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ABSTRACT. — In this paper are studied immersions of surfaces int&%owhose
nets of asymptotic lines are topologically undisturbed under small perturbations of
the immersion. These immersions are called structurally asymptotic stable. Sufficient
conditions to belong to this class are established here. These conditions focus on
the stable patterns around parabolic points, parabolic separatrix connections, periodic
asymptotic lines (including those that intercept the parabolic lines) as well the exclusion
of recurrent asymptotic lines. The class of immersions that are structurally stable in this
sense is open in the®-topology.0 Editions scientifiques et médicales Elsevier SAS
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RESUME. — Dans ce travail sont étudiées les plongements des surfaces dans I'espace
R3 pour lequelles ces réseaux des lignes asymptotiques sont préservées topologiquement
pour les pétites déformations du plongement. Ces plongements sont appellés asympto-
tique structurellement stables. Ces conditions focalisent sur le comportement des lignes
asymptotiques dans une voisinage des lignes paraboliques, sur I'absence des connections
des séparatrices paraboliques, sur les lignes asymptotiques férmées et aussi sur I'absence
des récurrences non triviales des lignes asymptotiques. La classe des plongements struc-
turellement stable est ouverte dans la topol@em Editions scientifiques et médicales
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600 R. GARCIA ET AL.

1. Introduction

Consider &C", r > 5, immersiornx of a smooth, compact and oriented,
two-dimensional manifold1 into Euclidean spaci3.

The Fundamental Form®f « at a pointp of M are the symmetric
bilinear forms oril',M defined as follows [26,25]:

The First Fundamental Form

I, (p; v, w) = (Da(p;v), Da(p; w)).

The Second Fundamental Form

Il (p; v, w)=—(DNy(p; v), Da(p; w)).

Here, (., .) is the Euclidean inner product @& and N, is the positive
normal of the immersion:

oy N\ Oy
a =7 >
loty A oy

where(u, v) is a positive chart oMl and A is the vector (wedge) product

associated to a once for all fixed orientation®h o, = 2_3 anda, = 2.

v
A line ¢ =R.v, tangent at a poinp of M (i.e., v € T,M\0), along

which thenormal curvature

Il (p;v,v)

kn 0 =
(P:6 I,(p;v,v)

vanishes, is called assymptotic direction ofx at p.

A maximal, regular curve : (a, b) — M, parametrized by arc length
whose tangent line is an asymptotic direction is calledsymptotic line
of . That is, for every in (a, b), it holds thatll ,(c(s); ¢’(s), ¢/(s)) = 0.

Through every poinp of the hyperbolic regionH,, of the immersion
a, characterized by the condition that the Gaussian Curvakiyre=
det(DN,) is negative, pass two transverse asymptotic linas, ¢dngent
to the two asymptotic directions through This follows from the usual
existence and uniqueness theorems on Ordinary Differential Equations.
In fact, onH, the local line fields are defined by the kernéls;, L, » of
the smooth one-forms,, 1, w, 2 Which locally splitll , = w1 ® Wy 2.
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ASYMPTOTIC LINES, PARABOLIC POINTS 601

The formsw, ; are locally defined up to a non-vanishing factor and
a permutation of their indices. Therefore, their kernels and integral
foliations are locally well defined only up to a permutation of their
indices.

Under the orientability hypothesis imposed bfy it is possible to
globalize, to the wholéd,, the definition of the line fieldL, 1, L,
and of the choice of an ordering between them, as follows:

Consider the field’, of tangent cones ofil,, defined by the non-
negative part of the second fundamental form, ig(p;v,v) = 1,
Il(p;v,v) > 0, oriented compatibly withM. Call {e1(p), e2(p)} a
positive basis forT,M consisting of unit asymptotic vectors, positive
also forC, (p).

This choice of a basis can also be defined as follows:

Da(p, e1(p)) A Da(p, e2(p)) = No(p) andll 4 (p; v, v) > 0, for v =
e1(p) +e2(p).

There is only one other different choicg/(p), ¢/>(p)}, for such a
basis; both choices define the saasgmptotic line fieldsf «:

Lo1(p) =R.e1(p)) =R.e'1(p) andL, 2(p) = R.e2(p) =R.e'2(p).

These two line fields, called trasymptotic line fieldsf «, are smooth
on H,; they are distinctly defined together with the ordering between
them given by the subindice§l, 2} which define theirorientation
ordering “1” for the first asymptotic line field’, 1, “2” for the second
asymptotic line fieldZ, ,. They will be presented as an ordered pair
EO( = {Ea,ls Ea,Z}-

The asymptotic foliation®f « are the integral foliationsd, ; of £, 1
and A, , of £, »; they fill out the hyperbolic regiortl,. The ordered
asymptotic nebf the immersionx is the ordered paid,, = {A4.1, A 2},
the indexi = {1,2} will be called theorientation ordering of the
asymptotic foliation

Clearly, an exchange in the orientations eithelbbr of R® produces
an inversion in the orientation ordering of the asymptotic line fields.

When non-empty, the regidti, is bounded by the set (generically, i.e.,
for mosta’s, a regular curve [11,20,6,8P, of parabolicpoints ofa, on
which IC, vanishes. O, the pair of asymptotic directions degenerate
into a single one or into the whole tangent plane at points whegre 0,
calledflat umbilic points.

The parabolic points will be regarded here as the singularities of the
asymptotic net. In fact, in the context of Singularity Thedpy, is the
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602 R. GARCIA ET AL.

singular set of the Normal Map/, from M to the unit spher&?. On

the Elliptic RegionE,, defined byX, > 0, the asymptotic directions
are imaginary and will not be studied here. Thus the domain for real
asymptotic directions and their integral curves in the present work will
be the sef{, < 0} of non-elliptic points, which generically is either the
empty set or a manifold with boundary coincident with Gldg).

An immersione is said to beC*-local asymptotic structurally stable
at a compact sef in Clos(H,) if for any sequencer, converging to
a together with its firsts derivatives in a compact neighborhodd
of S there is a sequence of compact subsgtsand a sequence of
homeomorphism&,, mappings to S,, converging to the identity ol
such that onVg it maps arcs of the asymptotic foliatioos, ; to arcs of
that of A4,, ; fori =1, 2.

An immersiona is saidC*-global structurally asymptotic stabléthe
compact sef above is the closure of the the hyperbolic regitn

This implies that the parabolic set must be preserved by the homeomor-
phism defining the topological equivalence in the case of global structural
stability.

Asymptotic lines, together with geodesics and principal curvature lines
are studied in Classical Differential Geometry [19,10,12,9,21,7,5,22,24—
26].

For geodesics and principal lines, global structural stability and
genericity properties have been developed in [1,2,14-16]. Meanwhile,
for asymptotic lines the attention has been focused on their description in
a small neighborhood of the curig of parabolic points [3,20,5].

This paper is devoted to the study of the simplest qualitative aspects of
asymptotic lines on surfaces immersed into Euclidean space, focusing on
their local and global structural stability. The results establish sufficient
conditions for an immersior to be C*-global structurally asymptotic
stable s > 5. This extends the local results for parabolic points and
periodic asymptotic lines established in [13] and reviewed below.

2. Preliminares and formulation of the main results
On the projective bundlePM = {TM\O}/{v = rw,r # 0} of M,
consider the submanifol@é{, defined by all the asymptotic directions.

That is by the zeros of the second fundamental formxofThe first
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condition to be imposed oa is precisely that O is a regular value of
the projectivization ofl ., that isDC, # 0 at parabolic points.

The restriction of the projectioi/ of PM to H, covers ClogH,).
Over H, it is a double regular covering. Ovél, it has a Whitney
fold [27,8]. Therefore the Euler—Poincaré characteristic are related by
X (Hy) = 2x (Hy).

Lifting to this manifold the line fields, 1 and £, » defines a single
line field £, ; on I1-1(H,), which under the conditions of regularity
uniquely extends to a smooth line fied, defined on the whol&{,, . Its
singularities, when present, are containedPin= I7-*(P, ). In a local
chart(u, v) the surfaceH,, is defined implicitly by the equation,

dv
F(u,v,p)=e+2fp+gp*=0, p=

and the line fieldC, ; is locally given by:
u'=F,,
X: v =pF,,
p'=—(F,+pF,).

The submanifoldH,, is a compact and oriented surface and the line
field £, ; is locally defined by a vector field, but in general is not globally
orientable.

The restriction of the projectioi/ of PM to H, covers ClogH,).
OverH,, it is a double regular covering and oy it has a Whitney fold
[27,8].

Lifting to this manifold the line fields, 1 and £, » defines a single
line field £, ; on I1-1(H,), which under the conditions of regularity
uniquely extends to a smooth line fielg ; defined on the wholé{, . Its
singularities, when present, are containe®in= I7-1(P, ).

When the immersion is of clags” the line field£,, ; is of classC" 2
on the surfacé+,,.

The integral foliation of this line field is denoted b, ;. The leaves
of F,; contains the pullback of the leaves of the pair of asymptotic
foliations A4,. The projection of the leaves of, ; into ClogH,) are
called thefolded asymptotic linesf «.

On the surfaceH,, there is a canonical involutiop : H, — H, such
thatg0|73a =id.
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If (u,v,[p:q]) € Hy theng,(u, v, [p1:q1]) = (u,v,[p2:q2)), i.e.,
¥, Sends an asymptotic directidmp; : g1] into an asymptotic direction
[p2:q2].

Notice that the involutior,, ¢, o ¢, = id, is a diffeomorphism of+,
under the regularity hypothesis of the parabolic points.

Now consider the line field ofi, induced byg,. That is, L, =
((pa)*»ca,l .

Denote byF,  the integral foliation o, .

These two foliations are transversal Hf, except at the parabolic
pointsP, where they are tangent.

In order to make a distinction between these foliations, we will say that
Fa.1 is thefirst asymptotic foliatiorand 7, is the second asymptotic
foliation.

Also, as the singularities af, ; are contained ifP, and the involution
have the fixed points formed 19, it follows that £, ; andL,, ; have the
same singular set.

Also, itis clear that the image oF, , by the projection? : H, — M
gives the asymptotic foliationg, ; and.A,, ».

The following conditions (inspired in [14,16]) are essential for the
formulation of the main stability result of this paper.

(a) Condition on parabolic pointsDenote by, the class of immer-
sionsa for which the singularities of the line field, ;, which occur when
L, is tangent tdP,, are hyperbolic (non-vanishing real part of eigenval-
ues). Calculations shows that when the eigenspaces are one-dimensional
they are transverse @ —1(P,).

There are three cases to consider: the saddle (eigenvalues of opposite
sign), the (properhode (i.e., with distinct eigenvalues of the same sign)
and the focus (pair of complex conjugate eigenvalues).

These conditions are expressed in terms of the curvature functions of
« and will be reviewed in Section 2.

(b) Condition on hyperbolic closed asymptotic lin€&enote by,
the class of immersions for which all the regular and folded asymptotic
closed lines, i.e., the periodic integral curves(gf, are hyperbolic (i.e.,
the derivative of the return map is different from one).

This condition can be expressed in terms of integral formulas involving
the curvature functions of along the periodic asymptotic line, see
Section 3.
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(c) Condition on separatricesdDenote byX. the class of immersions
such that there are no connection between sepatrices of singular points of
the foliation F,, ; e consequently of thel, ; and.A,, ».

(d) Condition on limit setsDenote by, the class of immersions such
that for every leave ofF, ; the limit set is a singular point or a closed
asymptotic line.

DefineX" =X, , .oy=ZaN XN XN Xy,

Asymptotic Ilnes WhICh violate (c) for being separatrices of two
parabolic points or double separatrices of the same parabolic point are
called parabolic connectionsin the second case they are also called
parabolic loops

An asymptotic line which violates (d) for being contained in its own
limit set, without being an closed asymptotic line, is caltemh-trivial
recurrent asymptotic lineAn example of this type of lines is given in
Section 6.

The main result of this paper is the following,

MAIN THEOREM. —Let o : M — R® be an immersion of clas§”,
r > 5, of a compact and oriented surfadé€ of classC”. Then
(i) Thesetz[, , ., is open in Imm* (M, R3), s > 5.
(i) faeX(,,.qthenaisC*, s > 5, global structurally asymptotic
stable.

Remark— In a forthcoming paper, [17], we will prove that the class
2. pea IS C?-dense in the space of immersions of compact surfaces.
This step will complete the analogy with lines of curvature for which the
C2-density have been proved in [14-16].

3. Asymptotic lines near parabolic points

In this section will be reviewed the local behavior of the asymptotic
foliations near parabolic points, in terms of geometric invariants of the
immersione.

Let ¢ : [0, L] — M? be a regular arc of parabolic points, parametrized
by arc length u. To fix the notation, suppose thgt =0 andky. < O,
wherek,; and k, are the principal curvatures of the immersien Let
¢(u) the angle between (1) = ¢ («) and the principal directio.(«),
corresponding td, at the pointc(u). Denote byk,(u) the geodesic
curvature ofc at the pointc(u).
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THEOREM 3.1. —Letc: [0, L] — M be a regular curve of parabolic
points as above. Then the following halds

1° If (u) # 0, the asymptotic foliation, near(u), is as shown in Fig.
1(a) cuspidal typg

2° If ¢(u) =0andg’(u) # 0 there are three cases

(@) k() /g'(u) < 1,

(b) 1< ke(u)/g'(u) <9,

(€) 9< k() /9'(w).
In caseqa), (b)and(c) above the asymptotic foliation is as shown in the
Figs. 1(b)—(d) respectively and correspond, respectively, to the folded
saddle, focus and node types parabolic points.

3° The set of immersions whose parabolic points satisfy condifibns
and2° is open and dense iG°-topology.

4° The points described in° and 2° are the only stable locally
asymptotic structurally stable parabolic points.

Remark— The formulation above, in terms of the geometric invariants
of the immersion, is taken from [13]. See also [5,6].

4. Periodic asymptotic lines and their first return maps

In this section will be established an integral expression for the
derivative of the first return map of falded periodic asymptotic line
This derivative will be given in terms of curvature functions of the
immersion.

The study of closed asymptotic lines disjoint from parabolic points was
carried out in [13].

4.1. Folded periodic asymptotic lines

Here will be established an integral expression for the derivative of
the first return map of a folded periodic asymptotic line in terms of the
curvature functions of the immersien

A folded periodic asymptotic linds a closed asymptotic curve
¢:[0, L] — M regular by parts, that is, there exist a finite sequence of
numbersy;,0=ag <aj; <--- <a; =L, such that

¢i = Clia,a;,p) - @iy aip1) — INtH
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(d)

Fig. 1. Asymptotic foliations near parabolic points.

BULLETIN DES SCIENCES MATHEMATIQUES



608 R. GARCIA ET AL.

Fig. 2.

is an asymptotic line okr and p; = c¢(a;) e P, fori =1,...,1 — 1.
In other words, dolded periodic asymptotic linis the projection of a
closed integral curve of the single line fieltj, defined onH,, which
intersectspP, .

Letc be afolded periodic asymptotic line. Near each pgintconsider
two transversal sections to, ¥;; and X,;, and the Poincaré map
0;: X1; — X,;. Denote byu/ = c;(a;, a;41) N ¥,;, j =1, 2. Denote by
iy X2 — X141 the Poincaré map associatedcto It follows that
the Poincaré map associated:td7 : X1 1 — X711 is given by:

H=7Tl_1,100'1_10---07'[i+1,,' 0---072100].

The next lemma established in [13] it will be useful in what follows.

LEMMA 4.1.—Letc: [0, L] — M? be an arc of an asymptotic line
parametrized by arc length. Then the expression
(1) a(u, v) = (@oc)(u) +v(N A1) (u) + [Hy (w)v?+ Au, v)v?| N (c(u)),
where A(u, 0) = 0 and H, is the Mean Curvature aof, defines a local
chart of classC’” 2 aroundc.

PROPOSITION 4.2. —Let ¢ : [0, L] — M? be an arc of an asymp-
totic line parametrized by arc length as in the lemma above and two

TOME 123 — 1999 N° 8



ASYMPTOTIC LINES, PARABOLIC POINTS 609

transversal section$u = ug} and {u = u1}. Then the derivative of the
holonomy mag1, associated to it is given by

[T = 2k (u) Ho(w)
7' (0) _exp[ / o)

uo

wherek, is the geodesic curvature ofandt, = (—K,)Y/? is the geodesic
torsion of c.

Proof. —The Darboux equations for the positive frarfte N A ¢, N}
are:

') =kgW)(N A1) (u),
2 (N A (u) = —ky ()t (u) + ()N (1),
N'(u) = —1,(u)(N A t)(u).

Direct calculation gives that:
E(M, 0) = 0, ev(u’ O) = T;; - 2Hd(u)kg(u)’

J@, 0 =1,(u)  gu,0)=2H,(u).

®)

The differential equation of the asymptotic lines in the neighborhood
of the line{v = 0} is given by:

4) e+2fdv/du+ g(dv/du)®>=0.
Denote by (u, ) the solution of the (4) with initial condition(0, r) =
r. Therefore the return mafg is clearly given byl7(r) = v(L, r).
Differentiating (4) with respect to, it results that:
g0 (dv/du)? + (2gv.r +2f,v,)(dv/du) + v, = 0.
Evaluating ab = 0, it follows that:
5) 2f (u, Oy, (u, 0) + e, (u, O)v, (u, 0) = 0.
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Therefore, using the expressions fbrane, found in (3), integration
of (5) it is obtained:

L
—ré + 2H,k, I

InIT'(0) :0/ >,

This ends the proof. O

PrRoPOSITION 4.3. —Consider the asymptotic lines near a cuspidal
parabolic point and the return map defined in the sections ¥ ; —
X5 ;. Then the functiom; is differentiable.

Proof. —Near the pointp; take a local char{U, V) such that the
asymptotic lines are given by the differential equatid//dV)? = U,
[3,4]. In this system of coordinates : {V =¢} — {V = ¢} is clearly a
translationo; (u, ¢) = (u + ¢, ). Thereforeo; is differentiable. O

THEOREM 4.4.—Let ¢ : [0, L] — M be a folded closed asymptotic
line, parametrized by arc lenght, of an immersiornx.

If ¢ is hyperbolic, thenx is C*, s > 4, local asymptotic structurally
stable atc.

Remark— Whenc is disjoint from the parabolic set the condition of
hyperbolicity ofc is expressed by

L
ko H,
82 du 0.

See [13].

5. Proof of the Main Theorem

This section will be devoted to the proof of the main stability result of
this paper.

5.1. Openness o&" and canonical regions

Letae X, .47 25 Recall thatF, ; or F, share the same set of
singularities each of which is eithenade asaddle poinbr else &ocus
The leaves ofF, ; (respectivelyF, ;) will be called adirst (respectively
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Fig. 3.

secondl asymptotic lines. Letp, : H, — H, be the diffeomorphism
taking F,. (respectivelyF, ;) to F, ; (respectively taF, ) and such
thatg, (p) = g if, and only if, 7 (p) = 7 (¢g). In particular,¢, restricted
to P, is the identity.

The openness af” in Imm’™* (M, R3) follows from the local stability
of the singularities together with the local stability of hyperbolic asymp-
totic closed lines and the continuity (o) of compact arcs of parabolic
separatrices.

A first (respectively secondanonical regionof «, with ¢ € X", is a
connected component of the complement of the union of the singularities,
first (respectivelysecond closed asymptotic lines, tHast (respectively
second strong stable separatrices of thedes (with the orientation
of attractingnode3 andfirst (respectivelysecond parabolic asymptotic
separatrices of theaddle points

The canonical regions can hgarallel or cylindrical. In the first
case the line fieldC, ; (respectivelyl, ) restricted to the region is
topologically equivalent t%% in R?, in the second one it is topologically
equivalent tar:> + v-2 in R?\ {0}.

Fig. 3 shows some typical examples of cannonical regions. Dotted lines
in the pictures of theanonical regiongepresencross section®f the
foliations in the region.

Let A be asecond(respectivelyfirst) parallel region otx, theng, (A)
is afirst (respectivelysecondl parallel region otv. In either case, if is a
non-empty connected component #fn P, then S is a cross section
for both A and ¢, (A); also these are the onlganonical regionsthat
meets.
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Fig. 4.

For a cylindrical region of an asymptotic foliation, it can be that either

(a) all the lines of the other foliation cross the region, as in Fig. 4(a),

or that

(b) the region contains at least one closed asymptotic line of the other

foliation, as in Fig. 4(b).

Thefirst (respectivelysecond cylindrical regions of case (a) are called
transversally irreducible firs{respectivelysecondl canonical regions
those of case (b) are decomposed into the union of a finite number of
transversally irreducible secon@respectivelyfirst) canonical regions
and twosemi-transversally irreducible first region¥he boundary of a
semi-transversally irreducible firsrespectivelysecond region is the
union of afirst closed asymptotic line, to which thirst asymptotic
lines tend, and aecondclosed asymptotic line, to which the foliation
is transversal.

In Fig. 4(b) appears érst (respectivelysecond canonical cylindri-
cal region decomposed into otransversally irreducible secon@despec-
tively first) canonical regionand twosemi-transversally irreducible first
(respectivelysecond regions.

It can be found a neighborhodd(«) of « in the open sel”, r > 5,
such that, along a continuous arg ¢ € [0, 1], in V() joining « = ag
to B = a3, there is a unique way to continue the singularities, closed
asymptotic lines and asymptotic separatrices of ghddle pointsand
nodal (strong separatrices) of batp ; and. 7, in such a way that there
is a natural unique continuation of tanonical region®f «g into those
of «;, which defines a one-to-one correspondence betweerati@nical
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regionsof o and those o8 € V(«). Such correspondence preserves the
type of canonical regionsLet ¢,, : H, — H, be the diffeomorphism
taking F,, .1 (respectivelyF,, ,) to F,, ; (respectively taF,, ).

The continuation procedure defines uniquely a partial topological
equivalenceh, between the singular points ¢f, ; and F5; and the
set of points which are simultaneously offirat and secondasymptotic
separatrix or closed asymptotic line af with the similar set ofo;,

t € [0, 1].

At this point, by using the method of canonical regions as in [23,14,16],
the continuation procedure may be used to define different topological
equivalences(Hy, Fo,1) — (Hp, Fr.p) and (Hqy, Fou) — (Hg, Fpui)
which extend’;. Below it is indicated how to proceed in order to
extend, to a topological equivalence betweé#l,, F,.1, Fy.;) and
(Hg, Fpu, Fp,1)- This extension is obtained by means of a sequence
of partial extensions. Onck, is defined in (part of) @anonical region
A, it will necessarily be defined ip,(A) as the compositio,, o 4, o
@, L. This will be mentioned explicitly in most of the steps below.
As a consequencé, will induce a topological asymptotic equivalence
H,H, — Hpg between(H,, Aq 1, Aq2) and(Hg, Ag 1, Ag 2).

5.2. Construction of the asymptotic equivalence

Stepl. Given a parallelcanonical regionselect a specific cross section
toit.

On eachsecondparallel canonical regionR, of o, choose—once for
all—a cross sectioy according to the following directions: R, meets
P, a connected component 86 N P, will be taken as a cross section.
If R, is disjoint of P,, a cross section will be taken to be an arc of a
first asymptotic separatrix (which is always possible). The cross section
associated t@, (R,) will be ¢,(S). In this way, to each parallel region
(eitherfirst or secondl a cross section has been associated.

Step2. Definition ofk, on the cross sectior{@nd so on the orbit spage
of firstand secondparallel canonical regions

Let R, be asecondparallel canonical regionof «. Let S be its
associated cross section. 3fis an arc of dirst asymptotic separatrix
o, the extremesa andb of S have natural continuatioris (a) andh, (b);
these points define the extremes of the natural continudtiaf the arc
on o, the separatrix oi§; which is the natural continuation ef. Define
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h,: S — S; to be any homeomorphism which extends the correspondence
already given on the extremes.

If S C P,, S;is an arc contained iR, , the definition ofi, is similar to
the previous one. Recall that if an endpointSas anode or saddle point
(respectively belongs tosecond asymptotic separatyjxts continuation
in S, will also be of the same type.

Let R, and S be as above and leR; = ¢,(R,); in this case,
h:: 9u(S) — @4, (S:) is the compositiorp,, ok, o, ~1. Recall thatp,, (S;)
is the cross section associated tofingt parallel regionR,, of «;.

Step3. Definition ofk, on the intersection ofirst and secondparallel
canonical regions

Let R, and R; be arbitrarysecondandfirst parallel regions, respec-
tively. Let S andT be their corresponding cross sections. Denote(py
(respectivelyr (p)) the point of intersection of theecond(respectively
first) asymptotic line throughy with S (respectivelyT).

On each connected componentof R, N R1, defineh, of C onto its
natural continuatiorC,. Notice that it is already defined on the corners
of C, which are either singular points or intersections fioft with
secondseparatrices. At a poirg in C, defineh,(p) as the point inC,
which is on the intersection of treecondasymptotic line which passes
throughh, (s(p)) € S; with thefirst asymptotic line which passes through
h,(t(p)) € T,. See Fig. 5.

TOME 123 — 1999 N° 8



ASYMPTOTIC LINES, PARABOLIC POINTS 615

Notice that, wherever defineg,, o h, = h, o ¢, and therefore this
procedure already defines an asymptotic topological equivalence between
a ande,, in the case in which there are no closed asymptotic lines.

Step4. Selection of a specific cross section associatedtarsversally
irreducible secondréspectivelyfirst) cylindrical region which is not
contained in dirst (respectivelysecondyegion of type b

Let R, be a second transversally irreducibleegion of «. The
assumptions imply thalk, meets at least one of the following?,
or a first asymptotic separatrix or else fast closed asymptotic line.
Choose -once for all- a cross sectisrio R, according to the following
instructions:

If R, meetsP,, take (as a cross section) a connected compo$i@t
Po N Ro.

If R, is disjoint of P, but it meets dirst asymptotic separatrix, say,
select a connected componehof y N R.

If R is disjoint of P, and of everyfirst asymptotic separatrix but it
meets dirst closed asymptotic line , select a connected compofieit
the intersection oR with this closed asymptotic line.

Now, the associated cross sectiorpi@R) will be ¢, (S). In this way,
it can be associated to eatrinsversally irreducibleregion (eitheffirst
of second a cross section to it.

Step5. Definition of2; on the cross section associated to a transver-
sally irreducible secondrespectively firgtcanonical region

Let R, be asecondregion as in the assumption and I&tbe its
associated cross section.

Consider the continuatios; of S which is a cross section to the
continuationR,, of R,. The foliation 7, i |z, defines a Poincaré map
;. S, = S; with only two fixed points, one attractor and one repellor, in
the extremes of;. Take a topological conjugatiof : S — S;, between
no andr,, that is,mo = 6,1 o 7, 0 6,. Defineh, |5 = 6;. In this way, 4, is
a conjugacy between the return mapinduced onS by F, ;i |, andx,
induced onS, by Fq, ii |, -

Let R, and S be as above and leR; = ¢,(Ry); in this case,
he:9u(S) — ¢4, (S,) is the compositiony,, o h; o ¢, ~t. Recall that
vy, (S;) is the cross section associated totitamsversally irreducible first
canonical regionRy; = ¢,, (R2,) of ;.

Step6. Definition ofs, on the intersection of a cylindrical transversally
irreducible canonical region with a parallel canonical region
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Fig. 6.

Let R, (respectivelyR,) be atransversally irreducible secon@espec-
tively parallelfirst) canonical regionLet C = R, N R;. The definition of
h, considered on the cross section associateR,tdetermines a one-to-
one correspondence) — o, between the leaves ¢f, ;| and those of
Fa, .11c,» whereC, is the natural continuation @f.

Extendh, : C — C,, so that—keeping the notations of Step 5—the
intersection ofC with the arc[p, 7o(p)] of asymptotic line inF, ; (with
p € S) is mapped onto the intersection@fwith the ard i, (p), 7, (h;(p)]
of asymptotic line inF,, ,, preserving the correspondeneg — o,
indicated right above; see Fig. 6. Now, extehdto ¢,(C) so that,
rectricted toC, h, o ¢y = @4, © h;.

Step?. Definition ofk, on the intersection of two cylindrical transver-
sally irreducible canonical regions

Let R, andR; be sucHfirst andsecond canonical regigmespectively,
which intersect each other. L&p (respectivelyop) be the cross section
associated t®, (respectivelyR;). Recall that:, : g — A, is a conjugacy
between the return maps induced Janby thefirst asymptotic foliation
of « and that induced on, by thefirst asymptotic foliationF,, ; of «;.
Here Ry, and A, are the corresponding natural continuationskRefand
Ao. The analogous statement is true kot og — o;.

Defineh; on a connected componentBf N R, by the same procedure
of Step 6: Giverp in Ry N Ry, it is on an asymptotic lingx(p) of F, ;
andy,(p) of F,, which intersects, respectivelyy andoy on orbits of
the respective return maps. The asymptotic lineg:0fp) of F,, ; and
v (p) of F,, . determined by thé,-images of these orbits, on ando;,
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Fig. 7.

intersect on continuous curves (depending on the parametely one
of which, p;, passes through ats = 0. Defineh,(p) = p,. See Fig. 7.

Notice that thefirst cylindrical canonical regionR; can only intersect
secondcylindrical canonical regionsR, of the kind being considered in
the present step as well sscond parallel canonical regions

Step 8. Definition of 4, on the intersection of a firsfrespectively
second cylindrical canonical region with a closed asymptotic line of the
secondrespectively firgtasymptotic foliation

Similar to that of Step 7.

Step 9. Definition of 2, on a closed asymptotic line of the second
(respectively firgt asymptotic foliation and on the firgrespectively
secondl cylindrical canonical regions of typéa) which are contained
in second(respectively firgtcylindrical canonical regions of typéb).

Take asecond cylindrical canonical regioR; of type b) fora. Define
the homeomorphism, on a closed asymptotic ling of F, ; contained
in R, and its natural continuatiop; in Ry,. This defines a one to one
correspondence between the lines7f,, in R, and those ofF,, ; in
Ry;. Now, if R, containsfirst cylindrical regions of type (a), defirig on
them following the procedure is Step 6, conjugating their return maps.
See Fig. 8.

Let Ry, Ry, be as above and led (respectivelyA;) be the subset
of R, (respectively ofR,,) whereh, has already been defined. In this
case, extend, : ¢,(A) — ¢,,(A,) as the compositio,, o i, o ¢, 1. In
this way, i, has been defined on the closed asymptotic lines and on the
cylindrical canonical regionf type (a) satisfying the assumptions for
this step.
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Fig. 8.

Step10. Definition ofz, on the semi-transversally irreducible second
(respectively firgt regions which are contained in secoffiiespectively
first) cylindrical canonical regions of typéb).

Let R, be such asecond semi-transversally irreducibtegion con-
tained in a cylindrical region of type (b). Notice thatsacondclosed
asymptotic line ofd R, is contained either in the union @fst parallel
canonical regionsor in afirst cylindrical canonical regiorof type (b).
This implies that:, must have already been definediR,, by previous
steps.

Let p; andp, be points, respectively, on the closed asymptotic lines
in R, of the first and second asymptotic foliations. It may certainly be
assumed thap;, = h,(p1) as well aspy, = h,(p2) depend continuously
on (p1,t) and(pz, 1).

Let y1,(p1) and y»(p2) denote respectively the curves &f, ; and
Fu.n Ppassing througip;, and py;, then for anyp in y10(p1) N y20(p2)
there is a uniqu@; in y1,(p1) N y2: (P2) which is its natural continuation.
Defineh;(p) = p;.

In this way, all the possibilities focanonical regionshave been con-
sidered for the definition of the extension of the asymptotic equivalence
betweernx € X7, r > 4, andp € V(«), whenV(«) is small enough. This
finishes the proof of the theoremO

6. On a class of dense asymptotic lines

The goal of this section is to present examples of folded recurrent
asymptotic lines.
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Fig. 9.

PROPOSITION 6.1. —Let T2 be the torus of revolution, obtained by the
rotation of the circle(x — R)?> + z2 =r2,r < R, around thez axis. Then
the qualitative behavior of the asymptotic lines is as shown in%ig.

Moreover the return mapl : S(R) — S(R), whereS(R) = {(x, y, z):

x? 4+ y2 = R? z = —r}, is a rotation by an angle equal tdRT (r/R),

where
r * 2a, (r\"
T(=)= —
(7)=2%(7)

n=0

with

_1x3x--x@u—-)IHM2n+3)
B 2n T(2n+3)

an

Proof. —Consider the following parametrization of the torus of revolu-
tion:

(u, v) — (cosv(R + r cosu), sinv(R + r cosu), r Sinu).

Performing the calculation of the second fundamental form, it is
obtained that,
e(u,v) = R?, fu,v)=0,
g(u,v) = R(R 4+ r cOSu) COSu.
Therefore the differential equation of the asymptotic lines is:

F(u,v,du/dv) = R(du/dv)?+ cosu(R + r cosu) = 0.
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Writing p = du/dv, consider the vector field
u'=F,,
X: SV =pF,,
p'=—(F,+pF,).
After multiplying X by 1/ p it results that:
u' =2Rp,
X: < vV =2R,
p' = Rsinu + rsin 2u.

Consider also the projected vector field,

v u' =2Rp,
"L p/=Rsinu+rsinu.

Notice that the orbit ot through(Z, 0) reaches{%”, 0).
In fact, from the first integral of’,

G(u, p) = Rp?+ R cosu + %cos:ﬂ

it follows that(Z, 0) and(%”, 0) are in the same connected component of
G ().

The time spent by an orbit that startg 3t 0) to reach the poin([%”, 0
can be calculated as follows:

FromG(u, p) = 5 itresults that:

B {[—r(l—i— cos 1) — 2R cosu] }1/2
p= 2R '

As du/dt = 2Rp, it follows that:

37
2

T Rl/z/ du
[— cosu(r cosu + R)]Y/?

(VB

7 du
:2/[sin (1— % sinu)v/2
A u R u
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It follows from [18, pp. 369 and 950] that the analytic functidiiy)
has the following expansion in series

(%) =%

2a
n!

(3)-

_1x3x5x-x (21 —)T G2 +3)
- 2n T2n+3)

Therefore, fromdv/dt = 2R, it follows that an arc of the asymptotic
line that starts at the poir&;, vo) ends at the poin([%”, v1), wherewvy is
given byv; = 2RT Fv.

So the return magT : {v = 5} — {v = 5} is given by IT(vp) =
Vg + 4RT(%).

As T is clearly non-constant, it is possible to sele@nd R such that
the rotation number ofT is irrational. O

where

an
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