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a b s t r a c t

LetD be a strong digraph. The strong distance between two vertices u and v inD, denoted by
sdD(u, v), is theminimum size (the number of arcs) of a strong sub-digraph of D containing
u and v. For a vertex v of D, the strong eccentricity se(v) is the strong distance between
v and a vertex farthest from v. The minimum strong eccentricity among all vertices of
D is the strong radius, denoted by srad(D), and the maximum strong eccentricity is the
strong diameter, denoted by sdiam(D). The lower (resp. upper) orientable strong radius
srad(G) (resp. SRAD(G)) of a graph G is the minimum (resp. maximum) strong radius over
all strong orientations of G. The lower (resp. upper) orientable strong diameter sdiam(G)
(resp. SDIAM(G)) of a graph G is the minimum (resp. maximum) strong diameter over all
strong orientations of G. In this work, we determine a bound of the lower orientable strong
diameters and the bounds of the upper orientable strong diameters for graphs G = (V , E)
satisfying the Ore condition (that is, σ2(G) = min{d(x)+ d(y)| ∀ xy 6∈ E(G)} ≥ n), in terms
of girth g and order n of G.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In [1], Chartrand et al. defined the strong distance sdD(u, v) (or simply sd(u, v)) between two vertices u and v in a strong
digraph D as the minimum size (the number of arcs) of a strong sub-digraph of D containing u and v. The definition is
motivated by the lack of symmetry of the familiar distance in directed graphs and by the definition of distance between two
vertices in undirected graphs as the minimum size of a connected subgraph containing both vertices. It was shown in [1]
that the strong distance is a metric on the vertex set of D. A (u, v)-geodesic is a strong sub-digraph of D of size sd(u, v)
containing u and v. Fig. 1 shows a strong digraph with sd(w, v) = 3, sd(u, w) = 5 and sd(u, x) = 6.
The strong eccentricity se(v) of a vertex v in a strong digraph D is

se(v) = max{sd(v, x)| x ∈ V (D)}.

The strong radius srad(D) of D is

srad(D) = min{se(v)|v ∈ V (D)},

while the strong diameter sdiam(D) of D is

sdiam(D) = max{se(v)| v ∈ V (D)}.
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Fig. 1. Strong distance in a strong digraph.

In [2], for a connected graph G, Lai et al. defined the lower orientable strong radius srad(G) of G as
srad(G) = min{srad(D)| D is a strong orientation of G},

while the upper orientable strong radius SRAD(G) of G is
SRAD(G) = max{srad(D)| D is a strong orientation of G},

they also defined the lower orientable strong diameter sdiam(G) of G as
sdiam(G) = min{sdiam(D)| D is a strong orientation of G},

while the upper orientable strong diameter SDIAM(G) of G is
SDIAM(G) = max{sdiam(D)| D is a strong orientation of G}.

The strong radius and strong diameter of a strong digraph satisfy the following inequality.

Theorem 1 ([1]). For every strong digraph D,

srad(D) ≤ sdiam(D) ≤ 2srad(D).

In [1], Chartrand et al. gave an upper bound on the strong diameter of a strong oriented graph D.

Theorem 2 ([1]). If D is a strong oriented graph of order n ≥ 3, then

sdiam(D) ≤
⌊
5(n− 1)
3

⌋
.

In [3], Dankelmann et al. investigated the structure of a (u, v)-geodesic for u, v ∈ V (D), where D is a strong digraph, and
gave the following theorem.

Theorem 3 ([3]). Let D be a strong digraph. For u, v ∈ V (D), let Duv be a (u, v)-geodesic. Then Duv = P ∪ Q , where P and Q
are a directed (u, v)-path and a directed (v, u)-path, respectively, in Duv . There exist directed cycles C1, C2, . . . , Ck ⊂ Duv such
that
(i) u ∈ V (C1), v ∈ V (Ck);
(ii)

⋃k
i=1 Ci = Duv;

(iii) each Ci contains at least one arc that is in P but not in Q , and at least one arc that is in Q but not in P;
(iv) Ci ∩ Ci+1 is a directed path for i = 1, 2, . . . , k− 1;
(v) V (Ci) ∩ V (Cj) = ∅ for 1 ≤ i < j− 1 ≤ k− 1.
In [3], Dankelmann et al. presented upper bounds for the strong diameter of D in terms of order n, directed girth g ≥ 2, and

strong connectivity κ(D).

Theorem 4 ([3]). If D is a strong digraph of order n and directed girth g ≥ 2, then

sdiam(D) ≤
⌊
(n− 1)(g + 2)

g

⌋
.

Theorem 5 ([3]). Let D be a strong oriented graph and κ(D) = κ . Then

sdiam(D) ≤
5
3

(
1+

n− 2
κ

)
.

In [3], Dankelmann et al. also gave an upper bound on the strong radius of a strong oriented graph D.

Theorem 6 ([3]). For any strong oriented graph D of order n, srad(D) ≤ n, and this bound is sharp.
In [2], Lai et al. gave a lower bound on the strong radius of a strong oriented graph D.
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Theorem 7 ([2]). Let G = (V , E) be a connected graph with n vertices, girth g(G) and D be a strong orientation of G. Then
srad(D) ≥ g(G).

Some known results of strong distance, strong radius and strong diameter can be found in [2,4–7]. For graph theoretic
notation and terminology not described here, the readers are referred to [8].
In this work, we determine a bound on the lower orientable strong diameters and the bounds on the upper orientable

strong diameters for graphs G = (V , E) satisfying the Ore condition (that is, σ2(G) = min{d(x) + d(y)| ∀ xy 6∈ E(G)} ≥ n),
in terms of girth g and order n of G.

2. Main result

Theorem 8. Let G = (V , E) be a simple graph with girth g and order n. If σ2(G) = min{d(x)+ d(y)| ∀ xy 6∈ E(G)} ≥ n, then
sdiam(G) ≥ g, n ≤ SDIAM(G) ≤ n+ 1 and the bounds are sharp.

Proof. By Theorems 1 and 7, we have sdiam(D) ≥ srad(D) ≥ g for any strong orientation D of G. Thus sdiam(G) ≥ g . The
bound is realized by the complete bipartite graphs Km,m (see [6, Theorem 2.4]), wherem ≥ 2.
For any strong orientation D = (V (D), A(D)) of G, let u, v ∈ V (D) be two vertices such that sdD(u, v) = sdiam(D). To

prove SDIAM(G) ≤ n+ 1, it suffices to prove that sdD(u, v) ≤ n+ 1. We consider two cases.
Case 1. uv ∈ E(G). Then without loss of generality, assume that (v, u) ∈ A(D). Let P be a shortest directed (u, v)-path

and C = P + (v, u). Clearly, C is a directed cycle containing u and v. So sdD(u, v) ≤ |A(C)| ≤ n.
Case 2. uv 6∈ E(G). LetDuv be a (u, v)-geodesic inD. By Theorem3,we haveDuv = P∪Q , where P is a directed (u, v)-path

and Q is a directed (v, u)-path in Duv . Furthermore, there exist directed cycles C1, C2, . . . , Ck in Duv such that Duv =
⋃k
i=1 Ci

satisfying (i)–(v) in Theorem 3.
Subcase 2.1. k = 1. Then sdD(u, v) = |A(C1)| = |V (C1)| ≤ n.
Subcase 2.2. k = 2. Then sdD(u, v) = |A(C1 ∪ C2)| = |V (C1 ∪ C2)| + 1 ≤ n+ 1.
Subcase 2.3. k ≥ 3.
Let Γ (x) denote the neighbor set of a vertex x of G.
Claim 1. Γ (u) ∩ V

(⋃k
i=3 Ci

)
= Γ (v) ∩ V

(⋃k−2
j=1 Cj

)
= ∅.

By Theorem 3 (iv), Ci ∩ Ci+1 is a directed path for i = 1, 2, . . . , k − 1. Let ai (resp. bi) be the starting (resp. terminating)
vertex of the directed path Ci ∩ Ci+1 (possibly, ai = bi). Denote by P[x, y] (resp. Q [x, y]) the sub-directed path of P (resp. Q )
starting from x and terminating at y. Assume that there is a vertex w in Γ (u) ∩ V (Cl), where 3 ≤ l ≤ k. Let (u, w) ∈ A(D)
(resp. (w, u) ∈ A(D)). If w ∈ V (P) (resp. V (Q )), let P ′ = (u, w) ∪ P[w, v] (resp. Q ′ = Q [v,w] ∪ (w, u)). Otherwise
w ∈ V (Q )\V (P) (resp. V (P)\V (Q )); let P ′ = (u, w)∪Q [w, al−1]∪P[al−1, v] (resp. Q ′ = Q [v, bl−1]∪P[bl−1, w]∪ (w, u)).
Consider the strong digraph D′uv = P ′ ∪ Q (resp. D′uv = P ∪ Q ′). By Theorem 3 (iii), it is not difficult to verify that

|A(D′uv)| < |A(Duv)|, which contradicts the minimality of Duv . Hence, Γ (u) ∩ V
(⋃k

i=3 Ci
)
= ∅. By the same arguments,

we have that Γ (v) ∩ V
(⋃k−2

j=1 Cj
)
= ∅.

Claim 2. If k = 3, then any vertex of V (Duv)− u− v is adjacent to at most one vertex of u and v.
Supposew ∈ Γ (u)∩Γ (v)∩V (Duv). Then, by claim 1,wmust be an internal vertex ofQ [b2, a1] or P[b1, a2], sayQ [b2, a1].

If (v,w) ∈ A(D) (resp. (w, u) ∈ A(D)), letQ ′′ = (v,w)∪Q [w, u] (resp.Q ′′ = Q [v,w]∪(w, u)). Consider the strong digraph
D′′uv = P ∪ Q

′′. By Theorem 3 (iii) and the assumption thatw is an internal vertex of Q [b2, a1], we have |A(D′′uv)| < |A(Duv)|,
which contradicts the minimality of Duv . Otherwise (u, w) ∈ A(D) and (w, v) ∈ A(D). Let P ′′ = (u, w) ∪ (w, v) and
D′′′uv = P

′′
∪ Q . By Theorem 3 (iii), we also have |A(D′′′uv)| < |A(Duv)|, again a contradiction.

By the above two claims and the fact that σ2(G) ≥ n, we have

n ≤ d(u)+ d(v) ≤ n− |V (Duv)| + |ΓDuv (u)| + n− |V (Duv)| + |ΓDuv (v)|

≤


2n− 2|V (Duv)| + |V (Duv)| − 2, if k = 3;
2n− 2|V (Duv)| + |V (Duv)| − 2− |V (C2 ∩ C3)|, if k = 4;

2n− 2|V (Duv)| + |V (Duv)| − 2−

∣∣∣∣∣V
(
k−2⋃
i=3

Ci

)∣∣∣∣∣ , if k ≥ 5.

That is,

|V (Duv)| ≤


n− 2, if k = 3;
n− 2− |V (C2 ∩ C3)|, if k = 4;

n− 2−

∣∣∣∣∣V
(
k−2⋃
i=3

Ci

)∣∣∣∣∣ , if k ≥ 5.
(1)
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Clearly, |V (C2 ∩ C3)| ≥ 1. By Theorem 3 (v), the cycles C3, C5, . . . (resp. C2, C4, C6, . . .) are disjoint; thus∣∣∣∣∣V
(
k−2⋃
i=3

Ci

)∣∣∣∣∣ ≥

|V (C3)| + |V (C5)| + · · · + |V (Ck−2)| ≥

3(k− 3)
2

, if k ≥ 5 and is odd;

|V (C2 ∩ C3)| + |V (C4)| + · · · + |V (Ck−2)| ≥ 1+
3(k− 4)
2

, if k ≥ 6 and is even.
(2)

Combining (1) and (2), we obtain sdD(u, v) = |A(Duv)| = |V (Duv)| + k− 1 ≤ n.
Now, we know that sdD(u, v) ≤ n+ 1 in all cases.
The bound is attained by K2×Kr with r ≥ 3, which satisfies the Ore condition and SDIAM(K2×Kr) = 2r+1 (see Theorem

14 in [5]).
Finally, we prove SDIAM(G) ≥ n. It is well-known that G contains a hamiltonian cycle, since σ2 ≥ n. Let C = v1v2 . . . vnv1

be a hamiltonian cycle of G, and D a strong orientation of G with arc set A(D) = {(vi, vi+1)|1 ≤ i ≤ n − 1} ∪ {(vj, vi)|j ≥
i+ 2 and vivj ∈ E(G)}. Since all vertices of D lie on the directed hamiltonian cycle C , it follows that sdiam(D) ≤ n. Consider
the vertices v1 and vn. Certainly, there exists a directed path of length 1 from vn to v1. However, the shortest directed path
from v1 to vn is v1v2 . . . vn. Therefore, sdD(v1, vn) = n and sdiam(D) = n. Hence SDIAM(G) ≥ n.
The bound is attained by the complete bipartite graph Km,m with m ≥ 2, which satisfies the Ore condition and

SDIAM(Km,m) = 2m (see Theorem 4 in [2]).
The proof is completed. �
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