Novel Immune TiO₂ Photoluminescence Biosensors for Leucosis Detection

*Odessa National I.I. Mechnikov University, 42, Pastera, 65026, Odessa, Ukraine
National University of Life and Environmental Sciences, 15, Heroyiv Oborony, 03041, Kyiv, Ukraine
Kertak Nanotechnology, 3, Dolejskova, 18223, Prague 8, Czech Republic
Johannes Kepler Universiität (JKU) Linz, 69, Altenbergerstr., A-4040, Linz, Austria
University of Latvia, 19, Raina Blvd., LV 1586, Riga, Latvia

Abstract

Novel immune photoluminescent biosensor, based on TiO₂ nanoparticles, for retroviral leucosis detection has been developed. The photoluminescence spectra were excited by solid state laser with wavelength 355 nm and measured in the range of 370-800 nm. Original photoluminescence spectrum of TiO₂ nanoparticles showed wide maximum at 515 nm. The biosensitive layer was formed by immobilization of retroviral leucosis antigens on the surface of TiO₂ nanoparticles. Immobilization of antigens on TiO₂ surface led to UV-shift of photoluminescence spectrum and increase of PL intensity. The response to different concentrations of retroviral leucosis antibodies has been measured. The decrease of spectrum intensity and IR-shift were observed after antibodies adsorption on biosensor surface. The experimental dependences of maximum shift and intensity changes versus antibodies concentration were obtained.

© 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Symposium Cracoviense Sp. z.o.o. Open access under CC BY-NC-ND license.

Keywords: TiO₂ nanostructures; immune biosensors; leucosis detection; photoluminescence.

E-mail address: viter_r@mail.ru.
1. Introduction

Bovine leucosis – is the highly foetal neoplasia of the cattle characterised by the abnormality maturation process of the blood cells and the aggregation of the neaplastic lymphocytes in the lymph nodes [1]. Clinical signs are most commonly associated with the infection and they include weight loss, decreased milk production, lymphadenopathy and posterior paresis. Virus of the type C (retrovirus family from an oncovirus rod) is the causative agent of the disease. Virus contains the revertase and six antigen proteins, among of which is the superficial (an envelope protein) glycoprotein (gp51) and the inside protein (p21) [2].

Diagnosis of the BLV infection based on the clinical signs alone is difficult because of the wide range of symptoms. More then 20 various variants from the haematological, histological [1] and up to use of the polymerise chain reaction (PCR) [3] as well as a different variants of the immunological methods, for example, the classical fluorescence [4], the immune diffusion [4], the radioimmune analysis [4], the immunoblot [5] were developed. The traditional immune methods have high specificity and sensitivity, but they take a lot of time, and require additional parameters such as the labelled molecules. This drawback can be overcome with the use of the modern instrumental analytical devices based on the biosensor technology.

TiO2 is well known material for optical, catalytic and sensing applications. The development of various deposition techniques allows synthesis of novel titanium dioxide structures with dimensions on the nanometre scale. The decrease of the dimensions below certain levels may lead to the formation of quantum-size effects such as the absorbance edge shift and the room temperature photoluminescence (PL) peaks appearance [6]. Application of these effects, especially optical properties, for sensor technologies could be a novel trend of sensorics. Optical methods have good advantages such as higher preciseness and low energy consumption.

Early, we have developed the immune biosensor based on the SPR and intended for the bovine leucosis diagnostics [7]. The traditional immune methods have high specificity and sensitivity, but they take a lot of time, and require additional parameters such as the labelled molecules [7]. This drawback can be overcome with the use of the modern instrumental analytical devices based on the biosensor technology [7].

2. Experimental

Previously, it was shown good capacities of SiO2 hydro gels, based on commercial SiO2 nanofibers, for biosensors [6]. In the presented work commercial TiO2 nanoparticles (Sigma Aldrich, particle size 32 nm) were used as biosensor template. TiO2 nanoparticles were solved in water to prepare sols. TiO2 layers were formed on glass substrates by dropping TiO2 sols and drying at room temperature. Post annealing treatment at 300 0C for 1 hour was provided to remove water from the samples. Structural properties of the obtained samples were studied with SEM method. Fabrication of sensitive layer was performed by immobilization of Ag on TiO2 surface. TiO2 nanostructures were exposed to water solution of leucosis antigens (Ag) for ten minutes and then were washed two times in distilled water and dried in air at temperature 40 oC. The backside of TiO2 sample was sealed to prevent immobilization of Ag on it. Leucosis antibodies (Ab) were deposited on TiO2-Ag surface from water solutions with different concentrations. Photoluminescence (PL) spectra were measured by setup, presented in Fig. 1. The luminescence was stimulated by UV laser LCS-DTL-374QT with excitation wavelength \(\lambda=355\) nm. The emission spectra were amplified and recorded in the wavelength range 370-800 nm.
3. Results and discussion

SEM measurements showed that nanoparticles formed high surface area porous structure (Fig. 2). The obtained structure was suitable platform for immobilization of biological species.

PL spectrum of TiO\textsubscript{2} nanoparticles had broad peak centered at 514 nm (Fig. 3). The immobilization of leucosis Ag on TiO\textsubscript{2} surface led to the changes in PL intensity and PL peaks positions after immobilization of Ag onto TiO\textsubscript{2} nanoparticles surface (Fig. 3a). It was found that after Ag immobilization PL spectra was shifted to shorter wavelengths. It can be a proof of formation links TiO\textsubscript{2}-Ag. Increase of PL intensity could result from charge transfer between Ag molecules and conductance band of TiO\textsubscript{2}. UV-shift of PL maximum can be explained by additional dipole-dipole interaction, what can change energetic position of recombination centres into TiO\textsubscript{2}.

Fig. 1. Photoluminescence setup.

Fig. 2. SEM image of TiO\textsubscript{2} nanostructures, deposited on glass.

PL spectra of TiO\textsubscript{2}-Ag biosensor, measured under different Ab concentrations are shown in fig. 3b. It was found that PL intensity decreased with Ab concentration. At the same time, peak position moved to higher wavelengths.

Thus, the biosensor response to leucosis Ab can be a function of two parameters: PL intensity and position of PL peak. To analyze the sensor response we calculated the changes biosensor signal \(S \) as

\[
S = \frac{S_{Ag} - S_{Ab}}{S_{Ag}}
\]

Fig. 3. PL spectra of TiO\textsubscript{2} nanoparticles: (a) before and after immobilization of antigens (Ag); (b) under different concentrations of antibodies (Ab).

The changes of peak position after adsorption of Ab were calculated in by following equation:
where λ_{Ag} and λ_{Ab} are PL peak’s positions of TiO$_2$ nanostructures with immobilized leucosis antigens before and after interaction with leucosis antibodies, correspondently. The results, obtained with the use of equations (1), (2) are plotted in figures 4a and 4b, correspondently. The analysis of obtained results showed that the changes of biosensor parameters had similar behavior. The obtained experimental curves increased at the range of Ab concentrations c 0.002-0.008 mg/ml. The further increase of Ab concentration led to saturation of the signal changes.

![Graph 4a](image)

![Graph 4b](image)

Fig. 4. Response of the biosensor signal to different concentrations of antibodies (Ab) (a); The changes of PL peak position of the biosensor vs different concentrations of antibodies (Ab) (b)

Conclusion

Novel photoluminescence biosensor based on TiO$_2$ nanoparticles for leucosis detection has been developed. The biosensor response to leucosis antibodies is a function of PL intensity and peak position. The obtained biosensors can operate in the range of leucosis antibody concentrations 0.002-0.006 mg/ml.

References

