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Research Problems from the Fourth Cracow Conference
(Czorsztyn, 2002)

Rafał Kalinowski, Mariusz Meszka
Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

The Research Problems section presents unsolved problems in discrete mathematics. In special issues, these typically
are problems collected by the guest editors. In regular issues, they generally consist of problems submitted on an
individual basis.

Older problems are acceptable if they are not widely known and the exposition features a new partial result. Concise
definitions and commentary (such as motivation or known partial results) should be provided to make the problems
accessible and interesting to a broad cross-section of the readership. Problems are solicited from all readers. Ideally,
they should be presented in the style below, occupy at most one journal page, and be sent to

Douglas B. West
Mathematics Department, University of Illinois, 1409 West Green St., Urbana IL 61801–2975, USA
E-mail: west@math.uiuc.edu

The problems in this issue were presented at the problem session of the fourth Cracow Conference at Czorsztyn,
Poland, September 16–20, 2002. They were collected and edited by Rafał Kalinowski and Mariusz Meszka.

Comments and questions of a technical nature about a particular problem should be sent to the correspondent for
that problem. Other comments and information about partial or full solutions should be sent to Professor West (for
potential later updates).

PROBLEM 453. Nomadic path and circuit decompositions

J. Adrian Bondy
Université Claude Bernard Lyon 1, France
E-mail: jabondy@univ-lyon1.fr

A nomad is a person who roams endlessly, with no particular home. We consider nomads who travel along the edges
of a directed graph without ever encountering one another.

More precisely, let an l-circuit decomposition of a directed graph G on n vertices be a decomposition of G into directed
circuits C1, . . . , Cm of the same length l; when l = n, such a decomposition is called a Hamilton decomposition. For
v ∈ V (Ci), let v+k denote the vertex on Ci reached by following Ci from v for k steps. Let f be a function that selects,
for each Ci , a root vertex vi of Ci . An l-circuit decomposition is nomadic if there exists some root selection function
f such that v+k

i �= v+k
j whenever i �= j and 0�k < l. Note that in a nomadic decomposition the number of circuits

cannot exceed the order of the graph.
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Many natural questions arise. In the complete digraph with n vertices, each ordered pair of distinct vertices forms an
edge. Hence there are n2 − n edges, and this is divisible by both n and n − 1. Tillson [2] showed that every complete
n-vertex digraph with n�8 admits a Hamilton decomposition.

Question 1. Does every sufficiently large complete digraph admit a nomadic Hamilton decomposition? If so, is it true
that every Hamilton decomposition of every sufficiently large complete digraph is nomadic?

Question 2. Does the complete n-vertex digraph admit a nomadic (n − 1)-circuit decomposition, for sufficiently large
n? If so, is it true that, for sufficiently large n, every (n − 1)-circuit decomposition of it is nomadic?

A tournament is a digraph obtained by orienting the edges of a complete graph. It is regular if at each vertex the
indegree and outdegree are equal (in which case the number of vertices is odd). Kelly (see Moon [1], p. 7, Exercise 9)
conjectured that every regular tournament of order at least three admits a Hamilton decomposition.

Question 3. Does every sufficiently large regular tournament admit a nomadic Hamilton decomposition? If so, is it
true that every Hamilton decomposition of every sufficiently large regular tournament is nomadic?

Comment. Nomadic path decompositions may be defined similarly, with the nomad starting at the initial vertex of the
path. Zsolt Tuza observed that every complete digraph of even order admits a nomadic decomposition into Hamilton
paths, namely the decomposition derived from the Walecki decomposition of K2n into Hamilton paths upon replacing
each path by two oppositely directed paths.

One may also ask such ‘nomadic’ questions about Euler tours in eulerian graphs. For example, how many nomads,
all following one Euler tour in the same direction, can be placed so that no two occupy the same vertex at any time?
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[1] J.W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York, 1968.
[2] T.W. Tillson, A Hamiltonian decomposition of K∗
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PROBLEM 454. Nonrepetitive coloring of graphs

Jarosław Grytczuk
Faculty of Mathematics, Computer Science, and Econometrics, University of Zielona Góra, Zielona Góra, Poland
E-mail: J.Grytczuk@wmie.uz.zgora.pl

A sequence {aj }j �1 is nonrepetitive if no two adjacent blocks of a are exactly the same. For example, 1232321
contains the repetition 2323, while 123132123213 is nonrepetitive. Thue [3] constructed arbitrarily long nonrepetitive
sequences using only three symbols.

A natural generalization for graphs is defined as follows. A coloring of the edges of a graph G is nonrepetitive if along
each path the sequence of colors is nonrepetitive. We call the minimum number of colors in a nonrepetitive coloring
the Thue number of G and denote it by �(G). Every nonrepetitive coloring is a proper edge-coloring, so �(G)��′(G).
We seek an analogue of Vizing’s Theorem.

Question 1. Does there exist a constant c such that �(G)�c�(G) for every graph G?

Comment. In [1] we proved, using the probabilistic method, that �(G)�c�(G)2 for some absolute constant c. For some
classes of graphs, linear upper bounds on �(G) were derived by simple explicit colorings. For example, �(Kn)�2n−3,
and �(T )�4(�(T ) − 1) for every tree T with at least two edges.

There are many exciting generalizations of nonrepetitive sequences and for most of them it also makes sense to study
graph-theoretic variants. In principle, any property of sequences can be translated into a property of graphs, via colored
paths. In particular, one may take any avoidable pattern and study its behavior on graphs. In this way new challenging
problems arise relating Graph Theory to Combinatorics on Words.

In [2], the authors study more restrictive conditions than nonrepetitive coloring. A parity edge-coloring is an edge-
coloring in which no path uses each color an even number of times, and it is a strong parity edge-coloring if no open
walk uses each color an even number of times. The minimum numbers of colors in such colorings are denoted p(G)

and p̂(G), respectively. Every parity edge-coloring is a nonrepetitive coloring, so �′(G)��(G)�p(G)� p̂(G). The
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main result of [2] is that p̂(Kn)= 2�log2 n� − 1, which improves the bound �(Kn)�2n− 3. Many open problems about
parity edge-colorings appear in [2].

Returning to the nonrepetitive condition, one may also consider other types of graph colorings. It is equally interesting
to consider nonrepetitive vertex colorings; again repetitions are forbidden along paths. This time the probabilistic upper
bound is nearly tight. For some classes of graphs, the vertex Thue number �v(G) remains bounded even if �(G) can
be arbitrarily large. For example, �v(T )�4 for every tree T.

Question 2. Is it true that �v(G) is bounded for planar graphs?
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PROBLEM 455. Dirac-type theorem for hypergraphs

Gyula Y. Katona (correspondent), H.A. Kierstead
Department of Computer Science, Budapest University of Technology, Hungary
E-mail: kiskat@cs.bme.hu

Dirac [1] proved that minimum degree at least n/2 in an n-vertex graph forces the existence of a hamiltonian cycle (a
spanning cycle); the threshold is sharp. We seek a generalization of Dirac’s theorem to k-uniform
hypergraphs.

In a k-uniform hypergraph, every edge is a k-element subset of the vertex set. A cyclic ordering (v1, v2, . . . , vn)

of the vertex set is a hamiltonian chain if every set of k cyclically consecutive vertices is an edge. An ordinary
graph is a 2-uniform hypergraph, and this definition reduces to the usual definition of hamiltonian cycle
when k = 2.

To generalize Dirac’s theorem, we need an appropriate notion of degree for hypergraphs. For l < k, the degree of an
l-set S of vertices is the number of edges containing all of S. Although k is fixed, for clarity we denote the degree by
dk(S). Furthermore, �(l)

k (H) denotes the minimum degree over all l-tuples in the k-uniform hypergraph H.

Conjecture. If H is a k-uniform hypergraph on n vertices, and �(k−1)
k (H) > 1

2n+o(n), then H contains a hamiltonian
chain.

Comment. A Dirac-type theorem is proved in [2] for all k, but its degree bound is probably not sharp: the result is that
�(k−1)
k (H) > (1 − 1/2k)n + 4 − k − 2/k suffices. Ruciński et al. [3] proved that �(2)

3 (H) > 1
2n + o(n) suffices for

3-uniform hypergraphs when n is sufficiently large n. The proof uses the hypergraph version of Szemerédi’s regularity
lemma and works only for extremely large n.

A construction in [1] shows that the conjectured bound would be sharp.
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PROBLEM 456. Minimum degree, girth, and subdivisions

Wolfgang Mader
Institut fuer Mathematik, Universitaet Hannover, Hannover, Germany
E-mail: mader@math.uni-hannover.de
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For finite graphs with minimum degree at least n, sufficiently large girth forces a subdivision of the complete graph
Kn+1. That is, for each positive n, there is an integer tn such that every graph with girth at least tn and minimum degree
at least n contains a subdivision of Kn+1 (proved in [4]). What is the minimum value tn that suffices?

Conjecture 1 (see Mader [5]). Every finite graph of minimum degree n and girth at least 5 contains a subdivision of
Kn+1.

Comment. The well-known result of Dirac [1] on subdivisions of K4 states that t3 = 3 suffices. By modifying the last
step of the proof in [4], Kühn and Osthus [2] showed that tn =186 suffices for all n. More recently, in [3], they provided
further support for Conjecture 1 by improving this to tn = 27 for all n. The sufficiency of tn = 5 seems very probable
at least for n = 4 (see [6]). The complete bipartite graph Kn,n shows that the conjecture is sharp for n�4.
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PROBLEM 457. Forcing subgraphs with high connectivity

Wolfgang Mader
Institut fuer Mathematik, Universitaet Hannover, Hannover, Germany
E-mail: mader@math.uni-hannover.de

Although high minimum degree alone does not force a graph to be highly connected, it forces the existence of a
highly connected subgraph. What minimum degree is needed?

Conjecture 1. For k�2, if G is a finite simple graph with �(G)�3k −4, then G has a k-connected subgraph, and there
are examples without k-connected subgraphs having minimum degree 3k − 5.

Comment. It was conjectured in [1] that when n is sufficiently large in terms of k, every simple n-vertex graph G with
more than

( 3
2k − 2

)
(n−k+1) edges has a k-connected subgraph (for k�7, it may suffice that n > �(k−1)/2	(k−1)).

This conjecture was proved in [1] for k�7 and remains open for k�8. For each k, this conjecture implies Conjecture
1. Thus, the sufficiency of �(G)�3k − 4 for the existence of a k-connected subgraph is known for k�7. For k�8, we
know from [1] that every graph with minimum degree at least 4k − 6 has a k-connected subgraph.

For 2�k�7, the proposer has constructed examples with �(G) = 3k − 5 that have no k-connected subgraph. For
k�8, it is unknown whether such examples exist with �(G) = 3k − 5.

Reference
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PROBLEM 458. Packing two trees in the plane

Marc Noy
Departament de Matemàtica Aplicada II, Univ. Politècnica de Catalunya, Barcelona, Spain
E-mail: marc.noy@upc.es

We say that the graphs H1, . . . , Hk pack into a graph G if G has edge-disjoint subgraphs isomorphic to H1, . . . , Hk .
The problem of packing graphs has been widely studied, especially when G is a complete graph. In particular, it is
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known that any two n-vertex trees T1 and T2 that are not stars pack into the complete graph Kn [1]. The packing of
three trees is more difficult; see [2] for a complete solution.

Here we seek a more restricted packing; we want to pack T1 and T2 into some planar graph with n vertices. That
is, we want to draw both T1 and T2 in the plane using exactly n vertices so that no edge is repeated and no two edges
cross. It is obviously necessary that neither tree be a star.

Conjecture (Garcia et al. [3]). For any n-vertex trees T1 and T2, with neither being a star, it is possible to pack them
into some planar graph with n vertices.

Comment. In [3] the conjecture is proved when T1 =T2 and when one of the trees is a path. Note that if repeated edges
are allowed, then the question is trivial: place the n vertices on a circle and draw T1 inside it and T2 outside it.
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PROBLEM 459. Disjoint Hoffman–Singleton graphs

Alexander Rosa
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
E-mail: rosa@mcmail.cis.mcmaster.ca

This problem, originally due to van Dam, Klin, and Muzychuk, was conveyed to the poser by Klin. Here, the
Hoffman–Singleton graph [1] is the largest known Moore graph; it is the unique strongly regular graph with parameters
(50, 7, 0, 1) and is the smallest 7-regular graph with girth 5.

Question. Does the complete graph K50 decompose into seven copies of the Hoffman–Singleton graph?

Comment. Recently, Šiagiova and Meszka [3] used methods from topological graph theory to construct a set of five
edge-disjoint copies of the Hoffman–Singleton graph in K50. This set is maximal, since the complement of its union
is disconnected.

Refining the question somewhat, we may now ask whether the maximum number of edge-disjoint copies of the
Hoffman–Singleton graph in K50 is 5, 6, or 7.

The analogous question for the Petersen graph was answered by several authors: the maximum number of edge-
disjoint Petersen graphs in K10 is 2, and the arrangement of these two subgraphs is unique up to isomorphism. See for
example [2], whose solution includes references and description of other approaches.
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