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Abstract

Let G be a 4-connected graph. For an edge e of G, we do the following operations on G:
first, delete the edge e from G, resulting the graph G — e; second, for all the vertices x of degree
3in G — e, delete x from G — e and then completely connect the 3 neighbors of x by a triangle.
If multiple edges occur, we use single edges to replace them. The final resultant graph is
denoted by GBe. If GO e is still 4-connected, then e is called a removable edge of G. In this
paper we prove that every 4-connected graph of order at least six (excluding the 2-cyclic graph
of order six) has at least (4|G|+ 16)/7 removable edges. We also give the structural
characterization of 4-connected graphs for which the lower bound is sharp.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

All graphs considered here are finite and simple. For notations and terminology
not defined here, we refer the reader(s) to [1]. The concepts of contractible edges and

*Research supported by National Science Foundation of China.
E-mail addresses: jichangwu@yahoo.com.cn (J. Wu), x.li@eyou.com (X. Li), sjjbox@263.net (J. Su).

0095-8956/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jctb.2004.02.003



14 J. Wu et al. | Journal of Combinatorial Theory, Series B 92 (2004) 13—40

removable edges of graphs are very important in studying the structures of graphs
and in proving some properties of graphs by induction. In 1961, Tutte [3] gave the
structural characterization for 3-connected graphs by using the existence of
contractible edges and removable edges. He proved that every 3-connected graph
with order at least 5 contains contractible edges. Perhaps, this is the earliest result
concerning the concepts of contractible edges and removable edges.

Removable edges and contractible edges in 3-connected graphs have been studied
extensively in literature. In this paper we shall focus on the study of only removable
edges in 4-connected graphs. First of all, we give the definition of a removable edge
for a 4-connected graph. Let G be a 4-connected graph and e an edge of G. Consider
the graph G — e obtained by deleting the edge e from G. If G — e has vertices of
degree 3, we do the following operations on G — e. For all vertices x of degree 3 in
G — ¢, delete x from G — e and then completely connect the three neighbors of x by a
triangle. If multiple edges occur, we use single edges to replace them. The final
resultant graph is denoted by G&e. Note that if there is no vertex of degree 3 in
G — e, then GSe is simply the graph G — e.

Definition 1.1. For a 4-connected graph G and an edge e of G, if GSe is still
4-connected, then the edge e is called removable; otherwise, it is called unremovable.
The set of all removable edges of G is denoted by Eg(G); whereas the set of
unremovable edges of G is denoted by Ex(G). The number of removable edges and
the number of unremovable edges of G is denoted by eg(G) and ey (G), respectively.

The aim to introduce the concept of removable edges in 4-connected graphs is to
find a new method to construct 4-connected graphs and a new method to prove some
properties of 4-connected graphs. In [4], Yin proved that there always exist
removable edges in 4-connected graphs G unless G is a 2-cyclic graph with order 5 or
6, where a 2-cyclic graph is the graph of the square of a cycle [2]. He showed that a
4-connected graph can be obtained from a 2-cyclic graph by the following four
operations: (i) adding edges, (ii) splitting vertices, (iii) adding vertices and removing
edges, and (iv) extending vertices. In this paper we shall obtain a sharp lower bound
for the number of removable edges in a 4-connected graph, and moreover, we shall
give the structural characterization of the 4-connected graphs for which the lower
bound is sharp.

Without specific statement, in the following G always denotes a 4-connected
graph. The vertex set and edge set of G is denoted, respectively, by V(G) and E(G).
The order and size of G is denoted, respectively, by |G| and |E(G)|. For xe V(G), we
simply write xe G. The neighborhood of xe G is denoted by I'g(x) and the degree of
x is denoted by dg(x) = |I'¢(x)|. If no confusion, we simply write d(x) for dg(x). If x
and y are the two end-vertices of an edge ¢, we write ¢ = xy. For a nonempty subset
F of E(G), or N of V(G), the induced subgraph by F or N in G is denoted by
[F] or [N]. Let A,B=V(G) such that A#0#B and AnB =0, define [4,B] =
{xyeE(G)|xeA,yeB}. If H is a subgraph of G, we say that G contains H. For a
subset S of V(G), G — S denotes the graph obtained by deleting all the vertices in S
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from G together with all the incident edges. If G — S is disconnected, we say that S is
a vertex-cut of G. If |S| = s for such an S, we say that S is an s-vertex-cut. A cycle of
G with length / is simply called an /-cycle of G. We denote the 2-cyclic graphs of
order 5 and 6 by C? and C2, respectively. For ee E(G) and S<V(G) such that
|S| = 3,if G — e — S has exactly two (connected) components, say 4 and B, such that
|4|>2 and |B|>2, then we say that (e, S) is a separating pair and (e, S; A, B) is a
separating group, in which A and B are called the edge-vertex-cut fragments.

2. Some known results

First of all, we list some known results on removable edges of 4-connected graphs,
which can be found in [4] and will be used in the sequel.

Theorem 2.1. Let G be a 4-connected graph with |G|=7. An edge e of G is
unremovable if and only if there is a separating pair (e, S), or a separating group
(e,S;4,B) in G.

Theorem 2.2. Let G be a 4-connected graph with |G|=8 and let (xy,S; A, B) be a
separating group of G such that xe A, ye B and |A|=3. Then, every edge in [{x}, S] is
removable.

Corollary 2.3. Let G be a 4-connected graph with |G|=8. Then, every 3-cycle of G
contains at least one removable edge.

Theorem 2.4. Let G be a 4-connected graph with |G|=8. If for an unremovable edge
xy, Le., xye Ex(G), there is a separating group (xy,S; A, B), then all the edges in
E([S)) are removable, i.e., E([S]) = Er(G).

In the subsequent sections we shall obtain a sharp lower bound for the number of
removable edges in a 4-connected graph.

3. Terminology and notations for subgraphs with special structures

For convenience, we introduce the following special terminology and notations for
some subgraphs with special structures in a graph G.

Definition 3.1. Let G be a 4-connected graph and H a subgraph of G such that
V(H) = {a,x1,x2,x3,x4,01,02,03,04} and E(H) = {axy,axy,axs,axs, x;x2,X2X3,
X3X4, X4X1, X1V, X2V, X303, X404 }. If H satisfies the following conditions:

(i) d(a)=d(x;) =4 fori=1,2,3,4,

(i) axi,axy,axs,axs€ En(G) and x1x7, x2X3, X3X4, XaX1 € Er(G),

then H is called a helm, and the edges ax; for i = 1,2, 3,4 are called inner edges of H.



16 J. Wu et al. | Journal of Combinatorial Theory, Series B 92 (2004) 13—40

Definition 3.2. Let G be a 4-connected graph and H a subgraph of G such that
V(H) ={a,b,x1,x2,....,x143} and E(H) = {x1x2,X2X3, ..., X/42X[43, AX2, AX3, ...,
axpya, bxy,bxs, ..., bxio} with =1, If H satisfies the following conditions:

(1) xix;1 € EN(G) fori=1,2,...,1+2,
(1) axj,bx;e ER(G) for j=2,3,...,1+2,
(iii) d(x;) =4 forj=2,3,...,1+2,

then H is called an [-bi-fan.

An [-bi-fan H is said to be maximal if I'g(x1)#{a,b,x2,u} and
I'g(x143)#{a,b,x;12,v} for any u,veG. The edges x;x;4; for j=2,3,....,]+1 of
an /-bi-fan or a maximal /-bi-fan H are called inner edges of H.

Definition 3.3. Let G be a 4-connected graph and H a subgraph of G such
that V(H) = {X],Xz, ey X142, V1, V2, ...,y/+2} and E(H) =FE (H)UEz(H) where
Ei(H) = {X1X2, X2X3, ..., X141X142, V1V2, V2V3, -, Vip1Vip2})  and  Ex(H) = {y1x2,
X2Y2, YaX3y eeuy VIXI41, X1 V141, Vi41 X142 - Then, H is called an [-belt if the following
conditions are satisfied

(1) El(H)EEN(G) and EQ(H)EER(G),
(i) d(x;) =d(y;) =4fori=23,...,I+1;j=2,3,...,/+1

An [-belt H is said to be maximal if Ig(y)#{x1,x2,)2,u} and
F6(X12) #{X11, Y141, Y12,v} for any w,veG. The edges xpxjp1,yp41 for i=
2,3, ..., 1+ 1;j=1,2,...,] of an [-belt or a maximal /-belt H are called inner edges
of H.

Definition 3.4. Let G be a 4-connected graph and H a subgraph of G such that
V(H) = {xl,xz, cees X142, X143, V1, V2, ...,y1+2} and E(H) = El(H)UEz(H) where
EV(H) = {x1X2, X2X3, .0, X111 X142, X112X143, V1V2, V2V3, s VimiVie2}  and By (H) =

{12, X292, ¥2X3, +y VX141, X141V 141, Vis1 X142, X142Y142 ). Then, H is called an /-co-
belt if the following conditions are satisfied:

(i) Ei\(H)<Ey(G) and Es(H)<S Ex(G),
(i) d(x;) =d(y) =4 fori=2,3,...,1+2;j=23,...,[+1.

An [-co-belt H is said to be maximal if I'g(yi)#{x1,x2,y2,u} and
F6(yi2) #{X112, V141, X143,v} for any wu,veG. The edges XiXig1,Viyjis1 for i=
2,30+ 1;j=1,2,...., ]+ 1 of an [-co-belt or a maximal /-co-belt H are called
inner edges of H.

Definition 3.5. Let G be a 4-connected graph and H a subgraph of G such that V(H) =

{x1,x2,%3, 1,92, y3, 94} and  E(H) = {X1X2,X2X3, y1)2, V2V3, V3Va, X1V2, X2V,
X2¥3,X3y3}+. Then, H is called a W-framework if the following conditions are satisfied:

(i) xixi11€En(G) fori=1,2,
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(i) d(x2) =d(y2) =d(y3) =4,
(i) y2y3, X1¥2, X2¥2, X213, X3y3 € ER(G).

The edges xx;,x,x3 of a W-framework H are called inner edges of H.

Definition 3.6. Let G be a 4-connected graph and H a subgraph of G such that
V(H) = {x1,X2,x3,y1, 02,3, v4} and  E(H) = {x1X2, X2X3, X1X3, V12, V2V3, V3V4,
X1Y2, X2¥2, X2¥3, X3y3 }. Then, H is called a W’-framework if the following conditions
are satisfied:

(1) x;x;+1€EN(G) for i=1,2,
(i) d(x2) = d(x3) =d(y2) = d(y3) =4 and d(x;) =5,
(iil) y2y3, X192, X293, X33, X1 X3 € ER(G), X202 € Ex(G).

The edges x1x7, x2x3, X217 of a W -framework H are called inner edges of H.

For convenience, some special notations are introduced as follows.

By L, we denote the maximal 1-belt such that V' (L;) = {x;,x2,x3,y1, 2,73} and
E(LY) = {x1X2,X2X3, ¥1Y2, 2V3, Y1 X2, X2¥2, y2X3 }. We say that xpx3,y1y; are inner
edges of ;.

By L, we denote the maximal 2-belt such that V(Ly) = {xy, x2, X3, X4, V1, V2,3,
ya} and E(L5) = {x1x2, X2X3, X3X4, Y12, V23, V3Va, V1 X2, X2V, V2 X3, X393, V3Xa ). We
say that x,x3,X3X4, Y112, y2y3 are inner edges of L,.

By L, we denote the maximal 1-co-belt such that V(L") = {x1, x2, X3, X4, y1, )2,
y3} and E(Ly") = {x1x2, X2X3, X3X4, V1V2, V2V3, V1 X2, X2V2, V2X3, X3)3 . We say that
X2X3, Y12, V23 are inner edges of Ly’

By L, we denote the maximal 2-co-belt such that V(L") = {xi, x2, X3, X4, X5, )1,
¥2,¥3,¥a} and E(Ly') = {x1x2, X2X3, X3X4, X4X5, V1V2, V23, V3V, V1 X2, X212, V2 X3, X33,
V3X4, X4Y4}. We say that xox3, X3X4, V12, V2)3, V3ya are inner edges of L'

By F we denote the maximal 1-bi-fan such that V(F) = {a, b, x1, x2, X3, x4} and
E(F) = {x1x2, x2X3, X3X4, ax,, axs, bx,, bxs; }. We say that x,x; is the inner edge of F.

By W we denote the W-framework such that V(W) = {x1,x2,X3,¥1, 2, V3, Y4}
and E(W) = {x1x2, X2X3, Y1V2, V2V3, V3V4, X1V2, X2V2, X2V3, X33 ;. We say that xjxa,
Xpx3 are inner edges of W.

By W’ we denote the W’-framework such that V(W') = {x1,x2, X3, 11,2, V3, Y4}
and E(W') = {x1x2, X2X3, X1X3, V112, V2V3, V3V, X1V2, V2 X2, X2)3, V3X3 }. We say that
X1X2, X2X3, X2), are inner edges of W',

By H we denote the helm such that V(H) = {a, x1, x2, X3, X4, 01, 02, 03,04} and
E(H) = {ax),ax;, axs, axs, XX, XoX3, X3X4, X4X1, X1V, X232, X303, X404 }. We say that
the edges ax; for i = 1,2, 3,4 are inner edges of H.

The set of all the above mentioned subgraphs with special notations Ly, Ly, Ly,
Ly, F, W, W' and H of a graph G is denoted by R. Then, we have the following
result.

Lemma 3.7. There is no common inner edge between any two different subgraphs of G
in R.
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Proof. By contradiction. Suppose that there are two different subgraphs H and H’
of G in ‘R that have a common inner edge. Then, we discuss the following
cases.

(1). H is a maximal 1-belt L;. Then, x,x3 and y,y, are the inner edges of H.
Without loss of generality, we may assume that x,x; is also an inner edge of H'.
Similarly, we can treat the case that y;y, is a common inner edge of H and H'. We
discuss the following subcases for H':

(1.1). H' is a maximal 1-belt. Let V(H') = {u;,u,u3,v1,02,v3} and E(H') =
{uua, upus, v 102, V203, VU, Up V2, VaUz }, and let the inner edges of H' be uyus, vivy. If
X2X3 = upus, then we have x, = up, X3 = u3 or x, = u3,x3 = . If xo = up, x3 = u3,
then H = L, = H'. If x, = u3,x3 = up, then we have d(x3) =4 and x3y;€ E(G) or
we have d(y;) =4 and x,y,; € E(G). However, this contradicts to that H =L, is a
maximal 1-belt.

(1.2). Obviously, a similar argument can lead to that H' is not a maximal 1-co-belt,
a maximal 2-belt or a maximal 2-co-belt. And vice versa.

(1.3). H' is a maximal 1-bi-fan. Then, we have that x3y, € E(G) or x;x3€ E(G). If
x1x3€ E(G), then from the definition of the maximal I-bi-fan, we have that
x1x2 € Er(G), which contradicts to the definition of the maximal 1-belt H = L,. If
x3y1 € E(G), since y1y,€EN(G), we take the corresponding separating group
(11y2,S;4,B) such that yjed,y,eB. Since y1yaxay1,y1y2Xx3y1 are 3-cycles
of G, we have that x,x3€ E([S]). From Theorem 2.4 we have that x,x;€ Er(G),
which contradicts to the definition of the maximal 1-belt H = L;. Therefore, any
inner edge of the maximal 1-belt cannot be inner edge of any maximal 1-bi-fan. And
vice versa.

(1.4). H' is a W-framework or a W’-framework. Then, we have that y,y, € Eg(G),
which contradicts to the definition of the maximal 1-belt H = L;. Hence, any inner
edge of the maximal 1-belt cannot be inner edge of any W-framework or
W'-framework. And vice versa.

(1.5). H' is a helm. Then, either x, or x3 is incident with four unremovable edges in
G. Obviously, it is impossible since x,x3 is an inner edge of the maximal 1-belt
H = L,. Therefore, any inner edge of the maximal 1-belt cannot be inner edge of any
helm, and vice versa.

(2). H is a maximal 2-belt L,. Without loss of generality, we may assume that x,x3
is a common inner edge of H and H’. We discuss the following subcases for H':

(2.1). H' is also a maximal 2-belt. Let V(H') = {uy, uz,u3,us, vy, 02,03,04} and
E(H'") = {ujuy, upus, usua, 0103, 0203, 0304, U1 Ua, Up U, Vall3, U303, U3ts b, and let wpus,
usiy, v102, 0203 be the inner edges of H'. If xox3 = upus, then one of the following
things holds: (i) H = L, = H’; (ii) d(y1) = 4 and x,y, € E(G), which contradicts to
that H = L, is a maximal 2-belt. If x,x3 = vj1, it is easy to see that ujv; € E(G) and
d(v;) = 4, which contradicts to that H' is a maximal 2-belt. By symmetry, for the
other cases, we may employ a similar argument to show that the conclusion holds.

(2.2). Since a maximal 1-co-belt is a subgraph of a maximal 2-belt, it is easy to see
that x,x3 or y;y, is not an inner edge of a maximal 1-co-belt. Otherwise, it would
lead to a contradiction to the definition of the maximal 1-co-belt. Similarly, a
maximal 2-belt and a maximal 2-co-belt do not have any common inner edge.



J. Wu et al. | Journal of Combinatorial Theory, Series B 92 (2004) 13—40 19

(2.3). Obviously, it is impossible that an inner edge of a maximal 2-belt is an inner
edge of the following subgraphs: maximal 1-bi-fan, W-framework, W’-framework or
helm. And vice versa.

(3). H is a maximal 2-co-belt. It is easy to see that an argument similar to that used
in (2). can be employed to deduce contradictions.

(4). H is a maximal 1-bi-fan. If H' is also a maximal 1-bi-fan F’, it is easy to
see that this is true only if F = F’ holds. Obviously, it is impossible that the inner
edge xpx3 of H is an inner edge of the following subgraphs: W-framework,
W'-framework or helm.

(5). H is a W-framework, or a W'-framework, or a helm. Obviously, no matter
whatever H' is, we always can deduce contradictions. The details are omitted, and
the proof is complete. [

4. Preliminary results

In order to obtain the sharp lower bound for the number of removable edges in a
4-connected graph, we need to prove the following preliminary results.

Theorem 4.1. Let G be a 4-connected graph and F a maximal I-bi-fan of G with [ =2.
Then, there exists an edge € in F such that ¢ € Er(G) and eg(G) =er(GS¢€') + 1.

Proof. Let F be defined as in Definition 3.2. First, we claim that d(a)>5,d(b)=5.
Otherwise, we may assume that d(a) = 4 and let I'g(a) = {x2, x3, x4, v}. Obviously,
v#b, otherwise, {x2,x4,b} would be a 3-vertex-cut of G, a contradiction. Let 4 =
{a,x3},S = {x3,x4,0},e =bx3,B=G—e— A — S, then (bx3,S; A, B) is a separat-
ing group of G, and therefore, bxs € Ey(G), which contradicts to that F is /-bi-fan.

Let ¢ =ax;, H= GO¢. We will show that for any edge e#x,x4 in H, if
ec Er(H), then we have e€ Egx(G).

By contradiction. Assume that there exists an edge ee Eg(H), but e€ Ex(G). Let
e =xy. Since xyeEyn(G), from Theorem 2.1 we can take its corresponding
separating group (e, T; C, D) such that xe C,ye D. We distinguish the following
cases to proceed the proof:

Case 1: a,x3eT.

Since d(x3) = 4 and ax; € E(G), we have that |I'¢(x3)nC| =1 or |[['g(x3)nD| =
1. Without loss of generality, we may assume that |[I'g(x3)nC|=1. Let
I'g(x3)nC={n}, T ={a,x3,w}. If |C|=3, let T" = {a,v;,w}, C"=C — {v;} and
D' =H — xy— T — C'. We claim that v # x. Otherwise, we have that {a,w, v} is a
3-vertex-cut of G, which contradicts to that G is 4-connected. It is easy to see that
(e, T"; C', D') is a separating group of H, and therefore e Ex(H), a contradiction. If
|C| =2, then v;xe E(G). Since d(b) =5 and obviously v; #b, we have v € {x2,x4}. If
v] = X2, then x = x;. Since I'g(x2) = {b, x1,x3,a}, we have that w = b and I'g(x)) =
{a,b, x2,y}. Obviously, {ax;,bx;}cEr(G) and x;y€ Ey(G), which contradicts to
the definition of a maximal /-bi-fan of G. If v; = x4, then w = b, and therefore
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I'g(x) ={a,b,x4,y}, and so x=wxs. Let C'={xs,x},e=xy, T ={a,b,x1},
D'=H—e¢— C' —T'. Then, we have that (e, 7’; C', D) is a separating group of
H, and so ee Ey(H), which contradicts to that ee Egr(H).

Case 2: aeT,x;eC.

So, I'g(x3) = {a,b,x2,x4}. If |C| =3, then it is easy to see that (e, T; C — {x3}, D)
is a separating group of H, and hence ecEy(H), which contradicts to that
ec Er(H). Therefore, |C| =2, and so xel'g(x3). If x =05, then T = {a,x;, x4},
I'g(b) ={a,x2,x3,x4,y}, Tg(x2)nD ={x;}. Since x1x4¢E(G) and x;#y,
we have that |D|>=3. Let 7" ={a,x1,x4},D' =D —{x1},C'=H—-xy—T - D,
then (xy, T"; C', D') is a separating group of H, and so e€ Ey(H), a contradiction.
If x=x, then y=x;. Obviously, if we let e=xx,C ={x3,x4}, T' =
{a,b,xs},D) =H —e— C' =T, then (e, T';C’,D') is a separating group of H,
and so xp;x;€Ey(H), a contradiction. If x = x4, then we have that y = xs.
Let C'={xp, x4}, T' ={a,b,x1},D' = H—x4x5 — T' — C’, then (x4xs5,7";C',D’)
is a separating group of H, and so x4xseEy(H), a contradiction to the
assumption.

Case 3: ae C,x;€T.

If |C] =2, then a = x, and so C — {a} = {x2} or C— {a} = {x4}. If C—{a} =
{x2}, then beT. Since x3x4€ Ex(G), from Theorem 2.4 we have x4¢ T. If x4€D —
{y}, then axs¢ E(G), a contradiction. If C — {a} = {x4}, a similar argument can
lead to a contradiction, and therefore |C| > 3. Since ae C, we have that x,,x,e CUT.
Noticing that I'g(x3) " D#0, we have be D, and so x,,x4€ T. Here, {x, x4, x} is a 3-
vertex-cut of H, a contradiction.

Case 4: a,x;eC.

Obviously, here we have that |C| >3, a similar argument can lead to e Ey(H) if
BEEN(G).

Based on the above arguments, we know that if ee Er(H) and e##x,x4, then
e€ Er(G). Noticing that axs,bx;eEr(G), but axs,bxs;¢ E(H), we have that
er(G)=er(GSe) + 1. The proof is now complete. [

Theorem 4.2. Let G be a 4-connected graph and L a maximal I-belt of G with [>=3.
Then, there exists an edge ¢' in G such that egr(G)=er(GEO€) + 2.

Proof. Let L be defined as in Definition 3.3. Take ¢ = x3y; and let H = G&¢'.
Then, we delete three removable edges y,x3,y3Xx3, y3x4 from G and add three edges
VaXa, X2Xa, V2ya to get H. Let A" = {yy,x2},e1 = yaya, S" = {x1,y1,x4} and B =
G—e —S — A, then (e,S;4',B) is a separating group of H, and hence
y2ya€ Ex(G). A similar argument can lead to x,x5€ Ey(H). Here, we only need to
show that for any ee E(H) and e#yaxa, if e€ Er(H) then e€ Eg(G).

By contradiction. Assume that there exists an edge e Er(H), but e€ Ex(G). Let
e = xy. From Theorem 2.1 we take its corresponding separating group (e, S; 4, B)
such that xe4,ye B. Next we will distinguish the following cases to proceed the
proof:

Case 1: x3,y3€ 8.
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Let S = {x3,py3,w},we G and U = {x3,x4, 12, ya}. From I'g(x3) = {x2, x4, 12, y3}
and I'g(y3) = {x3,x4,)2,y4}, we claim that |[AnU| =2 = |BnU|. Otherwise, we
may assume that |[AnU| = 1. Let An U = {v}, then {x, v, w} would be a 3-vertex-
cut of G, which contradicts to that G is 4-connected. If | 4| = 3, since />3, obviously
we have that |G|>10, and so |B|>4. Let BnU = {v},v2}. Then, if we let S| =
{U],UZ,W}, B, =B-— {U],Uz},Al =H —e¢— S| — By, then (6, Sl;Al,Bl) isa separat-
ing group of H, and so ee Eyx(H), a contradiction to the assumption. If |4]| >4, let
AU ={uj,uy}, Sy = {uy,up,w}, A=A —{u,up},Bi=H—e— S, —A,. Then
(e,S1; A1, By) is a separating group of H, and so ee Ey(H), which contradicts to
the assumption.

Case 2: x3eA,y3€ 8.

Subcase 2.1: If |A| =2, then xelg(x;). If x=x,, then S={y,vs3, x4}
Since xyp3,x2x4¢ E(G), we have that d(x;)<4, a contradiction. If x = xy,
a similar argument can lead to d(x4)<4, a contradiction. If x = y,, then y = y.
Let Ay = {y2, x4}, = 3132, 81 = {x2,X5, )4}, Bi=H—-e¢e—A4,- 5|, then
(e,S1;A41,By) is a separating group of H, and so e€ Ey(H), which contradicts to
the assumption.

Subcase 2.2: If |A|=3, since x3€4, it is easy to see that BnI'g(y3) = {ya}. If
|B|>3, let B] :B—{y4}7S1 :{y4}US—{y3},A1 :H—E—Sl —Bl. Then
(e,S1;A41,By) is a separating group of H, and so ecEy(H). If |B| =2, since
I'g(y4) = {y3, s, x4, x5}, then we have ye {x4, x5, ys}. If y = x4, then this is true only
if x = x3 holds, a contradiction. If y = xs, since y3xs¢ E(G), we have that d(xs5) =4
and S = {y3,ys5,x4}. Let A; = A —{y},S1 = {y2,y5, x4}, Bi=H —e— S — 4,
then (e, S1; 4y, By) is a separating group of H, and hence ec Exy(H). If y = ys, then
S = {x4, xs5,y3}. Note that y3ys, x4ys¢ E(G). So, d(ys) <4, a contradiction.

To sum up, from the above arguments we know that in Case 2 we always have
eeEN(H).

Case 3: x3€8,y3€ A.

By symmetry, an argument analogous to that used in Case 2 can lead to that
ecEy(H).

Case 4: x3,y3€ A.

If |A]| >4, obviously, ee Ey(H), a contradiction to the assumption. So, |4]<3.
Obviously, x3#x,y3#x. Therefore, we have that |4| = 3. Since 4 is a connected
subgraph of G, we may assume that x3;xe E(G). If x = x4, then xy = x4xs. Let
S| = {y17y4,X2}7A1 = {y27X4}7B1 =H —e¢—8; — Ay, then (67 Sl;Al,Bl) is a separ-
ating group of H, and so eeEy(H). If x =y,, then y=y;. Let e =y, 41 =
{y2, x4}, 81 = {x2,x5,y4}, By = H—e— S| — 4y, then (e, S; 41, B;) is a separating
group of H, and so ee Ey(H). If x = x,, then S = {y, y4, x4}. It is easy to see that
d(x;) <4, a contradiction.

Based on all the above arguments, we have that Ex(H)< Er(G) except the edge
y2x4. Noticing that yyx3, x3y3, x4y3 € ER(G), we have that eg(G) Zer(GSe) + 2. The
proof is now complete. [

Lemma 4.3. Let G be a 4-connected graph and (xy,S; A, B) a separating group of G
such that xe Bjye A. If there exists another edge yze Ex(G) and its corresponding
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separating group (yz,S'; A',B") such that ye A',ze B which satisfy the following
conditions:

(i) AnA' ={y},AnB ={z}, AnS' ={a},A'nS={b},BnS = {u,v} such that
a,b,u,veq,
(i) {zu,zv} N En(G)#0,abe Ex(G),

then we have that au,av cannot belong to E(G) simultaneously.

Proof. By contradiction. Assume that au,ave E(G). Without loss of generality, we
may assume that zueEy(G). So, there is a corresponding separating group
(zu, Ty; Cy, Dy) such that ze Cy,ueDy. Then, we have that ze Cyn B ,ue B nD;.
Since azua is a 3-cycle of G, we have ae T}, and so aeS'nT;. Let

Yi=AnT)u(SnT)u(CinS'),
Y,=(CnSYu(S'nT))u(B'nTy),
Yi=BnT)u(SnT)u(S nDy),
Y= (DinS)u(S'nTy)u (A nT).

Obviously, ye A’ nC) or ye A’ nT;. Next we will distinguish the following cases to
proceed the proof.

Case 1: If ye A’ n Cy, then Y is a vertex-cut of G — yz. Since G is 4-connected, we
have that | Y;|>3. By a similar argument, we can deduce that |Y3|>3. Since |Y;| +
|Y3|=|S'|+|T1| =6, we have that |Y,|=|Y3]=3, and so |4'NnT)|=
|S"ADy|,|S"nCy| = |B'nT)|. Since aeS' T, and abe Ey(G), from Theorem 2.4
we have that b¢ T) and b¢S’. Since bye E(G), we have that be A'nC;. From
zve E(G) and ve B', we know that ve B n(C; U Ty). Hence, we have that [A'nT)| =
|S"nDy| =0,1 or 2.

Now we discuss the following subcases:

Subcase 1.1: If |A'nT)| = |D;nS'| =2, then noticing that |T}| = |S’| =3 and
aeS'n T, we have that |S'nCi| = |B' nT)| =0. Since avza is a 3-cycle of G, we
have that ve B’ n C), and so |B'n C;|>2. Then, {a,z} would be a 2-vertex-cut of G,
which contradicts to that G is 4-connected.

Subcase 1.2: If |A'nTy| = |D;nS'| =1, then |S'nT|<2. First, we claim that
B'nDy = {u}. Otherwise, if |B'nDi|=2, since I'g(a)={y,z,u,v,b}, by the
foregoing argument we have that I'g(a) n(B'n D) = {u}. Then, {u}u(¥; —{a})
would be a 3-vertex-cut of G, a contradiction. Hence, Dy "B’ = {u}. Let D;n S’ =
{ur}. If SNT, = {a}, then |Y4| = 3. Since G is 4-connected, we have that D1n A4’ =
0. Then, u; e I'g(a). However, it is easy to see that u; ¢ {y,z,b,u, v}, a contradiction.
Therefore, |S'nTy| = 2. It is easy to see that I'g(a)n(A'nDy) =0. If A'nD;#0,
then Y4 — {a} would be a 3-vertex-cut of G, a contradiction. If A’ Dy = 0, then it is
easy to see that au; € E(G). However, u; ¢ {b,u,v,y,z}, a contradiction.

Subcase 1.3: If |[A' " T)| = |D1nS’| = 0, since D is a connected subgraph of G, we
have that A’ Dy = (. From |D;|>2, we have that |D; n B'|>2. By an analogous
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argument we can deduce that I'g(a)n(D1nB')={u}. Since |Y3|=|Ti|=3,
{u} U (Y3 — {a}) would be a 3-vertex-cut, a contradiction.

Case 2: ye A'nTy.

Since yze Ex(G), from Theorem 2.2 we have that |C;| = 2. Since C) is a connected
subgraph of G, we have that 4'nCy = 0. If S’ C; #0, from |C;| = 2 we have that
|S"~ Cy| = 1. Since ae S"n Ty, we have that |[D; nS'|<1. Since Y3 is a vertex-cut of
G — zu, we have that |Y3|>3, and so |B'n T}|>1. Noticing that |T}| = 3, we have
that A'n Ty = {y} and |Y4] = 3. Since G is 4-connected, we have that 4'nD; =0,
and therefore, we have that 4" = {y}, which contradicts to that [4'|=2. If S'nC| =
0, then |B'n Cy| = 2. Since A’ n T} #0, we have that | 2| = |T1n (B'uS’)|<2, and so
{z} U Y> would be a vertex-cut of G. However, |{z} U Y>| <4, a contradiction.

From all the above arguments we have that au,av cannot belong to E(G)
simultaneously. The proof is now complete. [

A 4-connected graph G is said to have property (%) if there does not exist any
edge xye Er(G) such that both d(x)>5 and d(y)=5

Theorem 4.4. Let G be a 4-connected graph with property (%), |G|=8, and C' be a
cycle of G. If C' does not contain any removable edges of G, then G has one of
the following structures as its subgraph: [-belt, [-bi-fan (1=1), W-framework,
W'-framework or helm, such that it intersects C' at its some inner edge(s).

Proof. For every edge e = xy in C’, from Theorem 2.1 there exists a separating
group (e, S; 4, B) of G, in which we always choose 4 and B such that min{|4|,|B|} is
as small as possible. Without loss of generality, we may assume |A4|<|B| such that
yeA,xeB. Then, we take f = yze E(C’'),z#x, and its corresponding separating
group (f,T;C,D) such that ye C,zeD in G. Let

Xi=SnC)u(SnT)u(4nT),
7)

(
=UAnT)u(SNT)u(SnD),
=(SnD)u(SNT)u(BnT),
=(BnT)u(SNT)u(SNC).

It is easy to see that the edge e = xy is the unique edge connecting 4 and B, and the
edge f = yz is the unique edge connecting C and D, and so x¢ D, z¢ B. Since X is a
vertex-cut of G — yx — yz and G is 4-connected, we have that |X;|>2.

Next we will distinguish the following cases to proceed the proof:

Case 1: xeBnC,ze DN S.

From Theorem 2.2 we have that |4| = 2. Since AnC#0 and A4 is a connected
subgraph of G, we have that AnD =0, and so |[AnT|<1. If |AnT| =0, then
|[AnC| =2. Since SND#0, by noticing that |[S|=3, we have that |X;|=
[(SNC)u(SNT)|<2, and thus X;u{y} would be a vertex-cut of G. However,
|X1u{y}| <4, which contradicts to that G is 4-connected. Therefore, |ANT| =
1,An C = {y}. Since X; is a vertex-cut of G — xy, we have that | X4| >3, and hence
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ISNC|=|ANT|=1,|BAT|=|SnD|>1. So, SNT =0 or |[SNT|=1. We claim
that SN T = (. Otherwise, if [SNT| =1, then |X3| =3, and so BnD = {. Since
AnD =0, it is easy to see that D = DS = {z}, which contradicts to that |D|>2,
and thus SN T = (. Noticing that |T| = 3, we have that |[BnT| =2.1If |[SnC| = 2,
then |SnD|=1. A similar argument can be used to get that D = {z}, which
contradicts to that |D|>2. Therefore, |[CnS| =1, and so |[Dn S| = 2.

Let AnT ={a},SNC={b},SnD={z,c}. Tt is easy to see that I'g(y) =
{x,z,a,b}, I'g(a)={y,z,b,c}. Next we will show that ay,az,bye Er(G) by
contradiction.

(1). Assume that aye Ey(G) and we take a separating group (ay, U; A', B') such
that ae A’,ye B'. Since ayza,abya are 3-cycles of G, we have that z,be U. Since
yze Ex(G), from Theorem 2.2 we have that |B'| = 2. Let B' = {v, y}, then byv|b is a
3-cycle of G and v #a, and so this is true only if v; = x holds. However, xz¢ E(G),
and so d(x) <4, a contradiction.

(2). Assume that aze Ey(G) and we take its separating group (az, U; A’, B') such
that aeA’,ze B’ in G. Since ayza is a 3-cycle of G, we have that ye U. Since
yze En(G), from Theorem 2.2 we have that |B'| = 2. Let B' = {z, v}, then yzv;y is a
3-cycle of G and v; #a, which is impossible to hold in G. Therefore, aze Eg(G).

(3). Assume that bye Ex(G). First, let A’ = Cn(BuUS),S' ={y}u(BnT), B =
G—ab— A" — S, then (ab,S’;A’,B’) is a separating group of G, and hence
abe Ex(G). Since bye Ex(G), we take its separating group (by, U; A, B') such that
be A',ye B'. Since abya is a 3-cycle of G, we have that aeS’. Since abe Ey(G), from
Theorem 2.2 we have that |4'| = 2. Let A’ = {b,v;}. Then abva is a 3-cycle of G and
v; #y, which is impossible in G, and therefore, we have by e Er(G).

Let A" ={a,y},S' ={b,z,x}, B=G—ac— S — A, then (ac,S;4',B) is a
separating group of G, and so ace Ex(G). It is easy to see that (ab, BT u{y}) is
a separating pair of G, so abe Ex(G).

Obviously, yz is an inner edge of an /-belt or [-co-belt with />1, and so the
conclusion holds.

Case 2: zeSnD,xeBnT.

From Theorem 2.2 we have that |4| = |C| = 2. Since 4 and C are two connected
subgraphs of G, we have that AnD = = Bn C. First, we claim that [AnC| = 1.
Otherwise, |[ANC| =2, and so AnT =0 =SnC. Since BAT#0+#Sn D, we have
that |X;| = |SnT|<2, and so X;u{y} would be a vertex-cut of G. However,
| X1 u{y}| <4, which contradicts to that G is 4-connected. Therefore, |ANT| =
1,|Sn C| = 1. Second, we claim that SN T = 0. Otherwise, |[SNT| = 1. Then, |X3| =
3, and so BnD =0. Hence, D = DnS = {z}, which contradicts to that |D|>2.
Therefore, we have that |[BnT| = |[SnD|=2.

Let AnT ={a},SNnC={b},DnS={z,v},BnT = {x,u}, then TIg(y)=
{x,z,a,b},I'g(a) = {x,z,b,v},[¢(b) = {x,y,a,u}.

Next we will show aze Eg(G). By contradiction, assume that aze Ex(G) and we
take the corresponding separating group (az, U; A', B') such that ae A',ze B'. Since
azya is a 3-cycle of G, we have that ye U. Since yze Ex(G), from Theorem 2.2 we
have that |B'| = 2. Let B' = {z, v}, then yzv; y is a 3-cycle of G and v| #a, and so this
is true only if v; = x holds. Since bxe E(G), we have be U. Then, (U — {y})u{a}
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would be a 3-vertex-cut of G, a contradiction. Therefore, aze Er(G) holds. By
symmetry, we have that bxe Eg(G). Let A" = {a,y}, S'={x,z,b},B =G —av —
S’ — A', then (av,S’; A’, B') is a separating group of G, and so ave Ex(G). A similar
argument can lead to bue Ey(G).

Now we discuss the following subcases:

Subcase 2.1: xz¢ E(G). We will show that ay, bye Ex(G). By contradiction, assume
that aye Ey(G) and we take its separating group (ay,U;A’,B’) such that
aeA',yeB'. Since ayza is a 3-cycle of G, we have that ze U. Since yze Ey(G),
from Theorem 2.2 we have that |B'| = 2. Let B' = {y, v}, then yzv,y is a 3-cycle of
G. Obviously, vy #a. Note that xz¢ E(G), and so vy #x, which is impossible in G.
Therefore, we have that ay e Er(G). By symmetry, we have that bye Ex(G). It is easy
to see that if abe Ey(G), then G contains an /-belt or an /-co-belt with /> 1 such that
yz is its an inner edge. If abe Ex(G), then G contains a W-framework such that yz is
its an inner edge. Therefore, the conclusion holds.

Subcase 2.2: xzeE(G). Since xy,yze Ey(G), from Corollary 2.3 we have
xze Er(G). Since G has property (% ), we have that d(x) =4 or d(z) = 4.

Subsubcase 2.2.1: d(x) =4,d(z)=5. Let I'g(x) ={y,z,b,w}. Since |G|=8, we
have that BAD#0, and so we BnD. Let A" = {x,y}, U ={w,z,b},B = G —ay —
U — A'. Then (ay, U; A', B') is a separating group of G, and so aye Ey(G). We claim
that abe Er(G). Otherwise, abe Ex(G). Then, we take a separating group
(ay,T1;C1,D;) of G such that aeCy,yeD,. Obviously, z,beT). Since
ab,yze Ex(G), from Theorem 2.2 we have that |C;| = |D;| = 2, which contradicts
to that |G| =8, and so abe Ex(G). We claim that by e Eg(G). Otherwise, by e Ex(G),
and we take its separating group (by, T1; C1, D) such that be Cy, ye D;. Since byxb
is a 3-cycle of G, we have xe Ty. Since xye Ex(G), from Theorem 2.2 we have that
|Di| = 2. Let Dy = {y, v}, then yxv;y is a 3-cycle of G, and hence this is true only if
v = z holds. However, d(v;) =4, which contradicts to that d(z)>5. Therefore,
bye Er(G). Obviously, here xy,yz are inner edges of a W’-framework in G. The

conclusion holds.
Subsubcase 2.2.2: d(x)>=5,d(z) = 4. By symmetry, from an argument similar to

that used in Subsubcase 2.2.1 we can get the conclusion.

Subsubcase 2.2.3: d(x) = d(z) = 4. Let I'g(x) = {y,z,b,w}. Let A’ = {x,y}, U =
{w,z,b}, B =G —ay— U— A, then (ay,U; A', B') is a separating group of G, and
so aye Ex(G). By symmetry, we have that bye Ey(G). Since xy,yze Ex(G), from
Corollary 2.3 we have that ab, bx, xz,zae Er(G). Obviously, G contains a helm as a
subgraph such that xy, yz are its inner edges. Therefore, the conclusion holds.

Case 3: zeAnD,xeBnT.

From Theorem 2.2 we have that |C| = 2. Since | 4| <|C|, we have that |4] = 2, and
hence 4 = {y,z}, AnT = 0. Since AnD+#0, we have that |X>|>3. Noticing that
|S| = 3, we have that |[AnT|>|SnC|, and so |[SnC| =0. Since C is a connected
subgraph of G and |C| = 2, from 4 = {y, z} we can get that A~ C = {y}. Therefore,
CnS+#0, a contradiction. So, Case 3 cannot occur.

Case 4: zeAnD,xeBnC.

So, AnD#0#BnNC, and therefore |X»|>3,|Xs|>3. Since |Xa| + |X4| = |S| +
|T| =6, we have that|X>| = |X4] =3, and so |AnT|=|SNC|,|BnT|=|SnD|.
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First, we claim that AnD ={z}. Otherwise, |[AnD|=2. Let U =X, 4' =
AnD,B =G —yz— U — A, then (yz,U'; A", B') is a separating group of G, and
yze E(C"), |A'|<|A|, which contradicts to that |A] is as small as possible. Therefore,
AnD = {z}. Since D is a connected subgraph of G and |D|>2, we have that
DnS#0#BnT,and so [SNT|<2. If |[SNT| =1, we claim that SNC#0#ANT.
Otherwise, |X;| = 1. Obviously, |[AnC|=2, and so {y}u(SNT) would be a 2-
vertex-cut of G, a contradiction. Therefore, |[SNC|=]AnT|=1,|DnS|=
|IBNT| =1, and hence |X3|=3. Then, we have that BnD =0 and |D|=2.
However, |A4|>=3. Then, |D|<|A4|, which contradicts to that |A4| is as small as
possible. Therefore, |SNT|=0or [SNT| =2.

Next we will show that |SNT|#0. Assume that [SNnT|=0. Then, |[BNnT| =
[SND| =2 and [AnT|=|SnC|=1 must hold. We claim that 4nC = {y}.
Otherwise, |ANC|=2. Then, X;u{y} would be a 3-vertex-cut of G, which
contradicts to that G is 4-connected, and so d(y) =4. Let AnT ={a},SnC =
{b},SnD = {u,v}. First, let 4' ={a,z},S ={y}u(SnD),B=G—ab— S — 4,
then (ab, S'; A', B') is a separating group of G, and so abe Ey(G). Second, we claim
that aze Er(G). Otherwise, aze Ey(G), we take the separating group (az,S’; A', B')
such that ae A’, ze B'. Obviously, ye S'. Since yze Ey(G), from Theorem 2.2 we have
that |B| =2, say B’ ={z,v}. Then, zv;yz is a 3-cycle of G and v, #a, which is
impossible to hold, so azeEg(G). Since C’' is a cycle of G, we have that
{zu,zv} " En(G) #0. From Lemma 4.3 we have that au, av cannot belong to E(G)
simultaneously. Without loss of generality, we may assume that au¢ E(G). Let S’ =
(S —{u})u{z}, A ' =A4—{z},B =Bu{u}, then (xy,S;4’,B') is a separating
group of G, and |A4’|<|A|, which contradicts to that |4| is as small as possible.
Therefore, SNT#0, and so |SNT|=2. Then, we have that |[SAnD|=|BnT| =
L|AnT|=|SnC|=0,4nC = {y}.

Let SNT = {a,b},SnD = {u}. It is easy to see that I'¢(y) = {x,a,b,z},['c(z) =
{y,a,b,u}.

First, we will show that the conclusion of the theorem holds if aze Ey(G). From
Theorem 2.1 we take its corresponding separating group (az, Si; A1, B1) such that
ae By,ze A,. Since ayza is a 3-cycle of G, we have ye S|, and so yeS|nC,aeB;nT.
From Theorem 2.2 we have that |[4;| = |D| = 2. If |4 n D| = 2, since S} n C#0, then
|S1nT|<2,and so {z} U (S1 " T) would be a vertex-cut with cardinality less than 4, a
contradiction. Therefore, |4;nD|=1. Since beT and bzeE(G), we have that
beA N T. Since D is a connected subgraph of G and |D| = 2, it is easy to see that
IDN S| = 1. Since zue E(G), we have that DN S} = {u}. We claim that S;n T = 0.
Otherwise, |S;nT|=1. Then, |[S;nC|=|BinT|=1. Obviously, |[(SinC)u
(S1nT)u (B N T)| = 3. Since G is 4-connected, we have that B; n C = (). Therefore,
|C| =|Cn S| =1, which contradicts to that |C|>2. Hence, S\nT =0, and
therefore, |S;1NC| = |B;nT| = 2. Here we need to discuss the following cases:

(1). If d(y) = 4,d(a) =5, an argument similar to that used in Subsubcase 2.2.1 can
lead to that G contains a W’-framework such that yz is its an inner edge. Then, the
conclusion holds.

(2). If d(y) = d(a) = 4, an argument similar to that used in Subsubcase 2.2.3 can
lead to that G contains a helm such that yz is its an inner edge. The conclusion holds.
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If bze Ex(G), by the symmetry of az and bz, a similar argument can be used to get
the conclusion. Therefore, we may assume that az, bze Eg(G).

Next we consider ay. Assume ayeEyn(G). From Theorem 2.1 we take its
separating group (ay,Si; Ai,B;) such that aeA,,yeB;. It is easy to see that
zeS1nD, yeBinC and aeA;nT. Since ay,yze Ey(G), from Theorem 2.2
we have that |C| =2 = |By|, and so C = {y, x}. By an argument analogous to that
used in Case 2, we can get that |[BinT|=|S1nC|=1,BinC={y}, |[AinT|=
[DN S| =2. Then, S;nC = {x}. Since byzb is a 3-cycle of G, it is easy to see that
B nT ={b} and d(x) =d(b) =d(z) = 4. Here we need to discuss the following
cases:

(1). If d(a) =5, an argument analogous to that used in Subsubcase 2.2.1 can lead
to that G contains a W’'-framework such that xy, yz are its inner edges. Then, the
conclusion holds.

(2). If d(a) = 4, an argument analogous to that used in Subsubcase 2.2.3 can lead
to that G contains a helm such that xy, yz are its inner edges. Then, the conclusion
holds.

Thus, we may assume that ay, bye Ex(G). Then, according to the definition of the
I-bi-fan, (/>1), G contains a /-bi-fan such that yz is its an inner edge. The proof is
now complete. [

Lemma 4.5. Let G be a 4-connected graph with property (%), and let P = y1y,--yi
be a path of [Ex(G)] with k=3 and take a set D such that O # D < V(G). Suppose that
(yiy2, U X', Y') is a separating group of G such that y1eY',y2€ X' and DN Y'#0.
We choose ie{l,2,....k} and a separating group (y:yi+1,S;A,B) satisfying
vi€B,yii1€A, DN B#0 such that |A| is as small as possible. If i<k — 2, we take
another separating group (yiy1Yiy2,S'; A, B') such that y; .1 € B,y o€ A', Then, one of
the following conclusions holds:

(i) AnB ={yin},AnA'={yi2},AnS' ={a}, BnS={b},SnS =0,y,€e Bn B,
[BAS'|=|A'nS| =2, AnS = {u,v}, where you,yiov,yi2ae Er(G) and
a,b,u,ved.

(i) AnA" ={yi2},y1€AnB ., SNS' =0=A4nB, BnS' ={d} =DnB,DnB
=0,4nS={c},|BnS|=|AnS|=2,y,e BnB, where d,ceqG.

(i) AnA ={yis2}, yinn€ednB,SnS' ={w}, DnB={d} =BnS' DnB =
0=BnA',AnS={c}, |BnS|=]|4nS'|=1,y,eBnB, where d,c,
wea.

(iv) G contains one of the following structures: /-belt, (/>1), helm, W-framework,
W'-framework, [-bi-fan, (/>1), as its subgraph, such that it intersects P at its
some inner edge(s).

Proof. Let
Xi=UAnS)u(SnS)u(BnS),
Xo=(AnS)u(SnS)u (4 nS),
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Xy = (4'08)u(SnS)U(BAS),
Xy = (B nS)u(Sns)u(BAS).

We will distinguish the following cases to proceed the proof.

Case 1: y;e BN B ,y;,eAnA'.

Since BN B’ #0, then X, is a vertex-cut of G — y;y;,1. Since G is 4-connected, we
have that |X4|>3. By a similar argument we can deduce that |X>|>3. Since |X>| +
| X4 = |S] + |S’| = 6, we have that |X5| = |Xy|, and so |[AnS'|=|B'nS|, |4 0S| =
|[BnS'|.

First, we claim that A’ (BUS)#0. Otherwise, A'n(BuUS) = 0. Since |4’ S| =
0, we have that §'nB = 0. Since B is a connected subgraph of G, we have that
B = BnB. Therefore, we have that 0#DnB=Dn(BNnB)=DnB. For the
separating  group  (Vip1Vig2, 84, B) of G, we have that y;,€eB,
Viip€A ,DNAB #0, and A’ = A,|A’'|<|A|, which contradicts to that |A4| is as small
as possible, and so A’ (BUS)#0. Since 4’ is a connected subgraph of G and
AnA'#0#A4'~(BUS), we have that A'nS#0#BnS'. If |4’ S| = 3, then |X| =
0, and so {y;,yit2} would be a 2-vertex-cut of G, a contradiction. Therefore,
[A'nS|=2o0r |[AnS|=1.

Next we will discuss the following subcases.

Subcase 1.1: |A'nS|=|S"nB|=2. Let A'nS = {u,v}. Since G is 4-connected
and X is a vertex-cut of G — y;yi11 — yir1Vi+2, We have that |X;|>2. Noticing that
|S| = |S8'| =3, it is easy to see that [AnS'|=|BnS|=1,|[SNnS|=0. Let AnS' =
{a}, B nS = {b}. First, we claim that A~ B = {y;;,}. Otherwise, |4 B'|>2, and
$0 X1 u{yi;1} would be a 3-vertex-cut of G, a contradiction. Second, we claim that
AnA = {yi2}. Otherwise, [AnA'|=2. Let 4, =AnA, S =X,B =G—
Vir1yira —S1 — Ay. It is easy to see that DBy #0. Then, (yiy1yis2,S1;41,B) is a
separating group of G such that y,.1€Bi,yisred; and DN By#0. However,
|4;|<|A|, which contradicts to that |4| is as small as possible. Therefore, 4An A4’ =
{yis2}. Obviously, (ab,S)) is a separating pair of G such that S; = {y;1,u,v},
and so abeEy(G). We claim that y;.ou,y0ve ER(G). Otherwise,
{yisou, yirav} " En(G)#0. From Lemma 4.3 we have that au,av cannot belong to
E(G) simultaneously. Without loss of generality, we may assume that
au¢ E(G). Let Ay=A —{yis2}, St = {yis2} 0 (S —{u}), Bi = G = yiyiy1 — S1 — 4y,
then (y;yit1,S1; 41, B1) is a separating group of G such that D By #0. However,
|41|<|A|, which contradicts to that |4| is as small as possible. Therefore,
Virau, yirov€ Er(G). We claim that ay;,, € Ex(G). Otherwise, ay;, € Ey(G), and we
take its separating group (ay;2, T’; C', D) such that ae C', y;,, € D'. Since ay;1yi2a
is a 3-cycle of G, we have that y; ;e T". Since y;;1y:i12€ Ex(G), from Theorem 2.2 we
have that |D'| = 2. Let D' = {y;;2, 01}, then vy, 1yi201 is a 3-cycle of G and v; #a.
Obviously, it is impossible to hold in G, and hence, ay;;>€ Er(G). Then, the
conclusion (i) holds.

Subcase 1.2: |[A'nS| =|BnS'| = 1.

Let A'nS = {c},BnS = {d}. Then, we will discuss the following subsubcases.

Subsubcase 1.2.1: |SNS'| =0,|B'nS|=]4AnS'| =2.
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It is easy to see that | X3| = 2. Since G is 4-connected, we have that A’~ B = () and
|X2] =3. We claim that AnA’ = {yi»}. Otherwise, |[AnA'|=2. Let A4, =
AnA, S = X2,B = G-y 1yis2 — S| — Ay, then (yi+1y,~+2, S]§A1,B1) is a separat-
ing group. Obviously, D B;#0 and |4;|<|A|, which contradicts to that |4] is as
small as possible. Therefore, An A" = {y; 2}, and so 4" = {y;;2, ¢}, |4'| = 2<|A|. By
the minimum property of |4|, we have that B'nD = §, and therefore, BnD =
BnS' = {d} and |Bn D| = 1. Then, conclusion (ii) holds.

Subsubcase 1.2.2: |SnS'| = 1,|BnS|=]4AnS| = 1.

Let A'nS={c}, SnS ={w},BnS = {d}. Since |X3| =3<4, we have that
BN A" = (. An argument similar to that used in Subsubcase 1.2.1 can lead to that
AnA ={yi2},yir1€AnB. Since |A'| =2<]A|, by an argument similar to that
used in Subsubcase 1.2.1, we have that BnD =0, and so DnB = BnS = {d}.
Then, conclusion (iii) holds.

Subsubcase 1.2.3: |SNS'| =2,|BnS|=|4nS'| =0,

Let SnS' = {a,b}. We claim that A" B = {y;;,}. Otherwise, |4~ B'|>2. Then,
{yi+1,a,b} would be a 3-vertex-cut of G, which contradicts to that G is 4-connected.
It is easy to see that |X>| = 3. An argument similar to that used in Subsubcase 1.2.1
can lead to that AnA ={y.2}. From Corollary 2.3 we have that
{ayiv1, ayia} O ER(G)#0, {byii1,byia} nER(G)#0. Next we discuss the following
cases.

(1). If ay;1,€ En(G), then A'n B =0 and we take the corresponding separating
group (ayi2,S1; A1, By) such that y;.reA,ae B;. Since ay;1yi12a is a 3-cycle of G,
we have that y;,1€S], and so y;,; €S| nB. Since aeS’, we have that aeS'n B;.
Obviously, d(yi11) = d(yit2) = 4. By an argument analogous to that used in Subcase
2.2 of Theorem 4.4, we can get that y;,1y;.» is an inner edge of a W’-framework or a
helm, and so conclusion (iv) holds. For by;., € Ey(G), we may employ a similar
argument to get conclusion (iv). Hence, we may assume that ay;»,by; 2 € Er(G).

(2). If ay1€En(G), we take the corresponding separating group
(ayiz1,S1; A1, B1) such that y; 1€A4,,aeB;. Then, y;.1€A1nB,ae B nS'. Since
ayir1yiaa is a 3-cycle of G, we have that y;.,€S, and so y;;,€4'nS;. Since
ayir2€ E(G) and d(y;12) = 4, by an argument analogous to that used in Subcase 2.2
of Theorem 4.4 we can get that y;,1y;,, is an inner edge of a W'-framework or a
helm, and hence, conclusion (iv) holds. For by;;| € Ex(G), we may employ a similar
argument to get conclusion (iv).

Based on the above arguments, we may assume that ayii,byii1,
ayiy2,byi2€ Er(G), and so G contains a /-bi-fan such that y;.;y;» is its an inner
edge. Therefore, conclusion (iv) holds.

Case 2: yiioeAnA,yie BnS'.

Since y;yir1€ Eny(G), from Theorem 2.2 we have that |B'| =2. Since B is a
connected subgraph of G, we have that Bn B’ = (). Because G is 4-connected and X
is a vertex-cut of G — y;¥i11 — Vit 1Vir2, we have that | X7|>2. A similar argument can
lead to that |X»|>3. We claim that AnB' = {y;;1}. If not, i.e., |[AnB| =2, from
BN S'#0 and |S’| = 3 we have that |X;|<2, and so X;U{y;1} is a vertex-cut of G
with cardinality less than 4, which contradicts to that G is 4-connected. Therefore,
|[AnB| = |B'nS|=1.If |[BnS'| =1, then |X3| =3, and so 4’'nB = 0. Then, we
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have that |B| = |BnS’| = 1, which contradicts to that |B|>2, and so |[BnS'|>2. If
|BNS'| =3, then we have that AnS'=0=SnS", and so |X;|=1, which
contradicts to that |X;|>2. Therefore, |[BnS’| =2 and |SnS'|<1. If [SN S| =1,
then AnS" =0 and |[4'~nS| =1, and hence |X>| =2, which contradicts to that
|X>2|>3. Then, we can conclude that SnS" =0 and |[4AnS'| = 1. From |S| =3 we
know that [4'nS|=2,|X2] =3. We claim that AnA’" = {y»}. If not, ie,
|[AnA’| =2, then we take 4 = AnA',S) =X2,B1 =G — yi1yis2 —S1 — 41, and
$0 (yir1yis2, S1; A1, By) is a separating group of G. It is easy to see that B; n D#0.
However, we have that |4;]| <|A|, which contradicts to that | 4] is as small as possible.
Therefore, An A" = {yi12}.

Let AnS' = {a}, B'nS = {b}. Next we will show that by;, by;,1,ay;;1 € Er(G) by
contradiction.

(1). If by; € Ex(G), we take its corresponding separating group (by;, T; C,K) of G
such that be C, y;e K. Since by;y;11b is a 3-cycle of G, we have that y;,;€T. Since
yivir1€EN(G), from Theorem 2.2 we can get |K| =2, say K = {y;,v1}. Then,
vyir1yivr i1s a 3-cycle of G and v;#b, which is impossible in G, and hence
by; e ER(G).

(2). If by;;1€En(G), similarly we take its corresponding separating group
(byis1, T; C,K) of G such that be C,y; . €K. It is easy to see that {a,y;} =T. Since
vivi+1 € Ex(G), from Theorem 2.2 we have that|K| =2, say K = {y;+1,v1}. Then,
nelg(yi)nI'¢(yis1)nI'g(a), which is impossible in G, and so by;;; € Eg(G).

(3). If ay;+1 € EN(G), again similarly we take its corresponding separating group
(ayiz1, T; C,K) such that ae C,y;;1 €K. Since ay;;1yi2a is a 3-cycle of G, we have
Vir2€T. Since yii1Viy2€ En(G), from Theorem 2.2 we have that |K| =2. Let K =
{yis1,01}, then yiv1yip2yi is a 3-cycle of G, and v; #a, which is impossible in G,
and so ay;y1 € Er(G).

Let A, :{a,sz},Sl :SﬂA/U{yi+1} and B, =G—ab— S, — A, then
(ab, Sy; A1, By) is a separating group of G, and so abe Eyx(G).

Noticing that d(b) = d(y;+1) = 4, by the definition of an /-belt we know that G
contains an /-belt such that y;y;,; is its an inner edge. Therefore, conclusion (iv)
holds.

Case 3: ;e BNnS',yi2ed nS.

From Theorem 2.2 we have that |4| =2,|B'| = 2. Since 4 and B’ are connected
subgraphs of G, we have that An A’ =0 = BnB . If |[AnB'| =2, then BnS=0=
AnS'. Since BNnS'#0#A4'nS, by noticing that |S|=|S| =3, we have that
SN S'|<2, and so {yit1} U (SNS’) is a vertex-cut of G with cardinality less than 4,
which contradicts to that G is 4-connected. Therefore, AnB' = {y;+1}, and so
|BNS|=|AnS|=1.1f |[A'nS| = 1, then A’ B#0. Then, X; is a vertex-cut of G,
and so |X3|>4. Then, 1 = [4'nS|>|4nS’| =1, a contradiction. Hence, |4'n S| =
2,and so SNS' =0,|BnS’| = 2. By an argument similar to that used in Case 2 of
Theorem 4.4, we know that conclusion (iv) of the lemma holds.

Case 4: y;e BN B,y ,eA'nS.

An argument analogous to that used in Case 1 of Theorem 4.4 can show that G
contains an /-belt such that y;,1y;,» is its an inner edge. Therefore, conclusion (iv) of
the lemma holds. The proof of the lemma is complete. [
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Theorem 4.6. Let G be a 4-connected graph with property (% ). Suppose that H is a
helm of G such that H is defined as in Definition 3.1. Let V(H)=
{a,x1,x2, X3, X4,01,02,03,04} and P = y1y,---yy, is a path in [Ex(G)] with h=2 such
that a¢ V(P) and {yi,yn} ={x1,x2,x3,x4}. Then, G contains one of the following
structures Hy as its subgraph: [-belt, [-bi-fan, (I=1), W-framework, W'-framework or
helm, such that at least one inner edge of H belongs to E(PU H), and H and H, do not
have any common inner edge.

Proof. Without loss of generality, we assume that y; = x|, then it is easy to see that
ya=v. Let k=h+ 1,y =a, then P = y;y,---yx is also a path of [Ex(G)] where
k=3. Let D = {a}. We take the separating group (xv,S1; 41, B;) such that S| =
{XQ,X3,X4},B1 = {xl,a},Al =G- X101 — Sl — B]. ObViOllSly, DF\Bl 75(2)

We take the separating group (y;yit1,S; 4, B) of G, where i = 1,2, ...,k — 1, such
that y;e B,y 1€A4,DnB#0 and |A| is as small as possible. We claim that i+
1<k — 1 holds. Otherwise, ;11 = yk, 1.€., yi+1 = a. Then, ae AU S, which contra-
dicts to that D B#0Q. Therefore, i + 1<k — 1.

We take another separating group (yi+1yis2,S'; A, B') such that y; 1€ B,y 2e A,
and |4’| is as small as possible. From Lemma 4.5 we know that one of the four
conclusions of Lemma 4.5 holds. Now we discuss them as follows.

(1). Conclusion (i) of Lemma 4.5 holds. It is easy to see that P’ + ax is a cycle of
[En(G)]. Then, each vertex of P is incident with at least two unremovable edges of G.
However, from conclusion (i) we have that d(y;;») = 4 and y;y; is incident with three
removable edges of G. Therefore, conclusion (i) cannot hold.

(2). Conclusion (ii) of Lemma 4.5 holds. Then, BnS' = {d} ={a} = Dn B,
ce{x1,x2,x3,x4}, and ac(=dc) is not in any 3-cycle of G. However, from the
definition of the helm, we know that ac(= ax;) for each j = 1,2, 3,4 is in two 3-cycles
of G, a contradiction.

(3). Conclusion (iii) of Lemma 4.5 holds. Then, {d} = BnS’ = {a} = DN B. Since
ace E(G), we have ce{xy,xy,x3,x4}. Then, we have that ac is in two 3-cycles
of G. However, this is impossible to hold in G. Therefore, conclusion (iii) cannot
hold.

(4). If conclusion (iv) of Lemma 4.5 holds, then the theorem holds. The proof is
complete. [

Theorem 4.7. Let G be a 4-connected graph with property (%) and L, a maximal 1-
belt of G defined as in Definition 3.3 such that V(L) = {x1, X2, X3, 1,2, V3 }. Suppose
that P=1h---ly is a path of [Ex(G)] such that {l,l;} ={x1,x3,y1,y3} and
{x2, 2} "V (P) =0. Then, G contains one of the following structures L' as its
subgraph: [-belt, (1=1), helm, W-framework, W'-framework or I-bi-fan, (I=1), such
that at least one inner edge of L' belongs to E(PULy).

Proof. We distinguish the following cases.

Case 1: If [, = y3, by letting k = h + 1,1, = y», then P’ = l115---1;. is also a path of
[Ex(G)]. Let D = {x3,y»}, and take a separating group (/;/, S1; 41, B;) of G such
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that /;eBy,heA;. Next we will show that BjnD#0. We discuss the following
subcases:

Subcase 1.1: If [} = x|, we claim that x,eB;. Otherwise, x,€S;. Since
x1x,€ Exy(G), from Theorem 2.2 we have that |B;| =2. Let By = {/;,v}, then
vyelg(x))nTg(x2). If vy = yy, then I'g(y1) = {x1, X2, 2, w}, where we V(G), which
contradicts to that L; is a maximal 1-belt. If v; = x3, then I'g(x3) = {x2, 2, x1, w}. It
is easy to see that (x,y;, T) is a separating pair of G such that 7 = {w, y», x; }, and so
x>y1 € Ex(G), which contradicts to the definition of the /-belt. Therefore, x; € B;
holds, i.e., DN B; #0.

Subcase 1.2: If [} = yy, then if y, €Sy, since y;y,€ Ex(G), from Theorem 2.2 we
have that |B;| = 2. It is easy to see that By = {y1,x2}, and so D By #0. If y, € By,
then D B; #0.

Subcase 1.3: If I} = x3, we claim that D B; #(. Otherwise, DN B; = (. From
X3)2, x3x2 € E(G) we have that x,,y, € S). Since x,x3 € Ex(G), from Theorem 2.2 we
have that |B;|=2. Let B;={x3,v}, then it is easy to see that
vyelg(x2)nT'g(y2)nTg(x3). Then vy =y; holds, ie., yx3eE(G). Since
xox3€ Ey(G), we take the separating group (x»x3,77;Ci,D;) such that
x,€Cy,x3€Dy. Then yy,y,€T,. From Theorem 2.4, we have that y,;y,eEg(G),
which contradicts to the definition of the /-belt. Therefore, D B; #0.

We take the separating group (/il;,1,S; A, B) of G such that ;e B,l;, ;€ A,D B#0
and |A| is as small as possible. We claim that i+ 1<k — 1. Otherwise, i + 1=k
holds. Then, I =y,. From x;y,€E(G) we have that {x;,y,}=A4uUS, which
contradicts to that DN B#0. Therefore, i + 1 <k — 1 holds.

Case 2: If I, = x5, we take the separating group (/1/, S); 4y, By) of G such that
LheBy,heA;. Let D= {x;,y,}. Similarly, we need to show that D B; #0.

Subcase 2.1: If I} = y,, from y,y, € E(G) we have that y,e By uS;. If y, €S, since
y1y2€ Ex(G), from Theorem 2.2 we have that |B;| = 2. Let B = {y;,v}. Then,
yiyav1y1 is a 3-cycle of G. It is easy to see that v; = x,. Then, DN B #0.

By the symmetry of the maximal 1-belt, for the other cases we may employ a
similar argument.

We take the separating group (/i/i11,S; 4, B) such that ;e B,l;,1€ A, D~ B#( and
|4| is small as possible, where i=1,2---;h—1. We claim that i+ 1<h— 1.
Otherwise, [, = x3€ A. From x,x3,y,x3€ E(G) we have that x,,y,€A4uUS, which
contradicts to that DN B#0.

We take the separating group (/iy1/i42,S";4', B') of G such that /;;1€B [ ,eA
and |4'| is as small as possible. From Lemma 4.5 we have that one of the four
conclusions of Lemma 4.5 holds. Here we will discuss them as follows:

(1). It is easy to see that each vertex of P is incident with at least two unremovable
edges, and so conclusion (i) of Lemma 4.5 cannot hold.

(2). If conclusion (ii) of Lemma 4.5 holds, then we have that BnS' = DnB =
{d} ={x2,y,}. By the symmetry of x, and y,, without loss of generality, we may
assume that d = x,. For d = y,, we may employ a similar argument.

From Lemma 4.5, we know that AnA' = {lj,},li.i€eAnB. Let AnS =
{vi,}. If vl 2eEN(G), we take the corresponding separating group
(v1li42, T; C,K) such that vy e C, i ,€K, and so v, e S'n C.
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(2.1). If l;,1 e B n K, by the argument analogous to that used in Case 1 of Theorem
4.4, we can get that [A'| =2,|Knd'|=|4'nT|=1,|CnS'|=2,|nK|=1. Let
KnS ={b},AnT ={a},SnC ={v;,w}. Then, by an argument analogous to
that used in Case 1 of Theorem 4.4, we have that al; 5, av) € Er(G),bli1r € Er(G),
abe Ex(G),d(a) = d(l;;2) = 4. Tt is easy to see that the /-belt is a subgraph of G,
where />1, and I'¢(li12) = {lis1,v1,a,b}. We claim that /;,, is not an end-vertex of
P. Otherwise, we have [ ,e{x|,x3,»1,y3}. Since BnS ={x,}, and
X1,x3,y1 € 'g(x2), then this is true only if /;;, = y; holds. Let 4’ S = {k}. Noticing
that (kx,, T") will be the separating pair of G such that 77" = {/;;1 } U (S — {x2}), we
have that ke {xs,x;}. If k = x3, then we will have that x3y;€ E(G) and d(x3) = 4,
which contradicts to the definition of the maximal 1-belt. If k = x|, noticing that
¢ V(P), then [ #y,, and so we will have that x;y,€ E(G), a contradiction.
Therefore, we have that /;,, is not an end-vertex of P. From al;;, bl » € Er(G) we
have that /;,,v; € E(P) and /o0 is an inner edge of the /-belt. Hence, the theorem
holds.

(2.2). If I;;1€B'N T, then by an argument analogous to that used in Case 2 of
Theorem 4.4, we have that /;, 1/, is an inner edge of one of the following subgraphs
of G: helm, W'-framework, W-framework or [/-belt. Therefore, the theorem holds.

So, we may assume that v;/;17 € Eg(G). If v2/i12 € Ex(G), we may employ a similar
argument. So, we may assume that vy/;12 € Eg(G). Let A'nS = {c}. Since P is a path
of [Ex(G)], and /;;, is not an end-vertex of P, we have that /;;oce Ex(G)nE(P). If
cv1 € Ex(G), we take the corresponding separating group (cvy, T'; C’', D') of G such
that v;e C',ce D'. Obviously, /;;,e€T’. Since cli € Ex(G), from Theorem 2.2 we
have that |D'| =2, and so D' = {c,v,}. Then, |I'¢(c)nT'¢(v2)|>2. Noticing that
v; € Cy, obviously it is impossible to hold in G. So, cv; € Er(G). By an analogous
argument, we have that cv, € Er(G). It is easy to see that ¢/;,, is an inner edge of an /-
bi-fan, and so the theorem holds.

(3). If conclusion (iii) of Lemma 4.5 holds, then we have that BnS' = DnB =
{d} ={x2,2}. By the symmetry of x, and y,, we may assume that d = y,. Let
AnS ={v}, SnS ={w}hAnS={c}, then TIg(c)={liy2,v1,w,y2}. Since
cwe E([S]), from Theorem 2.4 we have that cwe Eg(G). By an analogous argument
used in (2.1). we can get that /;,, is not an end-vertex of P.

3.1). If lioveEN(G), we take the corresponding separating group
(liyav1, T; C,K) such that [;;,eK,v1€C. Then, [j,edA nK,v,eCnS' i1 1€B.
We claim that /¢ B'nK. Otherwise, [ ,€BnK, A ={ls,¢c}. By an
argument analogous to that used in Case 1 of Theorem 4.4, we can get
that /N K=l 2}, A nT|!=c}, TnS'=0,|TnB|=|CnS'|=2,|[KnS'| = 1. Since
wli,€ E(G), we have weKnS'. Let 4y = (KnB)u{w}, S, =(TnB)u{li.},
B, =G—cw— S, — A4, then (cw,Sy;45,B,) is a separating group of G. So,
cwe Ey(G), which contradicts to that cwe Er(G). Hence, /;;1¢B nK, and so
li;1€B' N T. By an argument analogous to that used in Case 2 of Theorem 4.4, we
have that |4'|=|K|=2 and |KnS|=|4'nT|=1. Noticing that
ced ,weS' I'(liy2) = {liy1,¢,w,v1}, it is easy to see that KNS ={w},A'nT =
{c}. By an argument analogous to that used in Case 2 of Theorem 4.4, and noticing
that cwe Egr(G), we have that /;,1/;» is an inner edge of one of the following
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subgraphs of G: W’-framework, W-framework or helm. Therefore, the theorem
holds.

So, we may assume that /;;,v; € Egr(G).

(3.2). If wl,eEN(G), we take the corresponding separating group
(Wlin, T'; C', D) of G such that we C',[;;,eD'. Then, weS' nC'.

(3.2.1). If [;;;e€B N D', by an argument analogous to that used in Case 1 of
Theorem 4.4, we know that wl;,, is an inner edge of an /-belt, where />1, and
cline ERr(G). Since /iy is incident with only two unremovable edges /;41/i12, wliia,
and /;;» is not an end-vertex of P, we have wl; 1, € E(P). Hence, the theorem holds.

(3.2.2). If l;,; e BN T', then by an argument analogous to that used in Case 2 of
Theorem 4.4, we know that /;;(/;1» is an inner edge of one of the following subgraphs
of G: [-belt, W-framework, W’-framework or helm, and so the theorem holds.

Therefore, next we may assume that wl;, € Egr(G).

Since E(P)<En(G), we have cli,€En(G). If cvieEn(G), we take the
corresponding separating group (cvy, T'; C', D) such that v; e C’,ce D'. Obviously,
lireT'. Since clir€Ey(G), from Theorem 2.2 we have that |D'| =2. Let D' =
{u,c}, then cul;rc is a 3-cycle of G, and so this is true only if u =w holds.
From c¢y(= ¢d)e E(G) we have that y,eT’, and so wy,e E(G). We take the
separating group (cli42, T1; Cy, Dy) such that ce Cy, /i o€ D). Since cvjliac is a 3-
cycle of G, we have v, € Ty. Then, we have that [, ,eD\ T ,v1€C’'nTy,ce D' n (.
By an argument analogous to that used in Case 2 of Theorem 4.4, and by
noticing that d(/;1») = 4, and v/;;,€ E(G), we can get that c/;,, is an inner edge of
one of the following subgraphs of G: W'-framework or helm. Therefore, the theorem
holds.

So, we may assume that cv; € Eg(G). It is easy to see that G contains an /-bi-fan
such that c¢/;,, is its an inner edge, where />1. An analogous argument can lead to
that ¢/, € E(P). So, the theorem holds.

(4). If conclusion (iv) of Lemma 4.5 holds, then the Theorem holds. The proof is
now complete. [

Corollary 4.8. Let G be a 4-connected graph with property (% ) and L' a maximal 1-
co-belt of G defined as in Definition 3.4. V(L") = {x1,x2,X3,X4,V1,¥2, )3} Suppose
that P=hLh---l, is a path of [Ex(G)] such that {xy,x3,y2}"V(P)=0 and
{h,h} ={x1,x4,1,y3}. Then, G contains one of the following structures as its
subgraph: [-belt, (1=1), W-framework, W'-framework, helm or I-bi-fan, (I=1), such
that it has some inner edge(s) belonging to E(P).

Proof. We distinguish the following cases:

Case 1: If I, = x4, by letting k = h + 1, [, = x3, then P' = [1},---I; is also a path of
[En(G)]. Let D = {x2,x3, 2}, and take a separating group (/,/», S\; 4, By) of G such
that /;eB;,lheA;. Next we will show that B;nD#(. We discuss the following
subcases:

Subcase 1.1: If [} =x;, we claim that x,eB;. Otherwise, x,€S;. Since
x1x2€ Ex(G), from Theorem 2.2 we have that |Bj|=2. Let B, = {/;,v}, then
v elg(x1)NLg(x2). If vy = yy, then I'g(y1) = {x1, x2, 2, w}, where we V(G), which
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contradicts to that L,” is a maximal 1-co-belt. Obviously, v| ¢ {x3,)»}, and therefore
X» € By holds, i.e., DN B; #0.

Subcase 1.2: If [} = yy, then if y, €Sy, since y;y,€ Ey(G), from Theorem 2.2 we
have that |B;| = 2. It is easy to see that By = {y1,x2}, and so D By #0. If y, € By,
then DN B; #0.

Subcase 1.3: If [} = y3, we claim that D B;#0. Otherwise, DN B; = (. From
X33, y2y3 € E(G) we have that x3, y,€S;. Since yoy3€ Ex(G), from Theorem 2.2 we
have that |B;|=2. Let B;={ysuv}, then it is easy to see that
vielg(y2)nI'g(y3) " I'g(x3), which is impossible to hold in G. Therefore,
DF\Bl #@

We take the separating group (/i/;+1,S; 4, B) of G such that /;e B,[; 1€ A, DN B#(
and |A| is as small as possible. We claim that i + <k — 1. Otherwise, i + 1 = k.
Then, /. = x3. From x;x3,y,x3€ E(G) we have that {x;,x3,y,}=AuUS, which
contradicts to that D B#0. Therefore, i + 1<k — 1 holds.

Case 2: If I, = y3, by letting k = h + 1,1, = y», then P = I;1,---1; is also a path of
[En(G)]. Let D = {x2,x3,y2}. We take the separating group (/1/, S1; 41, B;) of G
such that /; e By, L € A;. Similarly, we need to show that D B #0.

Subcase 2.1: If I} =y, from y;y,,y1x,€ E(G) we have that x;,y,eBjuS;. If
X2, 2 €8], since y1y2€ Ey(G), from Theorem 2.2 we have that |B;| = 2. Let B| =
{y1,v1}. Then, v; = I'c(y1) " IT'(y2) "I'g(xz), which is impossible to hold in G.
Then, DN B; #0.

By the symmetry of the maximal 1-co-belt, for the other cases we may employ a
similar argument.

We take the separating group (/il;y1,S; 4, B) such that ;e B,[;,; € A, Dn B#( and
|4| is small as possible, where i=1,2---,k—1. We claim that i+ 1<k — 1.
Otherwise, lx = y2€ A. From x,y,, y2x3 € E(G) we have that x,,x3,,€ AU S, which
contradicts to that DN B#0.

We take the separating group (/iy1/i42,S5; 4', B') of G such that /;;1eB [ ,eA’
and |A'| is as small as possible. From Lemma 4.5 we have that one of the four
conclusions of Lemma 4.5 holds. Here we will discuss them as follows:

(1). It is easy to see that each vertex of P is incident with at least two unremovable
edges, and so conclusion (i) of Lemma 4.5 cannot hold.

(2). If conclusion (i) of Lemma 4.5 holds, then we have that BnS' = DnB =
{d} (e {XQ, X3,y2}.

First, we claim that /., is not the end-vertex of P, otherwise, we assume that
livoe{x1,x4,y1,y3} holds. Let A'nS = {k}. Noticing that (kd,T’) is a separating
pair of G such that 7' ={l1}u(S" —{d}), so kdeEyN(G). If d=x,, from
xX1x2, %21 € E(G), we have that ;;re{y3,xa}: (1). If [;;» = x4, it is easy to see that
ke{xi,x3}, if k = x1, noticing that x3 ¢ V' (P), then /;;| # x3, then we will have that
x1x3€ E(G), a contradiction; if k = x3, then we will have that |I'g(x3) " ['g(x4)| = 2,
which is impossible to hold in G. (2). If [;;, = y3, we claim that k # x3, otherwise, we
will have that y;x4€ E(G) and d(y;) = 4,which contradicts to the definition of
maximal 1-co-belt. Then only k= x; holds, then we will have that
[Te(x1)nTg(y3)| =2, x1y3€ E(G) and d(x;) = d(y3) = 4 holds, which is impossible
to hold in G. Therefore, d # x;. By the symmetry of x, and x3, we have that d # x3.
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Therefore, d = y, holds, then we have that /;;,e{x;, x4} and ke{y;,y3}. (). If
liy2 = x1: We claim that k#y,, otherwise, we will have that x,y,€ E(G),d(y1) = 4,
which contradicts to the definition of the maximal 1-co-belt, so k = y3 holds, then we
will have that ['g(x1) " Tg(y3)| = 2 and x1y3€ E(G),d(x1) = d(y3) = 4 holds, which
is impossible to hold in G. (2). If /;;» = x4, by the symmetry of x; and x4, we may
employ a similar argument to get that the assumption is not true.

From the above argument, we have that /;;, is not the end-vertex of P.

We may employ an argument similar to that used in (2) of Theorem 4.7 to show
that the corollary is true.

(3). If conclusion (iii) of Lemma 4.5 holds, then we have that BnS' = DnB =
{d} e {X2, X3,y2}.

We may employ an argument analogous to that used in (2) to show that /;,, is not
an end-vertex of P. We may also employ an argument similar to that used in (3) of
Theorem 4.7 to conclude that the corollary is true.

(4). If conclusion (iv) of Lemma 4.5 holds, then the corollary is true. O

5. The number of removable edges in a 4-connected graph

After we have been well prepared with the results in the above section, we are
arriving at the point to show our main results of this paper in this section.

Let M be a 5-wheel such that V(M) = {a,x,y,z,v} and « is its center. Let
Ty, T», Ts, T4 be four trees such that for each ie {1,2, 3,4}, T; has k vertices of degree
one and |7;| — k vertices of degree four. Let the vertices of degree four be

m ) (ITi|—k) m (2 (k)

w7 , and the vertices of degree one be x;’,x;”,...,x; . Let
My, M, ..., My be k copies of M and al/), x(/), y(/) 201 4(/) be the vertices of M;
corresponding to the vertices a, x, y, z, v of M, respectively, where j = 1,2, ..., k. For
eachje{l, ..., k}, identify x<1j>,x<2j)7x(3j>,x‘<‘j) with x(7), y() z() () such that each of

x(lj),xéj),xgj),xf,j) identifies with one and only one of x(/), (), z(/) (/) Denote the
resulting graph by G. It is easy to see that G is 4-connected. Next we will show that
for each 4-cycle C = x(/y)z() p()x()) of G, we have that E(C)c Ex(G), and the
other edges in G are unremovable, where j = 1,2, ..., k. For y(-/)u,(l) €E(G), let S =
{x) o) 200} 4 ={a D) y)} B=G —y(j)ugl> — S — A, then (y(j)ugl),S;A7B) isa
separating group of G, and hence y<j>u,(1> € Ey(G). Symmetrically, we can show that
x(-f)ugl),z(-f)ul(/),v(-f)ugl)eEN(G), where j=1,2,....k;i=1,2,3,41=1,2,....|T| -
k. For each edge al/)x(/) it is easy to see that (a/)x(/) T) is a separating pair of
G such that T = {3 v() 4"} and u!"z() e E(G). By symmetry, we have that
a Ny al Dz gDyl e Ey(G). From Corollary 2.3 it is easy to see that for each 4-
cycle C = xWy(z(y()x() | we have that E(C) < Eg(G). For each edge e of T;, for

example, e = uﬁ”ui””, it is easy to see that (e, S) is a separating pair of G such that

S = {ug), ug/), ugl)}. Therefore, for each edge ¢ of T;, where i = 1,2, 3,4, we have that
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eeEx(G), and so er(G)=4k,|T:|=3k—-2)/2,(i=1,2,3,4),|G| =Tk — 4,
er(G) = (4|G| +16)/7. We denote the set of all the above constructed graphs
by 3.

Theorem 5.1. Let G be a 4-comnected graph of order at least 5. If G is
neither C2 nor C, then egr(G)=(4|G| + 16)/7 and the equality holds if and only if
Ge3.

Proof. Let |G| =n,|E(G)| = m. We proceed by induction on (n + m). Since G is not
C2?, we have that n>6. If n = 6, since G is not C2, we have that m>13, (n +m)>19.
It is easy to see that er(G)=9>(4n+16)/7. If n =7, then it is easy to that
er(G)=9> (4n + 16)/7. Therefore, we may assume that n>=8.

Case 1: If G does not have property (%), i.e., there exists an edge e = xy € Er(G)
such that d(x)>=5 and d(y) =5 in G, then consider GO&e = G — xy. It is easy to see
that removable edges in G — xy are also removable edges in G, and hence
er(G)=zer(GSe)+ 1. Then, |G| =|GOe|,|E(GSe)|=m—1, and therefore
|GOe| +|E(GOe)|<n+m. If GOeis C? or CZ, then er(G)=9>(4n+16)/7. If
GSe is neither C52 nor Cé, by the induction hypothesis we know that
er(G)=er(GOe) +1=(4n+16)/7+ 1> (4n + 16)/7.

Next we suppose that G has property (% ).

Case 2: If G contains a 2-bi-fan as its subgraph, from Theorem 4.1 we know that
there exists an edge e€ E(G) such that eg(G)=er(GOe) + 1. Here, |GSe| =n — 1,
|E(GE&e)| =m —3. Then, |GOe|+ |E(GOe)|<n+m. If GOe is C2 or CZ, then
er(G)=10> (4n + 16)/7. If GSe is neither C2 nor C2, by the induction hypothesis
we know that eg(G) =er(GSe) + 1=[4(n— 1)+ 16]/7+ 1> (4n+ 16)/7.

Case 3: If G contains an /-belt as its subgraph where /> 3. Then, from Theorem 4.2
we have that there exists an edge e€ E(G) such that eg(G)=er(GSe) + 2. If GSeis
either C2 or C7, then eg(G)=>12> (4n + 16)/7. If GSe is neither C2 nor CZ, by the
induction hypothesis we know that er(G)=er(GSe)+2=[4(n—2)+ 16]/7 +
2>(4n+16)/7.

Case 4. If for any edge e€FEr(G), when |GSe|=n, we have that
er(G)<er(GSe); when |GOe| =n — 1, we have that ex(G) <er(GSe) + 1; when
|G&e| =n— 2, we have that eg(G) <er(GSe) + 2, then we discuss the following
subcases.

Subcase 4.1: If [Ex(G)] is a forest, then ey (G) = n — ¢ such that ¢ is the number of
components in [Ey(G)]. Therefore, er(G)=2n—n+t=n+t>(4n+ 16)/7.

Subcase 4.2: 1If [Ey(G)] contains a cycle, from Theorem 4.4 and the above
argument in Cases 2 and 3 we can get that G contains some structures in R as its
subgraphs. Let G contain k; maximal 1-belts, k, maximal 1-bi-fans, k3 maximal 1-
co-belts, k4 W-frameworks, ks W’'-frameworks, k¢ maximal 2-belts, k7 maximal 2-
co-belts, and 4 helms. Let E; be the set of inner edges of the above-mentioned
subgraphs. Then,

|Ei| = 2k1 + ky + 3k + 2kq + 3ks + 4k + Sky + 4h. (1)
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Let Ey = Ey(G) — E), then we have the following results:

(1). [Ep] is a forest. This follows from Theorem 4.4, Lemma 3.7, and the definitions
of the above-mentioned subgraphs.

(2. Letr=> _;(dx)—4)=>% .;d(x)—4n, then ¢(G) =2n+r/2. Let n; =
n—h — |[Ep]|, then n; >0, and n; = 0 if and only if V(G) = V([Eo]) U{a1, a2, ..., an}
such that g; is the center of a helm, where i = 1,2, ..., A.

(3). er(G) =e(G) —en(G),en(G) = |Eo| + |E\| = |[Eo)| =t + |E\| =n—n1 —h —
t+ |E1|, where ¢ is the number of components in [Ep].

By noticing the number of removable edges in the above-mentioned subgraphs, we
have the following result

er(G) =e(G) —en(G) =2n+r/2—n+h+n +1t— |E
= 3k + 4ky + 4ks + Sky + Sks + Ske + 6k7 + 4h. (2)
From the formulas (1) and {2), we have the following result
n+r/2—"Th+n, +t— Sky — Sky — Tky — Tky — 8ks — ke — 11k7=0.
Then,
6n + 3r — 42h + 6n; + 6t — 30k; — 30k, — 42k3 — 42ky — 48ks — 54ke — 66k7 =0
and so
er(G)=n+r/24+m+t+h—|E|=4n/7+ (6n+ Tr+ 14n; + 141t — 42h — 28k,
— 14ky — 42ks — 28ky — 42ks — 56ks — 70k7) /14
> 4n/7 + (6n+ 3r + 6ny + 61t — 42h — 30k — 30k, — 42k;
— 42ky — 48ks — 54ke — 66k7)/14
+ (4r + 8ny + 8t + 2ky + 16ky + 14ky + 6ks — 2ks — 4k7)/14
=4n/7+ (4r + 8ny + 8t + 2k) + 16k, + 14ks + 6ks — 2ke — 4k7)/14. (3)
Therefore, eg(G) = (4n + 16)/7 holds only if the following formula holds
A =2r+4n +4t+ ki + 8ky + Thky + 3ks — ke — 2k7>16. (4)

Let L, be a maximal 1-co-belt. It is easy to see that x,eG — {ay,az, ..., a5} —
V([Eo]), and so L’ will contribute 1 to n;. Since G contains k3 maximal 1-belts, and
so they will contribute k3 to n;. Analogously, for each maximal 2-belt, it will
contribute 2 to n;, and so k¢ maximal 2-belts will contribute 2k¢ to n;. For W’-
frameworks, maximal 2-co-belts and W -frameworks, we analyze them analogously.
Then, we can get the following formula

ny =ks + ka + ks + 2ke + 3k7. (5)
From the formulas {(5) and <{4), we can get the following formula

A=2r + 41 + ky + 8ky + 4ks + 11ky + Tks + Tk + 10ks. (6)

We will discuss the following cases.
(4) h:(), k:k1+k2+k3+k4+k5+k6+k7< 2.
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First, we claim that [Ex(G)] contains at most two cycles. Otherwise, suppose that
there are at least three cycles in [Ex(G)]. Then, we take a cycle C,. From Theorem
4.6 and the assumption, we have that G contains some structure H;eR as its
subgraph such that H; has an inner edge ¢; on C;. We take another cycle C; in
[En(G)] — C;. Analogously, we have that G contains some structure H, € R as its
subgraph such that H, has an inner edge e; on C,. Last, we take a cycle C; in
[En(G)] — C; — C,. Then, G contains some structure H3e®R as its subgraph such
that H3 has an inner edge e; on Cs. Since e is an inner edge of H;, but not any of H»,
we have that H; # H,. Analogously, we have that H, # H3, H, # H;. From Lemma
3.7 we know that any two of H|, H, and H3 do not have common inner edge, and so
k=3, a contradiction. Therefore, there are at most two cycles in [Ex(G)|. So,
en(G)<n+ 1, and hence ex(G)=2n—n—1>(4n+ 16)/7.

5).h=0k=k +ky+ks+ksy+ks+ke+k;=3.

(5.1). k; + k3 =0, and so ky + k4 + ks + k¢ + k7= 3. Noticing that 1> 1, from the
formula {6) we have that

A= 2r +4 4 T(ky + kg + ks + ke + k) + ko + 4ky + 3k7
=44 T(ky+ kg + ks + ke + k7) =25,

here the inequality <{4) rigidly holds.

(5.2). k1 + k3=1. We may assume that G contains a maximal 1-belt L; such that
V(L) = {x1,x2,X3,1,¥2,3}. From Theorem 4.7 we know that if x3, y; € [E], then
ny=2,t>=2. From the formulas {4 and {(5) we have that

A= 2I’+3I’L1+4t+(k1+k3)+8k2+8k4+4k5+k6+k723n1+4l+(k1+k2
+ ky+ky+ks+ke+k;)=6+8+3=1T7.

If x3€ [Eo],y1 ¢[Eo], then n;>1,¢>3. Similarly, we can get that 4> 18.

If x3,y1€ [Ey], then 1>4, and so 4> 19, here the inequality {4 ) rigidly holds.

(6). h=1. We take a helm H such that V(H) = {a,x,x2, X3, X4, 01,02, 03,04}.
From Theorem 4.6 we have that any two of the edges x;v;, xav5, X303, X404 are in
different components, and so t>4. From the formula {(6) we know that 4>16, i.e.,
er(G)=(4n + 16)/7, and the equality holds only if k; = 0, where i = 1,2, ...,7,r =
0,t=4,n =0, ie., [Eg] has only four components 7Ty, 7>, 75,74, and V(G) =
V([Ey))v{ai,az, ...,ap}. Then, from r =0 we know that G is a 4-connected and
4-regular graph. From eg(G) = 4h,en(G) = 10h — 8, we can get that n = 7h — 4.

) P ) P () p) (Jf)xgp)

Moreover, all the edges but x1"/ x5y, x5 X377, x5 x4, X, of each helm H,, in G are

unremovable, whereas different edges of xl(f” )vl("’) of H, are in different components

T;, and every vertex vl(.”) is of degree 1 in 7;. Based on the above arguments, we can

conclude that 7; has & vertices with degree 1 and |7T;| — & vertices with degree 4.
Therefore, Ge 3. The proof is now complete. [
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