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Abstract

Let G be a 4-connected graph. For an edge e of G; we do the following operations on G:

first, delete the edge e from G; resulting the graph G � e; second, for all the vertices x of degree

3 in G � e; delete x from G � e and then completely connect the 3 neighbors of x by a triangle.

If multiple edges occur, we use single edges to replace them. The final resultant graph is

denoted by G~e: If G~e is still 4-connected, then e is called a removable edge of G: In this

paper we prove that every 4-connected graph of order at least six (excluding the 2-cyclic graph

of order six) has at least ð4jGj þ 16Þ=7 removable edges. We also give the structural

characterization of 4-connected graphs for which the lower bound is sharp.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

All graphs considered here are finite and simple. For notations and terminology
not defined here, we refer the reader(s) to [1]. The concepts of contractible edges and
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removable edges of graphs are very important in studying the structures of graphs
and in proving some properties of graphs by induction. In 1961, Tutte [3] gave the
structural characterization for 3-connected graphs by using the existence of
contractible edges and removable edges. He proved that every 3-connected graph
with order at least 5 contains contractible edges. Perhaps, this is the earliest result
concerning the concepts of contractible edges and removable edges.
Removable edges and contractible edges in 3-connected graphs have been studied

extensively in literature. In this paper we shall focus on the study of only removable
edges in 4-connected graphs. First of all, we give the definition of a removable edge
for a 4-connected graph. Let G be a 4-connected graph and e an edge of G: Consider
the graph G � e obtained by deleting the edge e from G: If G � e has vertices of
degree 3, we do the following operations on G � e: For all vertices x of degree 3 in
G � e; delete x from G � e and then completely connect the three neighbors of x by a
triangle. If multiple edges occur, we use single edges to replace them. The final
resultant graph is denoted by G~e: Note that if there is no vertex of degree 3 in
G � e; then G~e is simply the graph G � e:

Definition 1.1. For a 4-connected graph G and an edge e of G; if G~e is still
4-connected, then the edge e is called removable; otherwise, it is called unremovable.
The set of all removable edges of G is denoted by ERðGÞ; whereas the set of
unremovable edges of G is denoted by ENðGÞ: The number of removable edges and
the number of unremovable edges of G is denoted by eRðGÞ and eNðGÞ; respectively.

The aim to introduce the concept of removable edges in 4-connected graphs is to
find a new method to construct 4-connected graphs and a new method to prove some
properties of 4-connected graphs. In [4], Yin proved that there always exist
removable edges in 4-connected graphs G unless G is a 2-cyclic graph with order 5 or
6, where a 2-cyclic graph is the graph of the square of a cycle [2]. He showed that a
4-connected graph can be obtained from a 2-cyclic graph by the following four
operations: (i) adding edges, (ii) splitting vertices, (iii) adding vertices and removing
edges, and (iv) extending vertices. In this paper we shall obtain a sharp lower bound
for the number of removable edges in a 4-connected graph, and moreover, we shall
give the structural characterization of the 4-connected graphs for which the lower
bound is sharp.
Without specific statement, in the following G always denotes a 4-connected

graph. The vertex set and edge set of G is denoted, respectively, by VðGÞ and EðGÞ:
The order and size of G is denoted, respectively, by jGj and jEðGÞj: For xAVðGÞ; we
simply write xAG: The neighborhood of xAG is denoted by GGðxÞ and the degree of
x is denoted by dGðxÞ ¼ jGGðxÞj: If no confusion, we simply write dðxÞ for dGðxÞ: If x

and y are the two end-vertices of an edge e; we write e ¼ xy: For a nonempty subset
F of EðGÞ; or N of VðGÞ; the induced subgraph by F or N in G is denoted by

½F � or ½N�: Let A;BCVðGÞ such that Aa|aB and A-B ¼ |; define ½A;B� ¼
fxyAEðGÞ j xAA; yABg: If H is a subgraph of G; we say that G contains H: For a
subset S of VðGÞ; G � S denotes the graph obtained by deleting all the vertices in S
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from G together with all the incident edges. If G � S is disconnected, we say that S is
a vertex-cut of G: If jSj ¼ s for such an S; we say that S is an s-vertex-cut. A cycle of
G with length l is simply called an l-cycle of G: We denote the 2-cyclic graphs of

order 5 and 6 by C2
5 and C2

6 ; respectively. For eAEðGÞ and SCVðGÞ such that

jSj ¼ 3; if G � e � S has exactly two (connected) components, say A and B; such that
jAjX2 and jBjX2; then we say that ðe;SÞ is a separating pair and ðe;S;A;BÞ is a
separating group, in which A and B are called the edge-vertex-cut fragments.

2. Some known results

First of all, we list some known results on removable edges of 4-connected graphs,
which can be found in [4] and will be used in the sequel.

Theorem 2.1. Let G be a 4-connected graph with jGjX7: An edge e of G is

unremovable if and only if there is a separating pair ðe;SÞ; or a separating group

ðe;S;A;BÞ in G:

Theorem 2.2. Let G be a 4-connected graph with jGjX8 and let ðxy;S;A;BÞ be a

separating group of G such that xAA; yAB and jAjX3: Then, every edge in ½fxg;S� is

removable.

Corollary 2.3. Let G be a 4-connected graph with jGjX8: Then, every 3-cycle of G

contains at least one removable edge.

Theorem 2.4. Let G be a 4-connected graph with jGjX8: If for an unremovable edge

xy; i.e., xyAENðGÞ; there is a separating group ðxy;S;A;BÞ; then all the edges in

Eð½S�Þ are removable, i.e., Eð½S�ÞDERðGÞ:

In the subsequent sections we shall obtain a sharp lower bound for the number of
removable edges in a 4-connected graph.

3. Terminology and notations for subgraphs with special structures

For convenience, we introduce the following special terminology and notations for
some subgraphs with special structures in a graph G:

Definition 3.1. Let G be a 4-connected graph and H a subgraph of G such that
VðHÞ ¼ fa; x1; x2; x3; x4; v1; v2; v3; v4g and EðHÞ ¼ fax1; ax2; ax3; ax4; x1x2; x2x3;
x3x4; x4x1; x1v1; x2v2; x3v3; x4v4g: If H satisfies the following conditions:

(i) dðaÞ ¼ dðxiÞ ¼ 4 for i ¼ 1; 2; 3; 4;
(ii) ax1; ax2; ax3; ax4AENðGÞ and x1x2; x2x3; x3x4; x4x1AERðGÞ;

then H is called a helm, and the edges axi for i ¼ 1; 2; 3; 4 are called inner edges of H:
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Definition 3.2. Let G be a 4-connected graph and H a subgraph of G such that
VðHÞ ¼ fa; b; x1; x2;y; xlþ3g and EðHÞ ¼ fx1x2; x2x3;y; xlþ2xlþ3; ax2; ax3;y;
axlþ2; bx2; bx3;y; bxlþ2g with lX1: If H satisfies the following conditions:

(i) xixiþ1AENðGÞ for i ¼ 1; 2;y; l þ 2;
(ii) axj; bxjAERðGÞ for j ¼ 2; 3;y; l þ 2;

(iii) dðxjÞ ¼ 4 for j ¼ 2; 3;y; l þ 2;

then H is called an l-bi-fan.

An l-bi-fan H is said to be maximal if GGðx1Þafa; b; x2; ug and
GGðxlþ3Þafa; b; xlþ2; vg for any u; vAG: The edges xjxjþ1 for j ¼ 2; 3;y; l þ 1 of

an l-bi-fan or a maximal l-bi-fan H are called inner edges of H:

Definition 3.3. Let G be a 4-connected graph and H a subgraph of G such
that VðHÞ ¼ fx1; x2;y; xlþ2; y1; y2;y; ylþ2g and EðHÞ ¼ E1ðHÞ,E2ðHÞ where
E1ðHÞ ¼ fx1x2; x2x3;y; xlþ1xlþ2; y1y2; y2y3;y; ylþ1ylþ2g and E2ðHÞ ¼ fy1x2;
x2y2; y2x3;y; ylxlþ1; xlþ1ylþ1; ylþ1xlþ2g: Then, H is called an l-belt if the following
conditions are satisfied

(i) E1ðHÞDENðGÞ and E2ðHÞDERðGÞ;
(ii) dðxiÞ ¼ dðyjÞ ¼ 4 for i ¼ 2; 3;y; l þ 1; j ¼ 2; 3;y; l þ 1:

An l-belt H is said to be maximal if GGðy1Þafx1; x2; y2; ug and
GGðxlþ2Þafxlþ1; ylþ1; ylþ2; vg for any u; vAG: The edges xixiþ1; yjyjþ1 for i ¼
2; 3;y; l þ 1; j ¼ 1; 2;y; l of an l-belt or a maximal l-belt H are called inner edges

of H:

Definition 3.4. Let G be a 4-connected graph and H a subgraph of G such that
VðHÞ ¼ fx1; x2;y; xlþ2; xlþ3; y1; y2;y; ylþ2g and EðHÞ ¼ E1ðHÞ,E2ðHÞ where
E1ðHÞ ¼ fx1x2; x2x3;y; xlþ1xlþ2; xlþ2xlþ3; y1y2; y2y3;y; ylþ1ylþ2g and E2ðHÞ ¼
fy1x2; x2y2; y2x3;y; ylxlþ1; xlþ1ylþ1; ylþ1xlþ2; xlþ2ylþ2g: Then, H is called an l-co-

belt if the following conditions are satisfied:

(i) E1ðHÞDENðGÞ and E2ðHÞDERðGÞ;
(ii) dðxiÞ ¼ dðyjÞ ¼ 4 for i ¼ 2; 3;y; l þ 2; j ¼ 2; 3;y; l þ 1:

An l-co-belt H is said to be maximal if GGðy1Þafx1; x2; y2; ug and
GGðylþ2Þafxlþ2; ylþ1; xlþ3; vg for any u; vAG: The edges xixiþ1; yjyjþ1 for i ¼
2; 3;y; l þ 1; j ¼ 1; 2;y; l þ 1 of an l-co-belt or a maximal l-co-belt H are called
inner edges of H:

Definition 3.5. Let G be a 4-connected graph and H a subgraph of G such that VðHÞ ¼
fx1; x2; x3; y1; y2; y3; y4g and EðHÞ ¼ fx1x2; x2x3; y1y2; y2y3; y3y4; x1y2; x2y2;
x2y3; x3y3g: Then, H is called a W -framework if the following conditions are satisfied:

(i) xixiþ1AENðGÞ for i ¼ 1; 2;
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(ii) dðx2Þ ¼ dðy2Þ ¼ dðy3Þ ¼ 4;
(iii) y2y3; x1y2; x2y2; x2y3; x3y3AERðGÞ:

The edges x1x2; x2x3 of a W -framework H are called inner edges of H:

Definition 3.6. Let G be a 4-connected graph and H a subgraph of G such that
VðHÞ ¼ fx1; x2; x3; y1; y2; y3; y4g and EðHÞ ¼ fx1x2; x2x3; x1x3; y1y2; y2y3; y3y4;
x1y2; x2y2; x2y3; x3y3g: Then, H is called a W 0-framework if the following conditions
are satisfied:

(i) xixiþ1AENðGÞ for i ¼ 1; 2;
(ii) dðx2Þ ¼ dðx3Þ ¼ dðy2Þ ¼ dðy3Þ ¼ 4 and dðx1ÞX5;
(iii) y2y3; x1y2; x2y3; x3y3; x1x3AERðGÞ; x2y2AENðGÞ:

The edges x1x2; x2x3; x2y2 of a W 0-framework H are called inner edges of H:
For convenience, some special notations are introduced as follows.
By L1 we denote the maximal 1-belt such that VðL1Þ ¼ fx1; x2; x3; y1; y2; y3g and

EðL0
1Þ ¼ fx1x2; x2x3; y1y2; y2y3; y1x2; x2y2; y2x3g: We say that x2x3; y1y2 are inner

edges of L1:
By L2 we denote the maximal 2-belt such that VðL2Þ ¼ fx1; x2; x3; x4; y1; y2; y3;

y4g and EðL0
2Þ ¼ fx1x2; x2x3; x3x4; y1y2; y2y3; y3y4; y1x2; x2y2; y2x3; x3y3; y3x4g: We

say that x2x3; x3x4; y1y2; y2y3 are inner edges of L2:
By L1

0 we denote the maximal 1-co-belt such that VðL1
0Þ ¼ fx1; x2;x3; x4; y1; y2;

y3g and EðL1
0Þ ¼ fx1x2; x2x3; x3x4; y1y2; y2y3; y1x2; x2y2; y2x3; x3y3g: We say that

x2x3; y1y2; y2y3 are inner edges of L1
0:

By L2
0 we denote the maximal 2-co-belt such that VðL2

0Þ ¼ fx1; x2; x3; x4;x5; y1;
y2; y3; y4g and EðL2

0Þ ¼ fx1x2; x2x3;x3x4; x4x5; y1y2; y2y3; y3y4; y1x2; x2y2; y2x3;x3y3;
y3x4; x4y4g: We say that x2x3; x3x4; y1y2; y2y3; y3y4 are inner edges of L2

0:
By F we denote the maximal 1-bi-fan such that VðFÞ ¼ fa; b; x1; x2; x3;x4g and

EðFÞ ¼ fx1x2; x2x3; x3x4; ax2; ax3; bx2; bx3g:We say that x2x3 is the inner edge of F :
By W we denote the W -framework such that VðWÞ ¼ fx1; x2; x3; y1; y2; y3; y4g

and EðWÞ ¼ fx1x2; x2x3; y1y2; y2y3; y3y4; x1y2;x2y2; x2y3; x3y3g: We say that x1x2;
x2x3 are inner edges of W :
By W 0 we denote the W 0-framework such that VðW 0Þ ¼ fx1; x2; x3; y1; y2; y3; y4g

and EðW 0Þ ¼ fx1x2;x2x3; x1x3; y1y2; y2y3; y3y4; x1y2; y2x2; x2y3; y3x3g: We say that
x1x2; x2x3; x2y2 are inner edges of W 0:
By H we denote the helm such that VðHÞ ¼ fa; x1; x2; x3; x4; v1; v2; v3; v4g and

EðHÞ ¼ fax1; ax2; ax3; ax4; x1x2; x2x3; x3x4; x4x1; x1v1; x2v2; x3v3; x4v4g: We say that
the edges axi for i ¼ 1; 2; 3; 4 are inner edges of H:
The set of all the above mentioned subgraphs with special notations L1; L2; L1

0;
L2

0; F ; W ; W 0 and H of a graph G is denoted by R: Then, we have the following
result.

Lemma 3.7. There is no common inner edge between any two different subgraphs of G

in R:
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Proof. By contradiction. Suppose that there are two different subgraphs H and H 0

of G in R that have a common inner edge. Then, we discuss the following
cases.
(1). H is a maximal 1-belt L1: Then, x2x3 and y1y2 are the inner edges of H:

Without loss of generality, we may assume that x2x3 is also an inner edge of H 0:
Similarly, we can treat the case that y1y2 is a common inner edge of H and H 0: We
discuss the following subcases for H 0:
(1.1). H 0 is a maximal 1-belt. Let VðH 0Þ ¼ fu1; u2; u3; v1; v2; v3g and EðH 0Þ ¼

fu1u2; u2u3; v1v2; v2v3; v1u2; u2v2; v2u3g; and let the inner edges of H 0 be u2u3; v1v2: If
x2x3 ¼ u2u3; then we have x2 ¼ u2; x3 ¼ u3 or x2 ¼ u3; x3 ¼ u2: If x2 ¼ u2; x3 ¼ u3;
then H ¼ L1 ¼ H 0: If x2 ¼ u3; x3 ¼ u2; then we have dðx3Þ ¼ 4 and x3y3AEðGÞ or
we have dðy1Þ ¼ 4 and x1y1AEðGÞ: However, this contradicts to that H ¼ L1 is a
maximal 1-belt.
(1.2). Obviously, a similar argument can lead to that H 0 is not a maximal 1-co-belt,

a maximal 2-belt or a maximal 2-co-belt. And vice versa.
(1.3). H 0 is a maximal 1-bi-fan. Then, we have that x3y1AEðGÞ or x1x3AEðGÞ: If

x1x3AEðGÞ; then from the definition of the maximal 1-bi-fan, we have that
x1x2AERðGÞ; which contradicts to the definition of the maximal 1-belt H ¼ L1: If
x3y1AEðGÞ; since y1y2AENðGÞ; we take the corresponding separating group
ðy1y2;S;A;BÞ such that y1AA; y2AB: Since y1y2x2y1; y1y2x3y1 are 3-cycles
of G; we have that x2x3AEð½S�Þ: From Theorem 2.4 we have that x2x3AERðGÞ;
which contradicts to the definition of the maximal 1-belt H ¼ L1: Therefore, any
inner edge of the maximal 1-belt cannot be inner edge of any maximal 1-bi-fan. And
vice versa.
(1.4). H 0 is a W -framework or a W 0-framework. Then, we have that y1y2AERðGÞ;

which contradicts to the definition of the maximal 1-belt H ¼ L1: Hence, any inner
edge of the maximal 1-belt cannot be inner edge of any W -framework or
W 0-framework. And vice versa.
(1.5). H 0 is a helm. Then, either x2 or x3 is incident with four unremovable edges in

G: Obviously, it is impossible since x2x3 is an inner edge of the maximal 1-belt
H ¼ L1: Therefore, any inner edge of the maximal 1-belt cannot be inner edge of any
helm, and vice versa.
(2). H is a maximal 2-belt L2:Without loss of generality, we may assume that x2x3

is a common inner edge of H and H 0: We discuss the following subcases for H 0:
(2.1). H 0 is also a maximal 2-belt. Let VðH 0Þ ¼ fu1; u2; u3; u4; v1; v2; v3; v4g and

EðH 0Þ ¼ fu1u2; u2u3; u3u4; v1v2; v2v3; v3v4; v1u2; u2v2; v2u3; u3v3; v3u4g; and let u2u3;
u3u4; v1v2; v2v3 be the inner edges of H 0: If x2x3 ¼ u2u3; then one of the following
things holds: (i) H ¼ L2 ¼ H 0; (ii) dðy1Þ ¼ 4 and x1y1AEðGÞ; which contradicts to
that H ¼ L2 is a maximal 2-belt. If x2x3 ¼ v1v2; it is easy to see that u1v1AEðGÞ and
dðv1Þ ¼ 4; which contradicts to that H 0 is a maximal 2-belt. By symmetry, for the
other cases, we may employ a similar argument to show that the conclusion holds.
(2.2). Since a maximal 1-co-belt is a subgraph of a maximal 2-belt, it is easy to see

that x2x3 or y1y2 is not an inner edge of a maximal 1-co-belt. Otherwise, it would
lead to a contradiction to the definition of the maximal 1-co-belt. Similarly, a
maximal 2-belt and a maximal 2-co-belt do not have any common inner edge.
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(2.3). Obviously, it is impossible that an inner edge of a maximal 2-belt is an inner
edge of the following subgraphs: maximal 1-bi-fan, W -framework, W 0-framework or
helm. And vice versa.
(3). H is a maximal 2-co-belt. It is easy to see that an argument similar to that used

in (2). can be employed to deduce contradictions.
(4). H is a maximal 1-bi-fan. If H 0 is also a maximal 1-bi-fan F 0; it is easy to

see that this is true only if F ¼ F 0 holds. Obviously, it is impossible that the inner
edge x2x3 of H is an inner edge of the following subgraphs: W -framework,
W 0-framework or helm.
(5). H is a W -framework, or a W 0-framework, or a helm. Obviously, no matter

whatever H 0 is, we always can deduce contradictions. The details are omitted, and
the proof is complete. &

4. Preliminary results

In order to obtain the sharp lower bound for the number of removable edges in a
4-connected graph, we need to prove the following preliminary results.

Theorem 4.1. Let G be a 4-connected graph and F a maximal l-bi-fan of G with lX2:
Then, there exists an edge e0 in F such that e0AERðGÞ and eRðGÞXeRðG~e0Þ þ 1:

Proof. Let F be defined as in Definition 3.2. First, we claim that dðaÞX5; dðbÞX5:
Otherwise, we may assume that dðaÞ ¼ 4 and let GGðaÞ ¼ fx2; x3; x4; vg: Obviously,
vab; otherwise, fx2;x4; bg would be a 3-vertex-cut of G; a contradiction. Let A ¼
fa; x3g;S ¼ fx2; x4; vg; e ¼ bx3;B ¼ G � e � A � S; then ðbx3;S;A;BÞ is a separat-
ing group of G; and therefore, bx3AENðGÞ; which contradicts to that F is l-bi-fan.
Let e0 ¼ ax3;H ¼ G~e0: We will show that for any edge eax2x4 in H; if

eAERðHÞ; then we have eAERðGÞ:
By contradiction. Assume that there exists an edge eAERðHÞ; but eAENðGÞ: Let

e ¼ xy: Since xyAENðGÞ; from Theorem 2.1 we can take its corresponding
separating group ðe;T ;C;DÞ such that xAC; yAD: We distinguish the following
cases to proceed the proof:

Case 1: a; x3AT :
Since dðx3Þ ¼ 4 and ax3AEðGÞ; we have that jGGðx3Þ-Cj ¼ 1 or jGGðx3Þ-Dj ¼

1: Without loss of generality, we may assume that jGGðx3Þ-Cj ¼ 1: Let
GGðx3Þ-C ¼ fv1g;T ¼ fa; x3;wg: If jCjX3; let T 0 ¼ fa; v1;wg; C0 ¼ C � fv1g and
D0 ¼ H � xy � T 0 � C0: We claim that v1ax: Otherwise, we have that fa;w; v1g is a
3-vertex-cut of G; which contradicts to that G is 4-connected. It is easy to see that
ðe;T 0;C0;D0Þ is a separating group of H; and therefore eAENðHÞ; a contradiction. If
jCj ¼ 2; then v1xAEðGÞ: Since dðbÞX5 and obviously v1ab; we have v1Afx2; x4g: If
v1 ¼ x2; then x ¼ x1: Since GGðx2Þ ¼ fb;x1; x3; ag; we have that w ¼ b and GGðx1Þ ¼
fa; b; x2; yg: Obviously, fax1; bx1gCERðGÞ and x1yAENðGÞ; which contradicts to
the definition of a maximal l-bi-fan of G: If v1 ¼ x4; then w ¼ b; and therefore
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GGðxÞ ¼ fa; b; x4; yg; and so x ¼ x5: Let C0 ¼ fx4; xg; e ¼ xy;T 0 ¼ fa; b; x2g;
D0 ¼ H � e � C0 � T 0: Then, we have that ðe;T 0;C0;D0Þ is a separating group of
H; and so eAENðHÞ; which contradicts to that eAERðHÞ:

Case 2: aAT ; x3AC:
So, GGðx3Þ ¼ fa; b; x2; x4g: If jCjX3; then it is easy to see that ðe;T ;C � fx3g;DÞ

is a separating group of H; and hence eAENðHÞ; which contradicts to that
eAERðHÞ: Therefore, jCj ¼ 2; and so xAGGðx3Þ: If x ¼ b; then T ¼ fa; x2; x4g;
GGðbÞ ¼ fa;x2; x3; x4; yg;GGðx2Þ-D ¼ fx1g: Since x1x4eEðGÞ and x1ay;
we have that jDjX3: Let T 0 ¼ fa; x1; x4g;D0 ¼ D � fx1g;C0 ¼ H � xy � T 0 � D0;
then ðxy;T 0;C0;D0Þ is a separating group of H; and so eAENðHÞ; a contradiction.
If x ¼ x2; then y ¼ x1: Obviously, if we let e ¼ x2x1;C0 ¼ fx2; x4g; T 0 ¼
fa; b; x5g;D0 ¼ H � e � C0 � T 0; then ðe;T 0;C0;D0Þ is a separating group of H;
and so x2x1AENðHÞ; a contradiction. If x ¼ x4; then we have that y ¼ x5:
Let C0 ¼ fx2; x4g;T 0 ¼ fa; b; x1g;D0 ¼ H � x4x5 � T 0 � C0; then ðx4x5;T 0;C0;D0Þ
is a separating group of H; and so x4x5AENðHÞ; a contradiction to the
assumption.

Case 3: aAC; x3AT :
If jCj ¼ 2; then a ¼ x; and so C � fag ¼ fx2g or C � fag ¼ fx4g: If C � fag ¼

fx2g; then bAT : Since x3x4AENðGÞ; from Theorem 2.4 we have x4eT : If x4AD �
fyg; then ax4eEðGÞ; a contradiction. If C � fag ¼ fx4g; a similar argument can
lead to a contradiction, and therefore jCjX3: Since aAC; we have that x2; x4AC,T :

Noticing that GGðx3Þ-Da|; we have bAD; and so x2; x4AT :Here, fx2; x4; xg is a 3-
vertex-cut of H; a contradiction.

Case 4: a; x3AC:
Obviously, here we have that jCjX3; a similar argument can lead to eAENðHÞ if

eAENðGÞ:
Based on the above arguments, we know that if eAERðHÞ and eax2x4; then

eAERðGÞ: Noticing that ax3; bx3AERðGÞ; but ax3; bx3eEðHÞ; we have that
eRðGÞXeRðG~eÞ þ 1: The proof is now complete. &

Theorem 4.2. Let G be a 4-connected graph and L a maximal l-belt of G with lX3:
Then, there exists an edge e0 in G such that eRðGÞXeRðG~e0Þ þ 2:

Proof. Let L be defined as in Definition 3.3. Take e0 ¼ x3y3 and let H ¼ G~e0:
Then, we delete three removable edges y2x3; y3x3; y3x4 from G and add three edges
y2x4; x2x4; y2y4 to get H: Let A0 ¼ fy2; x2g; e1 ¼ y2y4;S0 ¼ fx1; y1; x4g and B0 ¼
G � e1 � S0 � A0; then ðe1;S0;A0;B0Þ is a separating group of H; and hence
y2y4AENðGÞ: A similar argument can lead to x2x4AENðHÞ: Here, we only need to
show that for any eAEðHÞ and eay2x4; if eAERðHÞ then eAERðGÞ:
By contradiction. Assume that there exists an edge eAERðHÞ; but eAENðGÞ: Let

e ¼ xy: From Theorem 2.1 we take its corresponding separating group ðe;S;A;BÞ
such that xAA; yAB: Next we will distinguish the following cases to proceed the
proof:

Case 1: x3; y3AS:
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Let S ¼ fx3; y3;wg;wAG and U ¼ fx2; x4; y2; y4g: From GGðx3Þ ¼ fx2; x4; y2; y3g
and GGðy3Þ ¼ fx3; x4; y2; y4g; we claim that jA-U j ¼ 2 ¼ jB-U j: Otherwise, we
may assume that jA-U j ¼ 1: Let A-U ¼ fv1g; then fx; v1;wg would be a 3-vertex-
cut of G; which contradicts to that G is 4-connected. If jAj ¼ 3; since lX3; obviously
we have that jGjX10; and so jBjX4: Let B-U ¼ fv1; v2g: Then, if we let S1 ¼
fv1; v2;wg; B1 ¼ B � fv1; v2g;A1 ¼ H � e � S1 � B1; then ðe;S1;A1;B1Þ is a separat-
ing group of H; and so eAENðHÞ; a contradiction to the assumption. If jAjX4; let
A-U ¼ fu1; u2g;S1 ¼ fu1; u2;wg; A1 ¼ A � fu1; u2g;B1 ¼ H � e � S1 � A1: Then
ðe;S1;A1;B1Þ is a separating group of H; and so eAENðHÞ; which contradicts to
the assumption.

Case 2: x3AA; y3AS:
Subcase 2.1: If jAj ¼ 2; then xAGGðx3Þ: If x ¼ x2; then S ¼ fy2; y3; x4g:

Since x2y3; x2x4eEðGÞ; we have that dðx2Þo4; a contradiction. If x ¼ x4;
a similar argument can lead to dðx4Þo4; a contradiction. If x ¼ y2; then y ¼ y1:
Let A1 ¼ fy2; x4g; e ¼ y1y2;S1 ¼ fx2; x5; y4g; B1 ¼ H � e � A1 � S1; then
ðe;S1;A1;B1Þ is a separating group of H; and so eAENðHÞ; which contradicts to
the assumption.

Subcase 2.2: If jAjX3; since x3AA; it is easy to see that B-GGðy3Þ ¼ fy4g: If
jBjX3; let B1 ¼ B � fy4g;S1 ¼ fy4g,S � fy3g;A1 ¼ H � e � S1 � B1: Then
ðe;S1;A1;B1Þ is a separating group of H; and so eAENðHÞ: If jBj ¼ 2; since
GGðy4Þ ¼ fy3; y5; x4; x5g; then we have yAfx4; x5; y5g: If y ¼ x4; then this is true only
if x ¼ x3 holds, a contradiction. If y ¼ x5; since y3x5eEðGÞ; we have that dðx5Þ ¼ 4
and S ¼ fy3; y5; x4g: Let A1 ¼ A � fy2g;S1 ¼ fy2; y5; x4g; B1 ¼ H � e � S1 � A1;
then ðe;S1;A1;B1Þ is a separating group of H; and hence eAENðHÞ: If y ¼ y5; then
S ¼ fx4; x5; y3g: Note that y3y5; x4y5eEðGÞ: So, dðy5Þo4; a contradiction.
To sum up, from the above arguments we know that in Case 2 we always have

eAENðHÞ:
Case 3: x3AS; y3AA:
By symmetry, an argument analogous to that used in Case 2 can lead to that

eAENðHÞ:
Case 4: x3; y3AA:
If jAjX4; obviously, eAENðHÞ; a contradiction to the assumption. So, jAjp3:

Obviously, x3ax; y3ax: Therefore, we have that jAj ¼ 3: Since A is a connected
subgraph of G; we may assume that x3xAEðGÞ: If x ¼ x4; then xy ¼ x4x5: Let
S1 ¼ fy1; y4; x2g;A1 ¼ fy2; x4g;B1 ¼ H � e � S1 � A1; then ðe;S1;A1;B1Þ is a separ-
ating group of H; and so eAENðHÞ: If x ¼ y2; then y ¼ y1: Let e ¼ y2y1;A1 ¼
fy2; x4g;S1 ¼ fx2; x5; y4g;B1 ¼ H � e � S1 � A1; then ðe;S1;A1;B1Þ is a separating
group of H; and so eAENðHÞ: If x ¼ x2; then S ¼ fy2; y4; x4g: It is easy to see that
dðx2Þo4; a contradiction.
Based on all the above arguments, we have that ERðHÞDERðGÞ except the edge

y2x4: Noticing that y2x3; x3y3; x4y3AERðGÞ; we have that eRðGÞXeRðG~eÞ þ 2: The
proof is now complete. &

Lemma 4.3. Let G be a 4-connected graph and ðxy;S;A;BÞ a separating group of G

such that xAB; yAA: If there exists another edge yzAENðGÞ and its corresponding
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separating group ðyz;S0;A0;B0Þ such that yAA0; zAB0 which satisfy the following

conditions:

(i) A-A0 ¼ fyg;A-B0 ¼ fzg; A-S0 ¼ fag;A0-S ¼ fbg;B0-S ¼ fu; vg such that

a; b; u; vAG;
(ii) fzu; zvg-ENðGÞa|; abAENðGÞ;

then we have that au; av cannot belong to EðGÞ simultaneously.

Proof. By contradiction. Assume that au; avAEðGÞ: Without loss of generality, we
may assume that zuAENðGÞ: So, there is a corresponding separating group
ðzu;T1;C1;D1Þ such that zAC1; uAD1: Then, we have that zAC1-B0; uAB0-D1:
Since azua is a 3-cycle of G; we have aAT1; and so aAS0-T1: Let

Y1 ¼ ðA0-T1Þ,ðS0-T1Þ,ðC1-S0Þ;

Y2 ¼ ðC1-S0Þ,ðS0-T1Þ,ðB0-T1Þ;

Y3 ¼ ðB0-T1Þ,ðS0-T1Þ,ðS0-D1Þ;

Y4 ¼ ðD1-S0Þ,ðS0-T1Þ,ðA0-T1Þ:

Obviously, yAA0-C1 or yAA0-T1: Next we will distinguish the following cases to
proceed the proof.

Case 1: If yAA0-C1; then Y1 is a vertex-cut of G � yz: Since G is 4-connected, we
have that jY1jX3: By a similar argument, we can deduce that jY3jX3: Since jY1j þ
jY3j ¼ jS0j þ jT1j ¼ 6; we have that jY1j ¼ jY3j ¼ 3; and so jA0-T1j ¼
jS0-D1j; jS0-C1j ¼ jB0-T1j: Since aAS0-T1 and abAENðGÞ; from Theorem 2.4
we have that beT1 and beS0: Since byAEðGÞ; we have that bAA0-C1: From
zvAEðGÞ and vAB0; we know that vAB0-ðC1,T1Þ: Hence, we have that jA0-T1j ¼
jS0-D1j ¼ 0; 1 or 2:
Now we discuss the following subcases:
Subcase 1.1: If jA0-T1j ¼ jD1-S0j ¼ 2; then noticing that jT1j ¼ jS0j ¼ 3 and

aAS0-T1; we have that jS0-C1j ¼ jB0-T1j ¼ 0: Since avza is a 3-cycle of G; we
have that vAB0-C1; and so jB0-C1jX2: Then, fa; zg would be a 2-vertex-cut of G;
which contradicts to that G is 4-connected.

Subcase 1.2: If jA0-T1j ¼ jD1-S0j ¼ 1; then jS0-T1jp2: First, we claim that
B0-D1 ¼ fug: Otherwise, if jB0-D1jX2; since GGðaÞ ¼ fy; z; u; v; bg; by the
foregoing argument we have that GGðaÞ-ðB0-D1Þ ¼ fug: Then, fug,ðY3 � fagÞ
would be a 3-vertex-cut of G; a contradiction. Hence, D1-B0 ¼ fug: Let D1-S0 ¼
fu1g: If S-T1 ¼ fag; then jY4j ¼ 3: Since G is 4-connected, we have that D1-A0 ¼
|: Then, u1AGGðaÞ: However, it is easy to see that u1efy; z; b; u; vg; a contradiction.
Therefore, jS0-T1j ¼ 2: It is easy to see that GGðaÞ-ðA0-D1Þ ¼ |: If A0-D1a|;
then Y4 � fag would be a 3-vertex-cut of G; a contradiction. If A0-D1 ¼ |; then it is
easy to see that au1AEðGÞ: However, u1efb; u; v; y; zg; a contradiction.

Subcase 1.3: If jA0-T1j ¼ jD1-S0j ¼ 0; since D1 is a connected subgraph of G; we

have that A0-D1 ¼ |: From jD1jX2; we have that jD1-B0jX2: By an analogous
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argument we can deduce that GGðaÞ-ðD1-B0Þ ¼ fug: Since jY3j ¼ jT1j ¼ 3;
fug,ðY3 � fagÞ would be a 3-vertex-cut, a contradiction.

Case 2: yAA0-T1:
Since yzAENðGÞ; from Theorem 2.2 we have that jC1j ¼ 2: Since C1 is a connected

subgraph of G; we have that A0-C1 ¼ |: If S0-C1a|; from jC1j ¼ 2 we have that
jS0-C1j ¼ 1: Since aAS0-T1; we have that jD1-S0jp1: Since Y3 is a vertex-cut of
G � zu; we have that jY3jX3; and so jB0-T1jX1: Noticing that jT1j ¼ 3; we have

that A0-T1 ¼ fyg and jY4j ¼ 3: Since G is 4-connected, we have that A0-D1 ¼ |;
and therefore, we have that A0 ¼ fyg; which contradicts to that jA0jX2: If S0-C1 ¼
|; then jB0-C1j ¼ 2: Since A0-T1a|; we have that jY2j ¼ jT1-ðB0,S0Þjp2; and so
fzg,Y2 would be a vertex-cut of G: However, jfzg,Y2jo4; a contradiction.
From all the above arguments we have that au; av cannot belong to EðGÞ

simultaneously. The proof is now complete. &

A 4-connected graph G is said to have property ð%Þ if there does not exist any
edge xyAERðGÞ such that both dðxÞX5 and dðyÞX5:

Theorem 4.4. Let G be a 4-connected graph with property ð%Þ; jGjX8; and C0 be a

cycle of G: If C0 does not contain any removable edges of G; then G has one of

the following structures as its subgraph: l-belt, l-bi-fan ðlX1Þ; W -framework,
W 0-framework or helm, such that it intersects C0 at its some inner edge(s).

Proof. For every edge e ¼ xy in C0; from Theorem 2.1 there exists a separating
group ðe;S;A;BÞ of G; in which we always choose A and B such that minfjAj; jBjg is
as small as possible. Without loss of generality, we may assume jAjpjBj such that
yAA; xAB: Then, we take f ¼ yzAEðC0Þ; zax; and its corresponding separating
group ð f ;T ;C;DÞ such that yAC; zAD in G: Let

X1 ¼ ðS-CÞ,ðS-TÞ,ðA-TÞ;

X2 ¼ ðA-TÞ,ðS-TÞ,ðS-DÞ;

X3 ¼ ðS-DÞ,ðS-TÞ,ðB-TÞ;

X4 ¼ ðB-TÞ,ðS-TÞ,ðS-CÞ:

It is easy to see that the edge e ¼ xy is the unique edge connecting A and B; and the
edge f ¼ yz is the unique edge connecting C and D; and so xeD; zeB: Since X1 is a
vertex-cut of G � yx � yz and G is 4-connected, we have that jX1jX2:
Next we will distinguish the following cases to proceed the proof:
Case 1: xAB-C; zAD-S:

From Theorem 2.2 we have that jAj ¼ 2: Since A-Ca| and A is a connected

subgraph of G; we have that A-D ¼ |; and so jA-T jp1: If jA-T j ¼ 0; then

jA-Cj ¼ 2: Since S-Da|; by noticing that jSj ¼ 3; we have that jX1j ¼
jðS-CÞ,ðS-TÞjp2; and thus X1,fyg would be a vertex-cut of G: However,
jX1,fygjo4; which contradicts to that G is 4-connected. Therefore, jA-T j ¼
1;A-C ¼ fyg: Since X4 is a vertex-cut of G � xy; we have that jX4jX3; and hence
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jS-CjXjA-T j ¼ 1; jB-T jXjS-DjX1: So, S-T ¼ | or jS-T j ¼ 1: We claim

that S-T ¼ |: Otherwise, if jS-T j ¼ 1; then jX3j ¼ 3; and so B-D ¼ |: Since
A-D ¼ |; it is easy to see that D ¼ D-S ¼ fzg; which contradicts to that jDjX2;

and thus S-T ¼ |: Noticing that jT j ¼ 3; we have that jB-T j ¼ 2: If jS-Cj ¼ 2;
then jS-Dj ¼ 1: A similar argument can be used to get that D ¼ fzg; which
contradicts to that jDjX2: Therefore, jC-Sj ¼ 1; and so jD-Sj ¼ 2:
Let A-T ¼ fag;S-C ¼ fbg;S-D ¼ fz; cg: It is easy to see that GGðyÞ ¼

fx; z; a; bg; GGðaÞ ¼ fy; z; b; cg: Next we will show that ay; az; byAERðGÞ by
contradiction.
(1). Assume that ayAENðGÞ and we take a separating group ðay;U ;A0;B0Þ such

that aAA0; yAB0: Since ayza; abya are 3-cycles of G; we have that z; bAU : Since
yzAENðGÞ; from Theorem 2.2 we have that jB0j ¼ 2: Let B0 ¼ fv1; yg; then byv1b is a
3-cycle of G and v1aa; and so this is true only if v1 ¼ x holds. However, xzeEðGÞ;
and so dðxÞo4; a contradiction.
(2). Assume that azAENðGÞ and we take its separating group ðaz;U ;A0;B0Þ such

that aAA0; zAB0 in G: Since ayza is a 3-cycle of G; we have that yAU : Since
yzAENðGÞ; from Theorem 2.2 we have that jB0j ¼ 2: Let B0 ¼ fz; v1g; then yzv1y is a
3-cycle of G and v1aa; which is impossible to hold in G: Therefore, azAERðGÞ:
(3). Assume that byAENðGÞ: First, let A0 ¼ C-ðB,SÞ;S0 ¼ fyg,ðB-TÞ; B0 ¼

G � ab � A0 � S0; then ðab;S0;A0;B0Þ is a separating group of G; and hence
abAENðGÞ: Since byAENðGÞ; we take its separating group ðby;U ;A0;B0Þ such that
bAA0; yAB0: Since abya is a 3-cycle of G; we have that aAS0: Since abAENðGÞ; from
Theorem 2.2 we have that jA0j ¼ 2: Let A0 ¼ fb; v1g: Then abv1a is a 3-cycle of G and
v1ay; which is impossible in G; and therefore, we have byAERðGÞ:
Let A0 ¼ fa; yg;S0 ¼ fb; z; xg; B0 ¼ G � ac � S0 � A0; then ðac;S0;A0;B0Þ is a

separating group of G; and so acAENðGÞ: It is easy to see that ðab;B-T,fygÞ is
a separating pair of G; so abAENðGÞ:
Obviously, yz is an inner edge of an l-belt or l-co-belt with lX1; and so the

conclusion holds.
Case 2: zAS-D;xAB-T :
From Theorem 2.2 we have that jAj ¼ jCj ¼ 2: Since A and C are two connected

subgraphs of G; we have that A-D ¼ | ¼ B-C: First, we claim that jA-Cj ¼ 1:

Otherwise, jA-Cj ¼ 2; and so A-T ¼ | ¼ S-C: Since B-Ta|aS-D; we have
that jX1j ¼ jS-T jp2; and so X1,fyg would be a vertex-cut of G: However,
jX1,fygjo4; which contradicts to that G is 4-connected. Therefore, jA-T j ¼
1; jS-Cj ¼ 1: Second, we claim that S-T ¼ |: Otherwise, jS-T j ¼ 1: Then, jX3j ¼
3; and so B-D ¼ |: Hence, D ¼ D-S ¼ fzg; which contradicts to that jDjX2:
Therefore, we have that jB-T j ¼ jS-Dj ¼ 2:
Let A-T ¼ fag;S-C ¼ fbg;D-S ¼ fz; vg;B-T ¼ fx; ug; then GGðyÞ ¼

fx; z; a; bg;GGðaÞ ¼ fx; z; b; vg;GGðbÞ ¼ fx; y; a; ug:
Next we will show azAERðGÞ: By contradiction, assume that azAENðGÞ and we

take the corresponding separating group ðaz;U ;A0;B0Þ such that aAA0; zAB0: Since
azya is a 3-cycle of G; we have that yAU : Since yzAENðGÞ; from Theorem 2.2 we
have that jB0j ¼ 2: Let B0 ¼ fz; v1g; then yzv1y is a 3-cycle of G and v1aa; and so this
is true only if v1 ¼ x holds. Since bxAEðGÞ; we have bAU : Then, ðU � fygÞ,fag
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would be a 3-vertex-cut of G; a contradiction. Therefore, azAERðGÞ holds. By
symmetry, we have that bxAERðGÞ: Let A0 ¼ fa; yg; S0 ¼ fx; z; bg;B0 ¼ G � av �
S0 � A0; then ðav;S0;A0;B0Þ is a separating group of G; and so avAENðGÞ: A similar
argument can lead to buAENðGÞ:
Now we discuss the following subcases:
Subcase 2.1: xzeEðGÞ:We will show that ay; byAERðGÞ: By contradiction, assume

that ayAENðGÞ and we take its separating group ðay;U ;A0;B0Þ such that
aAA0; yAB0: Since ayza is a 3-cycle of G; we have that zAU : Since yzAENðGÞ;
from Theorem 2.2 we have that jB0j ¼ 2: Let B0 ¼ fy; v1g; then yzv1y is a 3-cycle of
G: Obviously, v1aa: Note that xzeEðGÞ; and so v1ax; which is impossible in G:
Therefore, we have that ayAERðGÞ: By symmetry, we have that byAERðGÞ: It is easy
to see that if abAENðGÞ; then G contains an l-belt or an l-co-belt with lX1 such that
yz is its an inner edge. If abAERðGÞ; then G contains a W -framework such that yz is
its an inner edge. Therefore, the conclusion holds.

Subcase 2.2: xzAEðGÞ: Since xy; yzAENðGÞ; from Corollary 2.3 we have
xzAERðGÞ: Since G has property ð%Þ; we have that dðxÞ ¼ 4 or dðzÞ ¼ 4:

Subsubcase 2.2.1: dðxÞ ¼ 4; dðzÞX5: Let GGðxÞ ¼ fy; z; b;wg: Since jGjX8; we

have that B-Da|; and so wAB-D: Let A0 ¼ fx; yg; U ¼ fw; z; bg;B0 ¼ G � ay �
U � A0: Then ðay;U ;A0;B0Þ is a separating group of G; and so ayAENðGÞ: We claim
that abAERðGÞ: Otherwise, abAENðGÞ: Then, we take a separating group
ðay;T1;C1;D1Þ of G such that aAC1; yAD1: Obviously, z; bAT1: Since
ab; yzAENðGÞ; from Theorem 2.2 we have that jC1j ¼ jD1j ¼ 2; which contradicts
to that jGjX8; and so abAERðGÞ: We claim that byAERðGÞ: Otherwise, byAENðGÞ;
and we take its separating group ðby;T1;C1;D1Þ such that bAC1; yAD1: Since byxb

is a 3-cycle of G; we have xAT1: Since xyAENðGÞ; from Theorem 2.2 we have that
jD1j ¼ 2: Let D1 ¼ fy; v1g; then yxv1y is a 3-cycle of G; and hence this is true only if
v1 ¼ z holds. However, dðv1Þ ¼ 4; which contradicts to that dðzÞX5: Therefore,
byAERðGÞ: Obviously, here xy; yz are inner edges of a W 0-framework in G: The
conclusion holds.

Subsubcase 2.2.2: dðxÞX5; dðzÞ ¼ 4: By symmetry, from an argument similar to
that used in Subsubcase 2.2.1 we can get the conclusion.

Subsubcase 2.2.3: dðxÞ ¼ dðzÞ ¼ 4: Let GGðxÞ ¼ fy; z; b;wg: Let A0 ¼ fx; yg; U ¼
fw; z; bg;B0 ¼ G � ay � U � A0; then ðay;U ;A0;B0Þ is a separating group of G; and
so ayAENðGÞ: By symmetry, we have that byAENðGÞ: Since xy; yzAENðGÞ; from
Corollary 2.3 we have that ab; bx; xz; zaAERðGÞ: Obviously, G contains a helm as a
subgraph such that xy; yz are its inner edges. Therefore, the conclusion holds.

Case 3: zAA-D; xAB-T :
From Theorem 2.2 we have that jCj ¼ 2: Since jAjpjCj; we have that jAj ¼ 2; and

hence A ¼ fy; zg; A-T ¼ |: Since A-Da|; we have that jX2jX3: Noticing that
jSj ¼ 3; we have that jA-T jXjS-Cj; and so jS-Cj ¼ 0: Since C is a connected
subgraph of G and jCj ¼ 2; from A ¼ fy; zg we can get that A-C ¼ fyg: Therefore,
C-Sa|; a contradiction. So, Case 3 cannot occur.

Case 4: zAA-D; xAB-C:

So, A-Da|aB-C; and therefore jX2jX3; jX4jX3: Since jX2j þ jX4j ¼ jSj þ
jT j ¼ 6; we have thatjX2j ¼ jX4j ¼ 3; and so jA-T j ¼ jS-Cj; jB-T j ¼ jS-Dj:
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First, we claim that A-D ¼ fzg: Otherwise, jA-DjX2: Let U 0 ¼ X2;A0 ¼
A-D;B0 ¼ G � yz � U 0 � A0; then ðyz;U 0;A0;B0Þ is a separating group of G; and
yzAEðC0Þ; jA0jojAj; which contradicts to that jAj is as small as possible. Therefore,
A-D ¼ fzg: Since D is a connected subgraph of G and jDjX2; we have that

D-Sa|aB-T ; and so jS-T jp2: If jS-T j ¼ 1; we claim that S-Ca|aA-T :
Otherwise, jX1j ¼ 1: Obviously, jA-CjX2; and so fyg,ðS-TÞ would be a 2-
vertex-cut of G; a contradiction. Therefore, jS-Cj ¼ jA-T j ¼ 1; jD-Sj ¼
jB-T j ¼ 1; and hence jX3j ¼ 3: Then, we have that B-D ¼ | and jDj ¼ 2:
However, jAjX3: Then, jDjojAj; which contradicts to that jAj is as small as
possible. Therefore, jS-T j ¼ 0 or jS-T j ¼ 2:
Next we will show that jS-T ja0: Assume that jS-T j ¼ 0: Then, jB-T j ¼

jS-Dj ¼ 2 and jA-T j ¼ jS-Cj ¼ 1 must hold. We claim that A-C ¼ fyg:
Otherwise, jA-CjX2: Then, X1,fyg would be a 3-vertex-cut of G; which
contradicts to that G is 4-connected, and so dðyÞ ¼ 4: Let A-T ¼ fag;S-C ¼
fbg;S-D ¼ fu; vg: First, let A0 ¼ fa; zg;S0 ¼ fyg,ðS-DÞ;B0 ¼ G � ab � S0 � A0;
then ðab;S0;A0;B0Þ is a separating group of G; and so abAENðGÞ: Second, we claim
that azAERðGÞ: Otherwise, azAENðGÞ; we take the separating group ðaz;S0;A0;B0Þ
such that aAA0; zAB0: Obviously, yAS0: Since yzAENðGÞ; from Theorem 2.2 we have
that jB0j ¼ 2; say B0 ¼ fz; v1g: Then, zv1yz is a 3-cycle of G and v1aa; which is
impossible to hold, so azAERðGÞ: Since C0 is a cycle of G; we have that

fzu; zvg-ENðGÞa|: From Lemma 4.3 we have that au; av cannot belong to EðGÞ
simultaneously. Without loss of generality, we may assume that aueEðGÞ: Let S0 ¼
ðS � fugÞ,fzg; A0 ¼ A � fzg;B0 ¼ B,fug; then ðxy;S0;A0;B0Þ is a separating
group of G; and jA0jojAj; which contradicts to that jAj is as small as possible.

Therefore, S-Ta|; and so jS-T j ¼ 2: Then, we have that jS-Dj ¼ jB-T j ¼
1; jA-T j ¼ jS-Cj ¼ 0;A-C ¼ fyg:
Let S-T ¼ fa; bg;S-D ¼ fug: It is easy to see that GGðyÞ ¼ fx; a; b; zg;GGðzÞ ¼

fy; a; b; ug:
First, we will show that the conclusion of the theorem holds if azAENðGÞ: From

Theorem 2.1 we take its corresponding separating group ðaz;S1;A1;B1Þ such that
aAB1; zAA1: Since ayza is a 3-cycle of G; we have yAS1; and so yAS1-C; aAB1-T :

From Theorem 2.2 we have that jA1j ¼ jDj ¼ 2: If jA1-Dj ¼ 2; since S1-Ca|; then
jS1-T jp2; and so fzg,ðS1-TÞ would be a vertex-cut with cardinality less than 4, a
contradiction. Therefore, jA1-Dj ¼ 1: Since bAT and bzAEðGÞ; we have that
bAA1-T : Since D is a connected subgraph of G and jDj ¼ 2; it is easy to see that

jD-S1j ¼ 1: Since zuAEðGÞ; we have that D-S1 ¼ fug: We claim that S1-T ¼ |:
Otherwise, jS1-T j ¼ 1: Then, jS1-Cj ¼ jB1-T j ¼ 1: Obviously, jðS1-CÞ,
ðS1-TÞ,ðB1-TÞj ¼ 3: Since G is 4-connected, we have that B1-C ¼ |: Therefore,
jCj ¼ jC-S1j ¼ 1; which contradicts to that jCjX2: Hence, S1-T ¼ |; and
therefore, jS1-Cj ¼ jB1-T j ¼ 2: Here we need to discuss the following cases:
(1). If dðyÞ ¼ 4; dðaÞX5; an argument similar to that used in Subsubcase 2.2.1 can

lead to that G contains a W 0-framework such that yz is its an inner edge. Then, the
conclusion holds.
(2). If dðyÞ ¼ dðaÞ ¼ 4; an argument similar to that used in Subsubcase 2.2.3 can

lead to that G contains a helm such that yz is its an inner edge. The conclusion holds.
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If bzAENðGÞ; by the symmetry of az and bz; a similar argument can be used to get
the conclusion. Therefore, we may assume that az; bzAERðGÞ:
Next we consider ay: Assume ayAENðGÞ: From Theorem 2.1 we take its

separating group ðay;S1; A1;B1Þ such that aAA1; yAB1: It is easy to see that
zAS1-D; yAB1-C and aAA1-T : Since ay; yzAENðGÞ; from Theorem 2.2
we have that jCj ¼ 2 ¼ jB1j; and so C ¼ fy; xg: By an argument analogous to that
used in Case 2, we can get that jB1-T j ¼ jS1-Cj ¼ 1;B1-C ¼ fyg; jA1-T j ¼
jD-S1j ¼ 2: Then, S1-C ¼ fxg: Since byzb is a 3-cycle of G; it is easy to see that
B1-T ¼ fbg and dðxÞ ¼ dðbÞ ¼ dðzÞ ¼ 4: Here we need to discuss the following
cases:
(1). If dðaÞX5; an argument analogous to that used in Subsubcase 2.2.1 can lead

to that G contains a W 0-framework such that xy; yz are its inner edges. Then, the
conclusion holds.
(2). If dðaÞ ¼ 4; an argument analogous to that used in Subsubcase 2.2.3 can lead

to that G contains a helm such that xy; yz are its inner edges. Then, the conclusion
holds.
Thus, we may assume that ay; byAERðGÞ: Then, according to the definition of the

l-bi-fan, ðlX1Þ; G contains a l-bi-fan such that yz is its an inner edge. The proof is
now complete. &

Lemma 4.5. Let G be a 4-connected graph with property ð%Þ; and let P ¼ y1y2?yk

be a path of½ENðGÞ� with kX3 and take a set D such that |aDCVðGÞ: Suppose that

ðy1y2;U 0;X 0;Y 0Þ is a separating group of G such that y1AY 0; y2AX 0 and D-Y 0a|:
We choose iAf1; 2;y; kg and a separating group ðyiyiþ1;S;A;BÞ satisfying

yiAB; yiþ1AA;D-Ba| such that jAj is as small as possible. If ipk � 2; we take

another separating group ðyiþ1yiþ2;S0;A0;B0Þ such that yiþ1AB0; yiþ2AA0; Then, one of

the following conclusions holds:

(i) A-B0 ¼fyiþ1g;A-A0 ¼fyiþ2g;A-S0 ¼fag; B0-S¼fbg;S-S0 ¼ |; yiAB- B0;
jB-S0j ¼ jA0-Sj ¼ 2; A0-S ¼ fu; vg; where yiþ2u; yiþ2v; yiþ2aA ERðGÞ and
a; b; u; vAG:

(ii) A-A0 ¼ fyiþ2g; yiþ1AA-B0;S-S0 ¼ | ¼ A0-B; B-S0 ¼ fdg ¼ D-B;D-B0

¼ |;A0-S ¼ fcg; jB0-Sj ¼ jA-S0j ¼ 2; yiAB-B0; where d; cAG:
(iii) A-A0 ¼ fyiþ2g; yiþ1AA-B0;S-S0 ¼ fwg; D-B ¼ fdg ¼ B-S0;D-B0 ¼

| ¼ B-A0;A0-S ¼ fcg; jB0-Sj ¼ jA-S0j ¼ 1; yiAB-B0; where d; c;
wAG:

(iv) G contains one of the following structures: l-belt, ðlX1Þ; helm, W -framework,
W 0-framework, l-bi-fan, ðlX1Þ; as its subgraph, such that it intersects P at its
some inner edge(s).

Proof. Let

X1 ¼ ðA-S0Þ,ðS-S0Þ,ðB0-SÞ;

X2 ¼ ðA-S0Þ,ðS-S0Þ,ðA0-SÞ;
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X3 ¼ ðA0-SÞ,ðS-S0Þ,ðB-S0Þ;

X4 ¼ ðB0-SÞ,ðS-S0Þ,ðB-S0Þ:

We will distinguish the following cases to proceed the proof.
Case 1: yiAB-B0; yiþ2AA-A0:
Since B-B0a|; then X4 is a vertex-cut of G � yiyiþ1: Since G is 4-connected, we

have that jX4jX3: By a similar argument we can deduce that jX2jX3: Since jX2j þ
jX4j ¼ jSj þ jS0j ¼ 6; we have that jX2j ¼ jX4j; and so jA-S0j ¼ jB0-Sj; jA0-Sj ¼
jB-S0j:
First, we claim that A0-ðB,SÞa|: Otherwise, A0-ðB,SÞ ¼ |: Since jA0-Sj ¼

0; we have that S0-B ¼ |: Since B is a connected subgraph of G; we have that

B ¼ B-B0: Therefore, we have that |aD-B ¼ D-ðB-B0ÞCD-B0: For the
separating group ðyiþ1yiþ2;S0;A0;B0Þ of G; we have that yiþ1AB0;
yiþ2AA0;D-B0a|; and A0CA; jA0jojAj; which contradicts to that jAj is as small
as possible, and so A0-ðB,SÞa|: Since A0 is a connected subgraph of G and

A-A0a|aA0-ðB,SÞ; we have that A0-Sa|aB-S0: If jA0-Sj ¼ 3; then jX1j ¼
0; and so fyi; yiþ2g would be a 2-vertex-cut of G; a contradiction. Therefore,
jA0-Sj ¼ 2 or jA0-Sj ¼ 1:
Next we will discuss the following subcases.
Subcase 1.1: jA0-Sj ¼ jS0-Bj ¼ 2: Let A0-S ¼ fu; vg: Since G is 4-connected

and X1 is a vertex-cut of G � yiyiþ1 � yiþ1yiþ2; we have that jX1jX2: Noticing that
jSj ¼ jS0j ¼ 3; it is easy to see that jA-S0j ¼ jB0-Sj ¼ 1; jS-S0j ¼ 0: Let A-S0 ¼
fag;B0-S ¼ fbg: First, we claim that A-B0 ¼ fyiþ1g: Otherwise, jA-B0jX2; and
so X1,fyiþ1g would be a 3-vertex-cut of G; a contradiction. Second, we claim that
A-A0 ¼ fyiþ2g: Otherwise, jA-A0jX2: Let A1 ¼ A-A0; S1 ¼ X2;B1 ¼ G �
yiþ1yiþ2 � S1 � A1: It is easy to see that D-B1a|: Then, ðyiþ1yiþ2;S1;A1;B1Þ is a
separating group of G such that yiþ1AB1; yiþ2AA1 and D-B1a|: However,
jA1jojAj; which contradicts to that jAj is as small as possible. Therefore, A-A0 ¼
fyiþ2g: Obviously, ðab;S1Þ is a separating pair of G such that S1 ¼ fyiþ1; u; vg;
and so abAENðGÞ: We claim that yiþ2u; yiþ2vAERðGÞ: Otherwise,

fyiþ2u; yiþ2vg-ENðGÞa|: From Lemma 4.3 we have that au; av cannot belong to
EðGÞ simultaneously. Without loss of generality, we may assume that
aueEðGÞ: Let A1¼ A � fyiþ2g;S1 ¼ fyiþ2g,ðS � fugÞ;B1 ¼ G � yiyiþ1 � S1 � A1;

then ðyiyiþ1;S1;A1;B1Þ is a separating group of G such that D-B1a|: However,
jA1jojAj; which contradicts to that jAj is as small as possible. Therefore,
yiþ2u; yiþ2vAERðGÞ: We claim that ayiþ2AERðGÞ: Otherwise, ayiþ2AENðGÞ; and we
take its separating group ðayiþ2;T 0;C0;D0Þ such that aAC0; yiþ2AD0: Since ayiþ1yiþ2a
is a 3-cycle of G; we have that yiþ1AT 0: Since yiþ1yiþ2AENðGÞ; from Theorem 2.2 we
have that jD0j ¼ 2: Let D0 ¼ fyiþ2; v1g; then v1yiþ1yiþ2v1 is a 3-cycle of G and v1aa:
Obviously, it is impossible to hold in G; and hence, ayiþ2AERðGÞ: Then, the
conclusion (i) holds.

Subcase 1.2: jA0-Sj ¼ jB-S0j ¼ 1:
Let A0-S ¼ fcg;B-S0 ¼ fdg: Then, we will discuss the following subsubcases.
Subsubcase 1.2.1: jS-S0j ¼ 0; jB0-Sj ¼ jA-S0j ¼ 2:
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It is easy to see that jX3j ¼ 2: Since G is 4-connected, we have that A0-B ¼ | and
jX2j ¼ 3: We claim that A-A0 ¼ fyiþ2g: Otherwise, jA-A0jX2: Let A1 ¼
A-A0;S1 ¼ X2;B1 ¼ G � yiþ1yiþ2 � S1 � A1; then ðyiþ1yiþ2;S1;A1;B1Þ is a separat-
ing group. Obviously, D-B1a| and jA1jojAj; which contradicts to that jAj is as
small as possible. Therefore, A-A0 ¼ fyiþ2g; and so A0 ¼ fyiþ2; cg; jA0j ¼ 2ojAj: By
the minimum property of jAj; we have that B0-D ¼ |; and therefore, B-D ¼
B-S0 ¼ fdg and jB-Dj ¼ 1: Then, conclusion (ii) holds.

Subsubcase 1.2.2: jS-S0j ¼ 1; jB0-Sj ¼ jA-S0j ¼ 1:
Let A0-S ¼ fcg; S-S0 ¼ fwg;B-S0 ¼ fdg: Since jX3j ¼ 3o4; we have that

B-A0 ¼ |: An argument similar to that used in Subsubcase 1.2.1 can lead to that
A-A0 ¼ fyiþ2g; yiþ1AA-B0: Since jA0j ¼ 2ojAj; by an argument similar to that

used in Subsubcase 1.2.1, we have that B0-D ¼ |; and so D-B ¼ B-S0 ¼ fdg:
Then, conclusion (iii) holds.

Subsubcase 1.2.3: jS-S0j ¼ 2; jB0-Sj ¼ jA-S0j ¼ 0;
Let S-S0 ¼ fa; bg: We claim that A-B0 ¼ fyiþ1g: Otherwise, jA-B0jX2: Then,

fyiþ1; a; bg would be a 3-vertex-cut of G; which contradicts to that G is 4-connected.
It is easy to see that jX2j ¼ 3: An argument similar to that used in Subsubcase 1.2.1
can lead to that A-A0 ¼ fyiþ2g: From Corollary 2.3 we have that

fayiþ1; ayiþ2g-ERðGÞa|; fbyiþ1; byiþ2g-ERðGÞa|: Next we discuss the following
cases.
(1). If ayiþ2AENðGÞ; then A0-B ¼ | and we take the corresponding separating

group ðayiþ2;S1;A1;B1Þ such that yiþ2AA1; aAB1: Since ayiþ1yiþ2a is a 3-cycle of G;
we have that yiþ1AS1; and so yiþ1AS1-B0: Since aAS0; we have that aAS0-B1:
Obviously, dðyiþ1Þ ¼ dðyiþ2Þ ¼ 4: By an argument analogous to that used in Subcase
2.2 of Theorem 4.4, we can get that yiþ1yiþ2 is an inner edge of a W 0-framework or a
helm, and so conclusion (iv) holds. For byiþ2AENðGÞ; we may employ a similar
argument to get conclusion (iv). Hence, we may assume that ayiþ2; byiþ2AERðGÞ:
(2). If ayiþ1AENðGÞ; we take the corresponding separating group

ðayiþ1;S1;A1;B1Þ such that yiþ1AA1; aAB1: Then, yiþ1AA1-B0; aAB1-S0: Since
ayiþ1yiþ2a is a 3-cycle of G; we have that yiþ2AS1; and so yiþ2AA0-S1: Since
ayiþ2AEðGÞ and dðyiþ2Þ ¼ 4; by an argument analogous to that used in Subcase 2.2
of Theorem 4.4 we can get that yiþ1yiþ2 is an inner edge of a W 0-framework or a
helm, and hence, conclusion (iv) holds. For byiþ1AENðGÞ; we may employ a similar
argument to get conclusion (iv).
Based on the above arguments, we may assume that ayiþ1; byiþ1;

ayiþ2; byiþ2AERðGÞ; and so G contains a l-bi-fan such that yiþ1yiþ2 is its an inner
edge. Therefore, conclusion (iv) holds.

Case 2: yiþ2AA-A0; yiAB-S0:
Since yiyiþ1AENðGÞ; from Theorem 2.2 we have that jB0j ¼ 2: Since B0 is a

connected subgraph of G; we have that B-B0 ¼ |: Because G is 4-connected and X1

is a vertex-cut of G � yiyiþ1 � yiþ1yiþ2; we have that jX1jX2: A similar argument can
lead to that jX2jX3: We claim that A-B0 ¼ fyiþ1g: If not, i.e., jA-B0j ¼ 2; from

B-S0a| and jS0j ¼ 3 we have that jX1jp2; and so X1,fyiþ1g is a vertex-cut of G

with cardinality less than 4, which contradicts to that G is 4-connected. Therefore,

jA-B0j ¼ jB0-Sj ¼ 1: If jB-S0j ¼ 1; then jX3j ¼ 3; and so A0-B ¼ |: Then, we
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have that jBj ¼ jB-S0j ¼ 1; which contradicts to that jBjX2; and so jB-S0jX2: If

jB-S0j ¼ 3; then we have that A-S0 ¼ | ¼ S-S0; and so jX1j ¼ 1; which
contradicts to that jX1jX2: Therefore, jB-S0j ¼ 2 and jS-S0jp1: If jS-S0j ¼ 1;

then A-S0 ¼ | and jA0-Sj ¼ 1; and hence jX2j ¼ 2; which contradicts to that

jX2jX3: Then, we can conclude that S-S0 ¼ | and jA-S0j ¼ 1: From jSj ¼ 3 we
know that jA0-Sj ¼ 2; jX2j ¼ 3: We claim that A-A0 ¼ fyiþ2g: If not, i.e.,
jA-A0jX2; then we take A1 ¼ A-A0;S1 ¼ X2;B1 ¼ G � yiþ1yiþ2 � S1 � A1; and

so ðyiþ1yiþ2;S1;A1;B1Þ is a separating group of G: It is easy to see that B1-Da|:
However, we have that jA1jojAj; which contradicts to that jAj is as small as possible.
Therefore, A-A0 ¼ fyiþ2g:
Let A-S0 ¼ fag;B0-S ¼ fbg: Next we will show that byi; byiþ1; ayiþ1AERðGÞ by

contradiction.
(1). If byiAENðGÞ; we take its corresponding separating group ðbyi;T ;C;KÞ of G

such that bAC; yiAK : Since byiyiþ1b is a 3-cycle of G; we have that yiþ1AT : Since
yiyiþ1AENðGÞ; from Theorem 2.2 we can get jKj ¼ 2; say K ¼ fyi; v1g: Then,
v1yiþ1yiv1 is a 3-cycle of G and v1ab; which is impossible in G; and hence
byiAERðGÞ:
(2). If byiþ1AENðGÞ; similarly we take its corresponding separating group

ðbyiþ1;T ; C;KÞ of G such that bAC; yiþ1AK : It is easy to see that fa; yigCT : Since
yiyiþ1AENðGÞ; from Theorem 2.2 we have thatjK j ¼ 2; say K ¼ fyiþ1; v1g: Then,
v1AGGðyiÞ-GGðyiþ1Þ-GGðaÞ; which is impossible in G; and so byiþ1AERðGÞ:
(3). If ayiþ1AENðGÞ; again similarly we take its corresponding separating group

ðayiþ1;T ;C;KÞ such that aAC; yiþ1AK : Since ayiþ1yiþ2a is a 3-cycle of G; we have
yiþ2AT : Since yiþ1yiþ2AENðGÞ; from Theorem 2.2 we have that jK j ¼ 2: Let K ¼
fyiþ1; v1g; then yiþ1v1yiþ2yiþ1 is a 3-cycle of G; and v1aa; which is impossible in G;
and so ayiþ1AERðGÞ:
Let A1 ¼ fa; yiþ2g;S1 ¼ S-A0,fyiþ1g and B1 ¼ G � ab � S1 � A1; then

ðab;S1;A1;B1Þ is a separating group of G; and so abAENðGÞ:
Noticing that dðbÞ ¼ dðyiþ1Þ ¼ 4; by the definition of an l-belt we know that G

contains an l-belt such that yiyiþ1 is its an inner edge. Therefore, conclusion (iv)
holds.

Case 3: yiAB-S0; yiþ2AA0-S:
From Theorem 2.2 we have that jAj ¼ 2; jB0j ¼ 2: Since A and B0 are connected

subgraphs of G; we have that A-A0 ¼ | ¼ B-B0: If jA-B0j ¼ 2; then B0-S ¼ | ¼
A-S0: Since B-S0a|aA0-S; by noticing that jSj ¼ jS0j ¼ 3; we have that
jS-S0jp2; and so fyiþ1g,ðS-S0Þ is a vertex-cut of G with cardinality less than 4,
which contradicts to that G is 4-connected. Therefore, A-B0 ¼ fyiþ1g; and so

jB0-Sj ¼ jA-S0j ¼ 1: If jA0-Sj ¼ 1; then A0-Ba|: Then, X3 is a vertex-cut of G;
and so jX3jX4: Then, 1 ¼ jA0-Sj4jA-S0j ¼ 1; a contradiction. Hence, jA0-Sj ¼
2; and so S-S0 ¼ |; jB-S0j ¼ 2: By an argument similar to that used in Case 2 of
Theorem 4.4, we know that conclusion (iv) of the lemma holds.

Case 4: yiAB-B0; yiþ2AA0-S:
An argument analogous to that used in Case 1 of Theorem 4.4 can show that G

contains an l-belt such that yiþ1yiþ2 is its an inner edge. Therefore, conclusion (iv) of
the lemma holds. The proof of the lemma is complete. &
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Theorem 4.6. Let G be a 4-connected graph with property ð%Þ: Suppose that H is a

helm of G such that H is defined as in Definition 3.1. Let VðHÞ ¼
fa; x1; x2; x3; x4; v1; v2; v3; v4g and P ¼ y1y2?yh is a path in ½ENðGÞ� with hX2 such

that aeVðPÞ and fy1; yhgCfx1; x2; x3; x4g: Then, G contains one of the following

structures H1 as its subgraph: l-belt, l-bi-fan, ðlX1Þ; W -framework, W 0-framework or

helm, such that at least one inner edge of H1 belongs to EðP,HÞ; and H and H1 do not

have any common inner edge.

Proof. Without loss of generality, we assume that y1 ¼ x1; then it is easy to see that
y2 ¼ v1: Let k ¼ h þ 1; yk ¼ a; then P0 ¼ y1y2?yk is also a path of ½ENðGÞ� where
kX3: Let D ¼ fag: We take the separating group ðx1v1;S1;A1;B1Þ such that S1 ¼
fx2; x3; x4g;B1 ¼ fx1; ag;A1 ¼ G � x1v1 � S1 � B1: Obviously, D-B1a|:
We take the separating group ðyiyiþ1;S;A;BÞ of G; where i ¼ 1; 2;y; k � 1; such

that yiAB; yiþ1AA;D-Ba| and jAj is as small as possible. We claim that i þ
1pk � 1 holds. Otherwise, yiþ1 ¼ yk; i.e., yiþ1 ¼ a: Then, aAA,S; which contra-

dicts to that D-Ba|: Therefore, i þ 1pk � 1:
We take another separating group ðyiþ1yiþ2;S0;A0;B0Þ such that yiþ1AB0; yiþ2AA0;

and jA0j is as small as possible. From Lemma 4.5 we know that one of the four
conclusions of Lemma 4.5 holds. Now we discuss them as follows.
(1). Conclusion (i) of Lemma 4.5 holds. It is easy to see that P0 þ ax1 is a cycle of

½ENðGÞ�: Then, each vertex of P is incident with at least two unremovable edges of G:
However, from conclusion (i) we have that dðyiþ2Þ ¼ 4 and yiþ2 is incident with three
removable edges of G: Therefore, conclusion (i) cannot hold.
(2). Conclusion (ii) of Lemma 4.5 holds. Then, B-S0 ¼ fdg ¼ fag ¼ D-B;

cAfx1; x2; x3; x4g; and acð¼ dcÞ is not in any 3-cycle of G: However, from the
definition of the helm, we know that acð¼ axjÞ for each j ¼ 1; 2; 3; 4 is in two 3-cycles

of G; a contradiction.
(3). Conclusion (iii) of Lemma 4.5 holds. Then, fdg ¼ B-S0 ¼ fag ¼ D-B: Since

acAEðGÞ; we have cAfx1; x2; x3; x4g: Then, we have that ac is in two 3-cycles
of G: However, this is impossible to hold in G: Therefore, conclusion (iii) cannot
hold.
(4). If conclusion (iv) of Lemma 4.5 holds, then the theorem holds. The proof is

complete. &

Theorem 4.7. Let G be a 4-connected graph with property ð%Þ and L1 a maximal 1-
belt of G defined as in Definition 3.3 such that VðL1Þ ¼ fx1; x2; x3; y1; y2; y3g: Suppose

that P ¼ l1l2?lh is a path of ½ENðGÞ� such that fl1; lhgCfx1; x3; y1; y3g and

fx2; y2g-VðPÞ ¼ |: Then, G contains one of the following structures L0 as its

subgraph: l-belt, ðlX1Þ; helm, W -framework, W 0-framework or l-bi-fan, ðlX1Þ; such

that at least one inner edge of L0 belongs to EðP,L1Þ:

Proof. We distinguish the following cases.

Case 1: If lh ¼ y3; by letting k ¼ h þ 1; lk ¼ y2; then P0 ¼ l1l2?lk is also a path of
½ENðGÞ�: Let D ¼ fx2; y2g; and take a separating group ðl1l2;S1;A1;B1Þ of G such
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that l1AB1; l2AA1: Next we will show that B1-Da|: We discuss the following
subcases:

Subcase 1.1: If l1 ¼ x1; we claim that x2AB1: Otherwise, x2AS1: Since
x1x2AENðGÞ; from Theorem 2.2 we have that jB1j ¼ 2: Let B1 ¼ fl1; v1g; then
v1AGGðx1Þ-GGðx2Þ: If v1 ¼ y1; then GGðy1Þ ¼ fx1; x2; y2;wg; where wAVðGÞ; which
contradicts to that L1 is a maximal 1-belt. If v1 ¼ x3; then GGðx3Þ ¼ fx2; y2; x1;wg: It
is easy to see that ðx2y1;TÞ is a separating pair of G such that T ¼ fw; y2; x1g; and so
x2y1AENðGÞ; which contradicts to the definition of the l-belt. Therefore, x2AB1

holds, i.e., D-B1a|:
Subcase 1.2: If l1 ¼ y1; then if y2AS1; since y1y2AENðGÞ; from Theorem 2.2 we

have that jB1j ¼ 2: It is easy to see that B1 ¼ fy1; x2g; and so D-B1a|: If y2AB1;

then D-B1a|:
Subcase 1.3: If l1 ¼ x3; we claim that D-B1a|: Otherwise, D-B1 ¼ |: From

x3y2; x3x2AEðGÞ we have that x2; y2AS1: Since x2x3AENðGÞ; from Theorem 2.2 we
have that jB1j ¼ 2: Let B1 ¼ fx3; v1g; then it is easy to see that
v1AGGðx2Þ-GGðy2Þ-GGðx3Þ: Then v1 ¼ y1 holds, i.e., y1x3AEðGÞ: Since
x2x3AENðGÞ; we take the separating group ðx2x3;T1;C1;D1Þ such that
x2AC1; x3AD1: Then y1; y2AT1: From Theorem 2.4, we have that y1y2AERðGÞ;
which contradicts to the definition of the l-belt. Therefore, D-B1a|:
We take the separating group ðliliþ1;S;A;BÞ of G such that liAB; liþ1AA;D-Ba|

and jAj is as small as possible. We claim that i þ 1pk � 1: Otherwise, i þ 1 ¼ k

holds. Then, lk ¼ y2: From x2y2AEðGÞ we have that fx2; y2gCA,S; which

contradicts to that D-Ba|: Therefore, i þ 1pk � 1 holds.
Case 2: If lh ¼ x3; we take the separating group ðl1l2;S1;A1;B1Þ of G such that

l1AB1; l2AA1: Let D ¼ fx2; y2g: Similarly, we need to show that D-B1a|:
Subcase 2.1: If l1 ¼ y1; from y1y2AEðGÞ we have that y2AB1,S1: If y2AS1; since

y1y2AENðGÞ; from Theorem 2.2 we have that jB1j ¼ 2: Let B1 ¼ fy1; v1g: Then,
y1y2v1y1 is a 3-cycle of G: It is easy to see that v1 ¼ x2: Then, D-B1a|:
By the symmetry of the maximal 1-belt, for the other cases we may employ a

similar argument.

We take the separating group ðliliþ1;S;A;BÞ such that liAB; liþ1AA;D-Ba| and
jAj is small as possible, where i ¼ 1; 2?; h � 1: We claim that i þ 1ph � 1:
Otherwise, lh ¼ x3AA: From x2x3; y2x3AEðGÞ we have that x2; y2AA,S; which

contradicts to that D-Ba|:
We take the separating group ðliþ1liþ2;S0;A0;B0Þ of G such that liþ1AB0; liþ2AA0

and jA0j is as small as possible. From Lemma 4.5 we have that one of the four
conclusions of Lemma 4.5 holds. Here we will discuss them as follows:
(1). It is easy to see that each vertex of P is incident with at least two unremovable

edges, and so conclusion (i) of Lemma 4.5 cannot hold.
(2). If conclusion (ii) of Lemma 4.5 holds, then we have that B-S0 ¼ D-B ¼

fdgCfx2; y2g: By the symmetry of x2 and y2; without loss of generality, we may
assume that d ¼ x2: For d ¼ y2; we may employ a similar argument.
From Lemma 4.5, we know that A-A0 ¼ fliþ2g; liþ1AA-B0: Let A-S0 ¼

fv1; v2g: If v1liþ2AENðGÞ; we take the corresponding separating group
ðv1liþ2;T ;C;KÞ such that v1AC; liþ2AK ; and so v1AS0-C:
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(2.1). If liþ1AB0-K ; by the argument analogous to that used in Case 1 of Theorem
4.4, we can get that jA0j ¼ 2; jK-A0j ¼ jA0-T j ¼ 1; jC-S0j ¼ 2; jS0-K j ¼ 1: Let
K-S0 ¼ fbg;A0-T ¼ fag;S0-C ¼ fv1;wg: Then, by an argument analogous to
that used in Case 1 of Theorem 4.4, we have that aliþ2; av1AERðGÞ; bliþ2AERðGÞ;
abAENðGÞ; dðaÞ ¼ dðliþ2Þ ¼ 4: It is easy to see that the l-belt is a subgraph of G;
where lX1; and GGðliþ2Þ ¼ fliþ1; v1; a; bg: We claim that liþ2 is not an end-vertex of
P: Otherwise, we have liþ2Afx1; x3; y1; y3g: Since B-S0 ¼ fx2g; and
x1; x3; y1AGGðx2Þ; then this is true only if liþ2 ¼ y3 holds. Let A0-S ¼ fkg: Noticing
that ðkx2;T 0Þ will be the separating pair of G such that T 0 ¼ fliþ1g,ðS0 � fx2gÞ; we
have that kAfx3; x1g: If k ¼ x3; then we will have that x3y3AEðGÞ and dðx3Þ ¼ 4;
which contradicts to the definition of the maximal 1-belt. If k ¼ x1; noticing that
y2eVðPÞ; then liþ1ay2; and so we will have that x1y2AEðGÞ; a contradiction.
Therefore, we have that liþ2 is not an end-vertex of P: From aliþ2; bliþ2AERðGÞ we
have that liþ2v1AEðPÞ and liþ2v1 is an inner edge of the l-belt. Hence, the theorem
holds.
(2.2). If liþ1AB0-T ; then by an argument analogous to that used in Case 2 of

Theorem 4.4, we have that liþ1liþ2 is an inner edge of one of the following subgraphs
of G: helm, W 0-framework, W -framework or l-belt. Therefore, the theorem holds.
So, we may assume that v1liþ2AERðGÞ: If v2liþ2AENðGÞ; we may employ a similar

argument. So, we may assume that v2liþ2AERðGÞ: Let A0-S ¼ fcg: Since P is a path
of ½ENðGÞ�; and liþ2 is not an end-vertex of P; we have that liþ2cAENðGÞ-EðPÞ: If
cv1AENðGÞ; we take the corresponding separating group ðcv1;T 0;C0;D0Þ of G such
that v1AC0; cAD0: Obviously, liþ2AT 0: Since cliþ2AENðGÞ; from Theorem 2.2 we
have that jD0j ¼ 2; and so D0 ¼ fc; v2g: Then, jGGðcÞ-GGðv2ÞjX2: Noticing that
v1AC1; obviously it is impossible to hold in G: So, cv1AERðGÞ: By an analogous
argument, we have that cv2AERðGÞ: It is easy to see that cliþ2 is an inner edge of an l-
bi-fan, and so the theorem holds.
(3). If conclusion (iii) of Lemma 4.5 holds, then we have that B-S0 ¼ D-B ¼

fdgCfx2; y2g: By the symmetry of x2 and y2; we may assume that d ¼ y2: Let
A-S0 ¼ fv1g; S-S0 ¼ fwg;A0-S ¼ fcg; then GGðcÞ ¼ fliþ2; v1;w; y2g: Since
cwAEð½S�Þ; from Theorem 2.4 we have that cwAERðGÞ: By an analogous argument
used in (2.1). we can get that liþ2 is not an end-vertex of P:
(3.1). If liþ2v1AENðGÞ; we take the corresponding separating group

ðliþ2v1;T ;C;KÞ such that liþ2AK ; v1AC: Then, liþ2AA0-K ; v1AC-S0; liþ1AB0:
We claim that liþ1eB0-K : Otherwise, liþ1AB0-K ;A0 ¼ fliþ2; cg: By an
argument analogous to that used in Case 1 of Theorem 4.4, we can get

that A0-K ¼ liþ2g;A0-T j! ¼cg;T-S0 ¼|; jT-B0j¼ jC-S0j ¼ 2; jK-S0j ¼ 1: Since
wliþ2AEðGÞ; we have wAK-S0: Let A2 ¼ ðK-B0Þ,fwg;S2 ¼ ðT-B0Þ,fliþ2g;
B2 ¼ G � cw � S2 � A2; then ðcw;S2;A2;B2Þ is a separating group of G: So,
cwAENðGÞ; which contradicts to that cwAERðGÞ: Hence, liþ1eB0-K ; and so
liþ1AB0-T : By an argument analogous to that used in Case 2 of Theorem 4.4, we
have that jA0j ¼ jKj ¼ 2 and jK-S0j ¼ jA0-T j ¼ 1: Noticing that
cAA0;wAS0;GGðliþ2Þ ¼ fliþ1; c;w; v1g; it is easy to see that K-S0 ¼ fwg;A0-T ¼
fcg: By an argument analogous to that used in Case 2 of Theorem 4.4, and noticing
that cwAERðGÞ; we have that liþ1liþ2 is an inner edge of one of the following

ARTICLE IN PRESS
J. Wu et al. / Journal of Combinatorial Theory, Series B 92 (2004) 13–40 33



subgraphs of G: W 0-framework, W -framework or helm. Therefore, the theorem
holds.
So, we may assume that liþ2v1AERðGÞ:
(3.2). If wliþ2AENðGÞ; we take the corresponding separating group

ðwliþ2;T 0;C0;D0Þ of G such that wAC0; liþ2AD0: Then, wAS0-C0:
(3.2.1). If liþ1AB0-D0; by an argument analogous to that used in Case 1 of

Theorem 4.4, we know that wliþ2 is an inner edge of an l-belt, where lX1; and
cliþ2AERðGÞ: Since liþ2 is incident with only two unremovable edges liþ1liþ2;wliþ2;
and liþ2 is not an end-vertex of P; we have wliþ2AEðPÞ: Hence, the theorem holds.
(3.2.2). If liþ1AB0-T 0; then by an argument analogous to that used in Case 2 of

Theorem 4.4, we know that liþ1liþ2 is an inner edge of one of the following subgraphs
of G: l-belt, W -framework, W 0-framework or helm, and so the theorem holds.
Therefore, next we may assume that wliþ2AERðGÞ:
Since EðPÞCENðGÞ; we have cliþ2AENðGÞ: If cv1AENðGÞ; we take the

corresponding separating group ðcv1;T 0;C0;D0Þ such that v1AC0; cAD0: Obviously,
liþ2AT 0: Since cliþ2AENðGÞ; from Theorem 2.2 we have that jD0j ¼ 2: Let D0 ¼
fu; cg; then culiþ2c is a 3-cycle of G; and so this is true only if u ¼ w holds.
From cy2ð¼ cdÞAEðGÞ we have that y2AT 0; and so wy2AEðGÞ: We take the
separating group ðcliþ2;T1;C1;D1Þ such that cAC1; liþ2AD1: Since cv1liþ2c is a 3-
cycle of G; we have v1AT1: Then, we have that liþ2AD1-T 0; v1AC0-T1; cAD0-C1:
By an argument analogous to that used in Case 2 of Theorem 4.4, and by
noticing that dðliþ2Þ ¼ 4; and v1liþ2AEðGÞ; we can get that cliþ2 is an inner edge of
one of the following subgraphs of G: W 0-framework or helm. Therefore, the theorem
holds.
So, we may assume that cv1AERðGÞ: It is easy to see that G contains an l-bi-fan

such that cliþ2 is its an inner edge, where lX1: An analogous argument can lead to
that cliþ2AEðPÞ: So, the theorem holds.
(4). If conclusion (iv) of Lemma 4.5 holds, then the Theorem holds. The proof is

now complete. &

Corollary 4.8. Let G be a 4-connected graph with property ð%Þ and L1
0 a maximal 1-

co-belt of G defined as in Definition 3.4. VðL1
0Þ ¼ fx1; x2; x3; x4; y1; y2; y3g: Suppose

that P ¼ l1l2?lh is a path of ½ENðGÞ� such that fx2; x3; y2g-VðPÞ ¼ | and

fl1; lhgCfx1; x4; y1; y3g: Then, G contains one of the following structures as its

subgraph: l-belt, ðlX1Þ; W -framework, W 0-framework, helm or l-bi-fan, ðlX1Þ; such

that it has some inner edge(s) belonging to EðPÞ:

Proof. We distinguish the following cases:
Case 1: If lh ¼ x4; by letting k ¼ h þ 1; lk ¼ x3; then P0 ¼ l1l2?lk is also a path of

½ENðGÞ�: Let D ¼ fx2; x3; y2g; and take a separating group ðl1l2;S1;A1;B1Þ of G such

that l1AB1; l2AA1: Next we will show that B1-Da|: We discuss the following
subcases:

Subcase 1.1: If l1 ¼ x1; we claim that x2AB1: Otherwise, x2AS1: Since
x1x2AENðGÞ; from Theorem 2.2 we have that jB1j ¼ 2: Let B1 ¼ fl1; v1g; then
v1AGGðx1Þ-GGðx2Þ: If v1 ¼ y1; then GGðy1Þ ¼ fx1; x2; y2;wg; where wAVðGÞ; which
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contradicts to that L1
0 is a maximal 1-co-belt. Obviously, v1efx3; y2g; and therefore

x2AB1 holds, i.e., D-B1a|:
Subcase 1.2: If l1 ¼ y1; then if y2AS1; since y1y2AENðGÞ; from Theorem 2.2 we

have that jB1j ¼ 2: It is easy to see that B1 ¼ fy1; x2g; and so D-B1a|: If y2AB1;

then D-B1a|:
Subcase 1.3: If l1 ¼ y3; we claim that D-B1a|: Otherwise, D-B1 ¼ |: From

x3y3; y2y3AEðGÞ we have that x3; y2AS1: Since y2y3AENðGÞ; from Theorem 2.2 we
have that jB1j ¼ 2: Let B1 ¼ fy3; v1g; then it is easy to see that
v1AGGðy2Þ-GGðy3Þ-GGðx3Þ; which is impossible to hold in G: Therefore,

D-B1a|:
We take the separating group ðliliþ1;S;A;BÞ of G such that liAB; liþ1AA;D-Ba|

and jAj is as small as possible. We claim that i þ 1pk � 1: Otherwise, i þ 1 ¼ k:
Then, lk ¼ x3: From x2x3; y2x3AEðGÞ we have that fx2; x3; y2gCA,S; which

contradicts to that D-Ba|: Therefore, i þ 1pk � 1 holds.
Case 2: If lh ¼ y3; by letting k ¼ h þ 1; lk ¼ y2; then P0 ¼ l1l2?lk is also a path of

½ENðGÞ�: Let D ¼ fx2; x3; y2g: We take the separating group ðl1l2;S1;A1;B1Þ of G

such that l1AB1; l2AA1: Similarly, we need to show that D-B1a|:
Subcase 2.1: If l1 ¼ y1; from y1y2; y1x2AEðGÞ we have that x2; y2AB1,S1: If

x2; y2AS1; since y1y2AENðGÞ; from Theorem 2.2 we have that jB1j ¼ 2: Let B1 ¼
fy1; v1g: Then, v1 ¼ GGðy1Þ-GGðy2Þ-GGðx2Þ; which is impossible to hold in G:

Then, D-B1a|:
By the symmetry of the maximal 1-co-belt, for the other cases we may employ a

similar argument.
We take the separating group ðliliþ1;S;A;BÞ such that liAB; liþ1AA;D-Ba| and

jAj is small as possible, where i ¼ 1; 2?; k � 1: We claim that i þ 1pk � 1:
Otherwise, lk ¼ y2AA: From x2y2; y2x3AEðGÞ we have that x2; x3; y2AA,S; which

contradicts to that D-Ba|:
We take the separating group ðliþ1liþ2;S0;A0;B0Þ of G such that liþ1AB0; liþ2AA0

and jA0j is as small as possible. From Lemma 4.5 we have that one of the four
conclusions of Lemma 4.5 holds. Here we will discuss them as follows:
(1). It is easy to see that each vertex of P is incident with at least two unremovable

edges, and so conclusion (i) of Lemma 4.5 cannot hold.
(2). If conclusion (ii) of Lemma 4.5 holds, then we have that B-S0 ¼ D-B ¼

fdgCfx2; x3; y2g:
First, we claim that liþ2 is not the end-vertex of P; otherwise, we assume that

liþ2Afx1; x4; y1; y3g holds. Let A0-S ¼ fkg: Noticing that ðkd;T 0Þ is a separating
pair of G such that T 0 ¼ fliþ1g,ðS0 � fdgÞ; so kdAENðGÞ: If d ¼ x2; from
x1x2; x2y1AEðGÞ; we have that liþ2Afy3; x4g: (1). If liþ2 ¼ x4; it is easy to see that
kAfx1; x3g; if k ¼ x1; noticing that x3eVðPÞ; then liþ1ax3; then we will have that
x1x3AEðGÞ; a contradiction; if k ¼ x3; then we will have that jGGðx3Þ-GGðx4Þj ¼ 2;
which is impossible to hold in G: (2). If liþ2 ¼ y3; we claim that kax3; otherwise, we
will have that y3x4AEðGÞ and dðy3Þ ¼ 4;which contradicts to the definition of
maximal 1-co-belt. Then only k ¼ x1 holds, then we will have that
jGGðx1Þ-GGðy3Þj ¼ 2; x1y3AEðGÞ and dðx1Þ ¼ dðy3Þ ¼ 4 holds, which is impossible
to hold in G: Therefore, dax2: By the symmetry of x2 and x3; we have that dax3:
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Therefore, d ¼ y2 holds, then we have that liþ2Afx1; x4g and kAfy1; y3g: (1). If
liþ2 ¼ x1: We claim that kay1; otherwise, we will have that x1y1AEðGÞ; dðy1Þ ¼ 4;
which contradicts to the definition of the maximal 1-co-belt, so k ¼ y3 holds, then we
will have that jGGðx1Þ-GGðy3Þj ¼ 2 and x1y3AEðGÞ; dðx1Þ ¼ dðy3Þ ¼ 4 holds, which
is impossible to hold in G: (2). If liþ2 ¼ x4; by the symmetry of x1 and x4; we may
employ a similar argument to get that the assumption is not true.
From the above argument, we have that liþ2 is not the end-vertex of P:
We may employ an argument similar to that used in (2) of Theorem 4.7 to show

that the corollary is true.
(3). If conclusion (iii) of Lemma 4.5 holds, then we have that B-S0 ¼ D-B ¼

fdgCfx2; x3; y2g:
We may employ an argument analogous to that used in (2) to show that liþ2 is not

an end-vertex of P: We may also employ an argument similar to that used in (3) of
Theorem 4.7 to conclude that the corollary is true.
(4). If conclusion (iv) of Lemma 4.5 holds, then the corollary is true. &

5. The number of removable edges in a 4-connected graph

After we have been well prepared with the results in the above section, we are
arriving at the point to show our main results of this paper in this section.
Let M be a 5-wheel such that VðMÞ ¼ fa; x; y; z; vg and a is its center. Let

T1;T2;T3;T4 be four trees such that for each iAf1; 2; 3; 4g; Ti has k vertices of degree
one and jTij � k vertices of degree four. Let the vertices of degree four be

u
ð1Þ
i ; u

ð2Þ
i ;y; u

ðjTi j�kÞ
i ; and the vertices of degree one be x

ð1Þ
i ;x

ð2Þ
i ;y;x

ðkÞ
i : Let

M1;M2;y;Mk be k copies of M and að j Þ; xð jÞ; yð jÞ; zð jÞ; vð jÞ be the vertices of Mj

corresponding to the vertices a; x; y; z; v of M; respectively, where j ¼ 1; 2;y; k: For

each jAf1;y; kg; identify x
ð jÞ
1 ; x

ð jÞ
2 ; x

ð jÞ
3 ; x

ð jÞ
4 with xð jÞ; yð jÞ; zð jÞ; vð jÞ such that each of

x
ð jÞ
1 ;x

ð jÞ
2 ; x

ð jÞ
3 ; x

ð jÞ
4 identifies with one and only one of xð jÞ; yð jÞ; zð jÞ; vð jÞ: Denote the

resulting graph by G: It is easy to see that G is 4-connected. Next we will show that

for each 4-cycle C ¼ xð jÞyð jÞzð jÞ vð jÞxð jÞ of G; we have that EðCÞCERðGÞ; and the

other edges in G are unremovable, where j ¼ 1; 2;y; k: For yð jÞu
ðlÞ
i AEðGÞ; let S ¼

fxð jÞ; vð jÞ; zð jÞg;A ¼ fað jÞ; yð jÞg;B ¼ G � yð jÞu
ðlÞ
i � S � A; then ðyð jÞu

ðlÞ
i ;S;A;BÞ is a

separating group of G; and hence yð jÞu
ðlÞ
i AENðGÞ: Symmetrically, we can show that

xð jÞu
ðlÞ
i ; zð jÞu

ðlÞ
i ; vð jÞu

ðlÞ
i AENðGÞ; where j ¼ 1; 2;y; k; i ¼ 1; 2; 3; 4; l ¼ 1; 2;y; jT j �

k: For each edge að jÞxð jÞ; it is easy to see that ðað jÞxð jÞ;TÞ is a separating pair of

G such that T ¼ fyð jÞ; vð jÞ; u
ð jÞ
i g and u

ðlÞ
i zð jÞAEðGÞ: By symmetry, we have that

að jÞyð jÞ; að jÞzð jÞ; að jÞvð jÞAENðGÞ: From Corollary 2.3 it is easy to see that for each 4-

cycle C ¼ xð jÞyð jÞzð jÞvð jÞxð jÞ; we have that EðCÞCERðGÞ: For each edge e of Ti; for

example, e ¼ u
ðlÞ
1 u

ðlþ1Þ
1 ; it is easy to see that ðe;SÞ is a separating pair of G such that

S ¼ fu
ðlÞ
2 ; u

ðlÞ
3 ; u

ðlÞ
4 g: Therefore, for each edge e of Ti; where i ¼ 1; 2; 3; 4; we have that
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eAENðGÞ; and so eRðGÞ ¼ 4k; jTij ¼ ð3k � 2Þ=2; ði ¼ 1; 2; 3; 4Þ; jGj ¼ 7k � 4;
eRðGÞ ¼ ð4jGj þ 16Þ=7: We denote the set of all the above constructed graphs
by I:

Theorem 5.1. Let G be a 4-connected graph of order at least 5. If G is

neither C2
5 nor C2

6 ; then eRðGÞXð4jGj þ 16Þ=7 and the equality holds if and only if

GAI:

Proof. Let jGj ¼ n; jEðGÞj ¼ m: We proceed by induction on ðn þ mÞ: Since G is not

C2
5 ; we have that nX6: If n ¼ 6; since G is not C2

6 ; we have that mX13; ðn þ mÞX19:
It is easy to see that eRðGÞX94ð4n þ 16Þ=7: If n ¼ 7; then it is easy to that
eRðGÞX94ð4n þ 16Þ=7: Therefore, we may assume that nX8:

Case 1: If G does not have property ð%Þ; i.e., there exists an edge e ¼ xyAERðGÞ
such that dðxÞX5 and dðyÞX5 in G; then consider G~e ¼ G � xy: It is easy to see
that removable edges in G � xy are also removable edges in G; and hence
eRðGÞXeRðG~eÞ þ 1: Then, jGj ¼ jG~ej; jEðG~eÞj ¼ m � 1; and therefore

jG~ej þ jEðG~eÞjon þ m: If G~e is C2
5 or C2

6 ; then eRðGÞX94ð4n þ 16Þ=7: If
G~e is neither C2

5 nor C2
6 ; by the induction hypothesis we know that

eRðGÞXeRðG~eÞ þ 1Xð4n þ 16Þ=7þ 14ð4n þ 16Þ=7:
Next we suppose that G has property ð%Þ:
Case 2: If G contains a 2-bi-fan as its subgraph, from Theorem 4.1 we know that

there exists an edge eAEðGÞ such that eRðGÞXeRðG~eÞ þ 1: Here, jG~ej ¼ n � 1;

jEðG~eÞj ¼ m � 3: Then, jG~ej þ jEðG~eÞjon þ m: If G~e is C2
5 or C2

6 ; then

eRðGÞX104ð4n þ 16Þ=7: If G~e is neither C2
5 nor C2

6 ; by the induction hypothesis

we know that eRðGÞXeRðG~eÞ þ 1X½4ðn � 1Þ þ 16�=7þ 14ð4n þ 16Þ=7:
Case 3: If G contains an l-belt as its subgraph where lX3: Then, from Theorem 4.2

we have that there exists an edge eAEðGÞ such that eRðGÞXeRðG~eÞ þ 2: If G~e is

either C2
5 or C2

6 ; then eRðGÞX124ð4n þ 16Þ=7: If G~e is neither C2
5 nor C2

6 ; by the

induction hypothesis we know that eRðGÞXeRðG~eÞ þ 2X½4ðn � 2Þ þ 16�=7þ
24ð4n þ 16Þ=7:

Case 4: If for any edge eAERðGÞ; when jG~ej ¼ n; we have that
eRðGÞoeRðG~eÞ; when jG~ej ¼ n � 1; we have that eRðGÞoeRðG~eÞ þ 1; when
jG~ej ¼ n � 2; we have that eRðGÞoeRðG~eÞ þ 2; then we discuss the following
subcases.

Subcase 4.1: If ½ENðGÞ� is a forest, then eNðGÞ ¼ n � t such that t is the number of
components in ½ENðGÞ�: Therefore, eRðGÞX2n � n þ t ¼ n þ t4ð4n þ 16Þ=7:

Subcase 4.2: If ½ENðGÞ� contains a cycle, from Theorem 4.4 and the above
argument in Cases 2 and 3 we can get that G contains some structures in R as its
subgraphs. Let G contain k1 maximal 1-belts, k2 maximal 1-bi-fans, k3 maximal 1-
co-belts, k4 W -frameworks, k5 W 0-frameworks, k6 maximal 2-belts, k7 maximal 2-
co-belts, and h helms. Let E1 be the set of inner edges of the above-mentioned
subgraphs. Then,

jE1j ¼ 2k1 þ k2 þ 3k3 þ 2k4 þ 3k5 þ 4k6 þ 5k7 þ 4h: ð1Þ
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Let E0 ¼ ENðGÞ � E1; then we have the following results:
(1). ½E0� is a forest. This follows from Theorem 4.4, Lemma 3.7, and the definitions

of the above-mentioned subgraphs.
(2). Let r ¼

P
xAG ðdðxÞ � 4Þ ¼

P
xAG dðxÞ � 4n; then eðGÞ ¼ 2n þ r=2: Let n1 ¼

n � h � j½E0�j; then n1X0; and n1 ¼ 0 if and only if VðGÞ ¼ Vð½E0�Þ
S
fa1; a2;y; ahg

such that ai is the center of a helm, where i ¼ 1; 2;y; h:
(3). eRðGÞ ¼ eðGÞ � eNðGÞ; eNðGÞ ¼ jE0j þ jE1j ¼ j½E0�j � t þ jE1j ¼ n � n1 � h �

t þ jE1j; where t is the number of components in ½E0�:
By noticing the number of removable edges in the above-mentioned subgraphs, we

have the following result

eRðGÞ ¼ eðGÞ � eNðGÞ ¼ 2n þ r=2� n þ h þ n1 þ t � jE1j

X 3k1 þ 4k2 þ 4k3 þ 5k4 þ 5k5 þ 5k6 þ 6k7 þ 4h: ð2Þ
From the formulas /1S and /2S; we have the following result

n þ r=2� 7h þ n1 þ t � 5k1 � 5k2 � 7k3 � 7k4 � 8k5 � 9k6 � 11k7X0:

Then,

6n þ 3r � 42h þ 6n1 þ 6t � 30k1 � 30k2 � 42k3 � 42k4 � 48k5 � 54k6 � 66k7X0

and so

eRðGÞ ¼ n þ r=2þ n1 þ t þ h � jE1j ¼ 4n=7þ ð6n þ 7r þ 14n1 þ 14t � 42h � 28k1

� 14k2 � 42k3 � 28k4 � 42k5 � 56k6 � 70k7Þ=14

X 4n=7þ ð6n þ 3r þ 6n1 þ 6t � 42h � 30k1 � 30k2 � 42k3

� 42k4 � 48k5 � 54k6 � 66k7Þ=14

þ ð4r þ 8n1 þ 8t þ 2k1 þ 16k2 þ 14k4 þ 6k5 � 2k6 � 4k7Þ=14

X 4n=7þ ð4r þ 8n1 þ 8t þ 2k1 þ 16k2 þ 14k4 þ 6k5 � 2k6 � 4k7Þ=14: ð3Þ
Therefore, eRðGÞXð4n þ 16Þ=7 holds only if the following formula holds

D ¼ 2r þ 4n1 þ 4t þ k1 þ 8k2 þ 7k4 þ 3k5 � k6 � 2k7X16: ð4Þ
Let L1

0 be a maximal 1-co-belt. It is easy to see that x2AG � fa1; a2;y; ahg �
Vð½E0�Þ; and so L1

0 will contribute 1 to n1: Since G contains k3 maximal 1-belts, and
so they will contribute k3 to n1: Analogously, for each maximal 2-belt, it will
contribute 2 to n1; and so k6 maximal 2-belts will contribute 2k6 to n1: For W 0-
frameworks, maximal 2-co-belts and W -frameworks, we analyze them analogously.
Then, we can get the following formula

n1Xk3 þ k4 þ k5 þ 2k6 þ 3k7: ð5Þ
From the formulas /5S and /4S; we can get the following formula

DX2r þ 4t þ k1 þ 8k2 þ 4k3 þ 11k4 þ 7k5 þ 7k6 þ 10k7: ð6Þ
We will discuss the following cases.
(4). h=0, k=k1+k2+k3+k4+k5+k6+k7p 2.
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First, we claim that ½ENðGÞ� contains at most two cycles. Otherwise, suppose that
there are at least three cycles in ½ENðGÞ�: Then, we take a cycle C1: From Theorem
4.6 and the assumption, we have that G contains some structure H1AR as its
subgraph such that H1 has an inner edge e1 on C1: We take another cycle C2 in
½ENðGÞ� � C1: Analogously, we have that G contains some structure H2AR as its
subgraph such that H2 has an inner edge e2 on C2: Last, we take a cycle C3 in
½ENðGÞ� � C1 � C2: Then, G contains some structure H3AR as its subgraph such
that H3 has an inner edge e3 on C3: Since e1 is an inner edge of H1; but not any of H2;
we have that H1aH2: Analogously, we have that H1aH3;H2aH3: From Lemma
3.7 we know that any two of H1;H2 and H3 do not have common inner edge, and so
kX3; a contradiction. Therefore, there are at most two cycles in ½ENðGÞ�: So,
eNðGÞpn þ 1; and hence eRðGÞX2n � n � 14ð4n þ 16Þ=7:
(5). h ¼ 0; k ¼ k1 þ k2 þ k3 þ k4 þ k5 þ k6 þ k7X3:
(5.1). k1 þ k3 ¼ 0; and so k2 þ k4 þ k5 þ k6 þ k7X3: Noticing that tX1; from the

formula /6S we have that

DX 2r þ 4þ 7ðk2 þ k4 þ k5 þ k6 þ k7Þ þ k2 þ 4k4 þ 3k7

X 4þ 7ðk2 þ k4 þ k5 þ k6 þ k7ÞX25;

here the inequality /4S rigidly holds.
(5.2). k1 þ k3X1: We may assume that G contains a maximal 1-belt L1 such that

VðL1Þ ¼ fx1; x2; x3; y1; y2; y3g: From Theorem 4.7 we know that if x3; y1A½E0�; then
n1X2; tX2: From the formulas /4S and /5S we have that

DX 2r þ 3n1 þ 4t þ ðk1 þ k3Þ þ 8k2 þ 8k4 þ 4k5 þ k6 þ k7X3n1 þ 4t þ ðk1 þ k2

þ k3 þ k4 þ k5 þ k6 þ k7ÞX6þ 8þ 3 ¼ 17:

If x3A ½E0�; y1e½E0�; then n1X1; tX3: Similarly, we can get that DX18:
If x3; y1A ½E0�; then tX4; and so DX19; here the inequality /4S rigidly holds.
(6). hX1: We take a helm H such that VðHÞ ¼ fa;x1; x2; x3; x4; v1; v2; v3; v4g:

From Theorem 4.6 we have that any two of the edges x1v1; x2v2; x3v3; x4v4 are in
different components, and so tX4: From the formula /6S we know that DX16; i.e.,
eRðGÞXð4n þ 16Þ=7; and the equality holds only if ki ¼ 0; where i ¼ 1; 2;y; 7; r ¼
0; t ¼ 4; n1 ¼ 0; i.e., ½E0� has only four components T1;T2;T3;T4; and VðGÞ ¼
Vð½E0�Þ,fa1; a2;y; ahg: Then, from r ¼ 0 we know that G is a 4-connected and
4-regular graph. From eRðGÞ ¼ 4h; eNðGÞ ¼ 10h � 8; we can get that n ¼ 7h � 4:

Moreover, all the edges but x
ðpÞ
1 x

ðpÞ
2 ; x

ðpÞ
2 x

ðpÞ
3 ; x

ðpÞ
3 x

ðpÞ
4 ; x

ðpÞ
4 x

ðpÞ
1 of each helm Hp in G are

unremovable, whereas different edges of x
ðpÞ
i v

ðpÞ
i of Hp are in different components

Ti; and every vertex v
ðpÞ
i is of degree 1 in Ti: Based on the above arguments, we can

conclude that Ti has h vertices with degree 1 and jTij � h vertices with degree 4.
Therefore, GAI: The proof is now complete. &
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