation of the asymptotic lines is:

F(u, v, du/dv)=R(du/dv)2+ cosu(R + r cosu)= 0.
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Writing p= du/dv, consider the vector field

X:


u′ = Fp,
v′ = pFp,
p′ = −(Fu + pFv).

After multiplying X by 1/p it results that:

X:


u′ = 2Rp,
v′ = 2R,
p′ =R sinu+ r sin 2u.

Consider also the projected vector field,

Y :
{
u′ = 2Rp,
p′ =R sinu+ r sin 2u.

Notice that the orbit ofY through(π2 ,0) reaches(3π
2 ,0).

In fact, from the first integral ofY ,

G(u,p)=Rp2+R cosu+ r
2

cos 2u

it follows that(π2 ,0) and(3π
2 ,0) are in the same connected component of

G−1(−r2 ).
The time spent by an orbit that starts at(π2 ,0) to reach the point(3π

2 ,0)
can be calculated as follows:

FromG(u,p)= r
2 it results that:

p =
{ [−r(1+ cos 2u)− 2R cosu]

2R

}1/2

.

As du/dt = 2Rp, it follows that:

T =R1/2

3π
2∫

π
2

du

[−cosu(r cosu+R)]1/2

= 2

π
2∫

0

du

[sinu(1− r
R

sinu)]1/2 .
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It follows from [18, pp. 369 and 950] that the analytic functionT ( r
R
)

has the following expansion in series

T

(
r

R

)
=
∞∑
n=0

2an
n!
(
r

R

)n
,

where

an = 1× 3× 5× · · · × (2n− 1)

2n
0(1

2)0(2n+ 1
4)

0(2n+ 3
4)

.

Therefore, fromdv/dt = 2R, it follows that an arc of the asymptotic
line that starts at the point(π2 , v0) ends at the point(3π

2 , v1), wherev1 is
given byv1= 2RT ∓ v.

So the return mapΠ : {v = −π2 } → {v = −π2 } is given byΠ(v0) =
v0+ 4RT ( r

R
).

As T is clearly non-constant, it is possible to selectr andR such that
the rotation number ofΠ is irrational. 2
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