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SUMMARY

Synthetic lethality occurs when the inhibition of two
genes is lethal while the inhibition of each single
gene is not. It can be harnessed to selectively treat
cancer by identifying inactive genes in a given cancer
and targeting their synthetic lethal (SL) partners. We
present a data-driven computational pipeline for the
genome-wide identification of SL interactions in can-
cer by analyzing large volumes of cancer genomic
data. First, we show that the approach successfully
captures known SL partners of tumor suppressors
and oncogenes. We then validate SL predictions
obtained for the tumor suppressor VHL. Next, we
construct a genome-wide network of SL interactions
in cancer and demonstrate its value in predicting
gene essentiality and clinical prognosis. Finally, we
identify synthetic lethality arising from gene overacti-
vationanduse it topredict drugefficacy.These results
form a computational basis for exploiting synthetic
lethality to uncover cancer-specific susceptibilities.

INTRODUCTION

Synthetic lethality occurs when the perturbation of two nones-

sential genes is lethal (Hartwell et al., 1997). This phenomenon

offers a unique opportunity to develop selective anticancer

drugs that will target a gene whose synthetic lethal (SL) partner

is inactive only in the cancer cells (Ashworth et al., 2011; Hartwell

et al., 1997). Toward the realization of this potential, screening

technologies have been developed to detect SL interactions in

model organisms (Byrne et al., 2007; Costanzo et al., 2010; Ty-

pas et al., 2008) and in human cell lines (Bassik et al., 2013;

Brough et al., 2011; Laufer et al., 2013). However, currently their

scope is not sufficiently broad to encompass the large volume of

genetic interactions that need to be surveyed across different

cancer types. New bioinformatics approaches are hence called

for to guide and complement the experimental search for SL

interactions in cancer.
Previous computational approaches developed to sys-

tematically study genetic interactions have mainly focused

on yeast, where there are genome-wide maps of experi-

mentally determined SL interactions (Chipman and Singh,

2009; Kelley and Ideker, 2005; Szappanos et al., 2011; Wong

et al., 2004). In cancer, synthetic lethality has been computation-

ally inferred by mapping SL interactions in yeast to their human

orthologs (Conde-Pueyo et al., 2009) and by utilizing metabolic

models and evolutionary characteristics of metabolic genes

(Folger et al., 2011; Frezza et al., 2011; Lu et al., 2013). Here,

we analyze the rapidly accumulating cancer genomic data to

identify candidate SL interactions via the data mining synthetic

lethality identification pipeline (DAISY). We show that genome-

wide cancer SL networks can be used to successfully predict

gene essentiality, drug response, and clinical prognosis.
RESULTS

The DAISY
DAISY is an approach for statistically inferring SL interactions

from cancer genomic data of both cell lines and clinical samples.

DAISY applies three statistical inference procedures, each

tailored to specific cancer data sets.

The first inference strategy, termed genomic survival of the

fittest (SoF), is based on the observation that cancer cells that

have lost two SL-paired genes do not survive, they are strongly

selected against. Accordingly, as cells harboring SL coinactiva-

tion are eliminated from the cell population, SL interactions can

be identified by analyzing somatic copy number alterations

(SCNA) and somatic mutation data and detecting events of gene

coinactivation that occur significantly less than expected. In

fact, very similar concepts are already extensively used to analyze

the outcomesof small hairpin RNA (shRNA) screens in cell lines, in

which essential genes and SL gene pairs are detected by identi-

fying the shRNA probes that have been rapidly eliminated from

the cell population (Cheung et al., 2011; Marcotte et al., 2012).

More recently, a relatedconceptwas implemented to identify syn-

thetic lethality in glioblastoma (Szczurek et al., 2013).

The second inference strategy, shRNA-based functional

examination, is based on the notion that the knock down of a
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Figure 1. The DAISY Workflow

The three different inference procedures

described in the main text are applied in parallel to

identify SL and SDL gene pairs. The SL and SDL

networks are then assembled from gene-pairs that

are identified by all three procedures as SLs or

SDLs, respectively (the intersection colored in

blue).

See also Figure S1 and Table S1.
synthetically lethal gene is lethal to cancer cells where its SL

partner is inactive. Accordingly, the SL pairs of a given gene

can be detected by searching for genes whose underexpres-

sion and low copy number induce its essentiality. This can be

conducted via an integrative analysis of the results obtained

in shRNA essentiality screens and their accompanying SCNA

and transcriptomic profiles.

The third procedure, pairwise gene coexpression, is based on

the notion that SL pairs tend to participate in closely related bio-

logical processes and hence are likely to be coexpressed (Cos-

tanzo et al., 2010; Kelley and Ideker, 2005). We show that this

trend indeed holds in known SLs that have been experimentally

detected in cancer (Figure 2).

Given SCNA, somatic mutation, shRNA, and gene expres-

sion data of thousands of cancer samples, DAISY traverses

over all gene pairs (�534 million) and examines for every pair

if it fulfills each one of the three criteria described above.

Gene pairs that fulfill all three criteria in a statistically significant

manner are predicted to be SL pairs. Here, we applied DAISY

to analyze nine different genome-wide cancer data sets (Barre-

tina et al., 2012; Beroukhim et al., 2010; Cheung et al., 2011;

Garnett et al., 2012; Luo et al., 2008; Marcotte et al., 2012;

Cancer Genome Atlas Research et al., 2013) (Table S1 avail-

able online).

We expanded DAISY to also detect synthetic dosage

lethality (Sajesh et al., 2013). While two genes form an SL

pair if the inactivation of one gene renders the other essential,

two genes form a synthetic dosage lethal (SDL) pair if the over-

activity of one of them renders the other gene essential. Impor-

tantly, SDL interactions can permit the eradication of cancer

cells with overactive oncogenes that are difficult to target

directly (such as KRAS), by targeting the SDL partners of

such oncogenes. DAISY detects SDL interactions via three

inference procedures that are analogous to those outlined
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above for detecting SL interactions (Fig-

ure 1; Experimental Procedures). More

specifically, DAISY defines two genes,

A and B, as an SDL pair if their expres-

sion is correlated and if the overactivity

(amplification and overexpression) of

gene A induces the essentiality of gene

B. Induced essentiality is detected in

two ways: first, according to shRNA

screens, by examining if gene B be-

comes essential when gene A is overac-

tive; second, according to SCNA data,
by examining if gene B has a higher SCNA level when gene

A is overactive.

Evaluating DAISY Based on Experimentally Detected SL
Interactions in Cancer
We first examined DAISY based on SL interactions that have

been experimentally tested in cancer. We applied DAISY to iden-

tify the SL partners of PARP1, the tumor suppressors VHL and

MSH2, and the SDL partners of the oncogeneKRAS. The predic-

tions were performed for over 7,276 gene pairs that have been

experimentally tested in six large scale screens (Bommi-Reddy

et al., 2008; Lord et al., 2008; Luo et al., 2009; Martin et al.,

2009; Steckel et al., 2012; Turner et al., 2008). For every gene

pair, DAISY returns four p values that denote the significance

of the SL or SDL interaction between the two genes according

to each one of the three inference strategies described in the

previous section and according to all three approaches together

(Figure 1; Experimental Procedures). We utilized these p values

to examine the predictions along an increasing p value threshold

and generate receiver operating characteristic (ROC) curves

(Extended Experimental Procedures).

The DAISY predictor obtains an overall AUC of 0.779, which

shows the concordance between the predicted and observed

SL and SDL pairs (empirical p value <1 3 10�4; Figure 2A). To

assess which of the inference strategies enables DAISY to

correctly predict synthetic lethality, we repeated the predictions

when using the p values obtained based on only one inference

strategy at a time (Figure 2A). An AUC of 0.683 was obtained

by predicting SL interactions based only on the SoF approach.

These results are further improved by requiring that the gene

pairs will also be coexpressed, reaching to an AUC of 0.770.

As shRNA-based functional examination is not predictive on its

own (an AUC of 0.477), we modified DAISY to consider the

shRNA criterion as a soft constraint (Experimental Procedures).
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Figure 2. DAISY-Inferred SL and SDL Interactions Match Experimentally Detected Interactions in Cancer

(A) The ROC curves obtained when predicting SL and SDL interactions by applying each of the three inference strategies separately (red, light blue, and purple),

the SoF and coexpression approaches together (green), and all three inference strategies together (DAISY, blue). The black line denotes the random ROC-curve.

(B–G) The SCNA and expression patterns of experimentally well-established SL pairs: (B and C) PARP1-BRCA1, (D and E) PARP1-BRCA2, and (F and G)MSH2-

DHFR, respectively. For each one of these SL pairs the SCNA levels of one gene are significantly higher when its partner is deleted than when its partner is

retained, as expected (one-sided Wilcoxon rank sum test) (Barretina et al., 2012; Beroukhim et al., 2010) (B, D, and F), and their expression is significantly

correlated (Garnett et al., 2012) (C, E, and G). The error bars in (B), (D), and (F) represent the confidence interval of the SCNA levels across the samples.
Despite the nonpredictability of the shRNA-based functional ex-

amination approach in this task, shRNA data are important for

the generation of predictive SDL-networks (Supplemental Infor-

mation; Figure S6). Importantly, DAISY captures well-estab-

lished and clinically important SL interactions, including the

prominent SL interaction between PARP1 and BRCA1/BRCA2

and the synthetic lethality between MSH2 and DHFR (Figures

2B–2G).

Experimentally Examining the DAISY-Predicted SL
Partners of the Tumor Suppressor VHL
Wenext turned to experimentally test SL predictions of the tumor

suppressor VHL that is frequently mutated in cancer, especially

in clear cell renal carcinomas (Bommi-Reddy et al., 2008). We

applied DAISY to predict the SL partners of VHL and identify

among these genes those that are essential in renal carcinoma

cells (RCC4) exclusively due to the loss of VHL, resulting in a

set of 44 genes (Extended Experimental Procedures).

We performed a small interfering RNA (siRNA) screen to

examine if the predicted genes are preferentially essential in

VHL�/� renal carcinoma cells compared with isogenic cells in

which pVHL function was restored (Extended Experimental Pro-

cedures). Overall, compared to the VHL-restored cells, the VHL-

deficient cells are significantly more sensitive to the knockdown

of the predicted VHL-SL partners (paired t test p value of 8.253

10�4) (Figure 3A, Table S2). Reassuringly, compared to the VHL-

restored cells, the VHL-deficient cells are not significantly more

sensitive to the knockdown of a control set of 30 randomly

selected genes (paired t test p value of 0.255). Compared to

another screen that searched for the SL partners of VHL among
88 kinases (Bommi-Reddy et al., 2008), our screen detected 3.83

timesmore SL genes (Bernoulli p value of 4.763 10�9; Extended

Experimental Procedures).

We thenmeasured the response of the renal cells to nine drugs

whose targets were predicted by DAISY to be selectively essen-

tial in the VHL-deficient renal cells. Of note, these drugs are not

currently administered to treat cancer, but are Food and Drug

Administration (FDA)-approved to treat other clinical conditions,

such as hypertension and depression. We managed to identify

effects on cell growth for six out of the nine drugs. As predicted,

the VHL-deficient cells were significantly more sensitive to

each one of these six drugs (higher percentage of inhibition at

mideffective concentration) (Figure 3B; Table S2). Reassuringly,

this specificity was not observed with the negative control drug

Staurosporine, indicating that the selective effect is not due to

a general susceptibility of the VHL-deficient cells.

Applying DAISY to Construct Genome-wide Networks of
SL and SDL Interactions in Cancer
We applied DAISY to identify all gene pairs that are likely to be

synthetically lethal in cancer, resulting in an SL network of

2,077 genes and 2,816 SL interactions (Figure 4), and an SDL

network of 3,158 genes and 3,635 SDL interactions (Table S3).

As each of the nine data sets examined were analyzed sepa-

rately to identify SL (SDL) pairs, we tested themutual overlap be-

tween the resulting SL (SDL) sets and found it to be significantly

higher than expected (Figure S1).

Both networks display scale-free-like characteristics and are

enriched with known cancer-associated genes and biological

functions (Figures S1 and S2; Table S4). The genes included in
Cell 158, 1199–1209, August 28, 2014 ª2014 Elsevier Inc. 1201



A B Figure 3. Examining DAISY Predictions of

VHL-SLs

(A) The differential inhibition score of the predicted

SL partners of VHL, ordered in ascending order.

Highly selective genes (inversely selective) are

those with differential inhibition scores >10 (<�10).

Selective genes are those with differential inhibi-

tion scores R4.8 (the score of the positive control

gene MYT1, identified in Bommi-Reddy et al.,

2008). Dashed horizontal lines denote the

threshold values.

(B) The mean percentage of growth inhibition of

VHL-deficient (VHL�/�) and VHL-restored (VHL+)

cells at the mideffective concentration of each

drug. On top are the one-sided t test p values

denoting if the inhibition of the VHL-deficient cells

is significantly higher than the inhibition of the VHL-

restored cells. The error bars represent the SE

across the three replicates of the experiment.

See also Table S2.
the networks are significantly overexpressed both in normal tis-

sues and especially in cancers (Wilcoxon rank sum p values

<6.29 3 10�8). Interestingly, the network genes are significantly

associated with cancer proliferation and less associated with

normal proliferation (Waldman et al., 2013). They are highly en-

riched with human orthologs of mouse essential genes (hyper-

geometric p values <1 3 10�30) and are evolutionary conserved

(Wilcoxon rank sum p values <2.99 3 10�17). Moreover, each

one of these properties is further emphasized in genes that

have a higher degree in the SL or SDL networks (Supplemental

Information; Figure S2).

The SL and SDL pairs are highly enriched with genes that

interact in the protein-protein interaction (PPI) network (hyper-

geometric p values <4.02 3 10�7). Testifying to their impor-

tance, genes included in the SL or SDL networks have a higher

degree in the PPI network compared to other genes, especially

if their degree in the SL or SDL network is high (Wilcoxon rank

sum p values <5.79 3 10�22; Figure S2D). Examining the

genomic location of the SL and SDL pairs we find that while SL

pairs tend to reside on different chromosomes, or at a large dis-

tance from each other on the same chromosome, the SDL gene

pairs show the opposite behavior. The latter trend is observed

also when identifying SDL interactions without considering the

SoF approach. Discarding SDL gene pairs that reside close to

each other depreciates the predictive signal of the network (Sup-

plemental Information; Figure S3).

As a direct experimental validation of the predicted SL and

SDL interactions is yet impossible on a genome scale, we tested

the interactions by examining their utility in three fundamental

prediction assignments, the prediction of gene essentiality, clin-

ical prognosis, and drug efficacy. In all tasks, the networks are

utilized to generate cancer-specific predictions given a genomic

characterization of a specific cancer cell line or clinical sample.

SL-Based Prediction of Gene Essentiality in Cancer
Cell Lines
Predicting gene essentiality based on the SL network is cell-line-

specific. Indeed, examining the results of shRNA screens, the

majority of genes are essential in very few cancer cell lines
1202 Cell 158, 1199–1209, August 28, 2014 ª2014 Elsevier Inc.
(Supplemental Information; Figure S4A). As we examined the

predictions based on the results obtained in shRNA gene knock-

down screens, we constructed an SL network without any

shRNA data to avoid potential circularity. Based on this SL

network and the genomic profiles of the cell lines, we predicted

a gene as essential in a given cell line if one ormore of its SL part-

ners is inactive in that cell line (see Supplemental Information for

further details, analyses, and results).

Overall, we predicted gene essentiality in 129 different cancer

cell lines and examined the predictions based on the results of

two large-scale gene essentiality screens (Cheung et al., 2011;

Marcotte et al., 2012). Per cell line the predicted essential genes

are significantly enriched with genes that were found experimen-

tally to be essential in the pertaining cell line (empirical p value <

2.52 3 10�4; Supplemental Information; Figure 5A; Table S5).

Furthermore, the higher the number of predicted inactive SL

partners a gene has the more essential it is according to the

experimental data (Figures 5B and 5C). Of note, the SL network

succeeds more in predicting gene essentiality in cell lines with a

higher number of gene deletions (Supplemental Information; Fig-

ures S4B and S4C; Table S5). Indeed, in such cell lines it is more

likely that gene essentiality arises due to synthetic lethality.

Finally, we predicted gene essentiality based on gene pairs

that are human orthologs of yeast SLs (Conde-Pueyo et al.,

2009). This, however, leads to markedly inferior performance,

testifying to the value of the DAISY-inferred SLs (Supplemental

Information; Figures S4D and S4E; Table S5).

We improved the unsupervised SL-based gene essentiality

predictions described above by considering additional features

that describe the state of a specific gene in a given cell line ac-

cording to the SL network (e.g., the average SCNA level of its

SL partners). Using these features, we trained neural network

models on gene essentiality data (Extended Experimental Proce-

dures). The performances of these supervised predictionmodels

on unseen test sets resulted in ROC curves with AUCs of 0.755

and 0.854 for the Marcotte et al. (2012) and Achilles (Cheung

et al., 2011) data, respectively (Figures 5D and 5E). For compar-

ison, we considered the nine cell lines that were tested in both

screens and utilized the shRNA scores obtained in one screen



Figure 4. The SL Network

Each node represents a gene, and each edge represents an inferred SL

interaction. Genes that are included in one of the six major clusters of the

network are colored according to the main biological process that their cluster

is enriched for. Node size is proportional to the number of SL pairs a gene has.

See also Figure S2 and Tables S3 and S4.
to predict gene essentiality according to the other screen

(Extended Experimental Procedures). Using the Achilles screen

to predict gene essentiality as reported in the Marcotte screen,

or vice versa, results in inferior prediction performance, with

AUCs of 0.663 and 0.706, respectively.

To further examine the SL-based gene essentiality predic-

tions, we conducted a whole genome siRNA screen in the breast

cancer cell line BT549 under normoxia and hypoxia (Extended

Experimental Procedures; Table S6). We defined a refined set

of essential genes, composed of genes that are essential in

BT549 according to our siRNA screen under both conditions

and according to the shRNA screen of Marcotte et al. (2012).

Indeed, the performance of the SL-based predictor (that was

not trained on gene essentiality data of BT549) is further im-

proved when tested on this refined set of essential genes, ob-

taining an AUC of 0.951 (Figures 5F and S4F–S4K; Supplemental

Information).

Counderexpression of SL Pairs Is a Marker of Better
Prognosis in Breast Cancer
To examine the SL network in a clinical setting, we analyzed gene

expression and 15 year survival data in a cohort of 1,586 breast

cancer patients (Curtis et al., 2012). We postulated that counder-

expression of two SL-paired genes would increase tumor vulner-

ability and result in better prognosis. To test this hypothesis, we

classified the patients according to each SL pair into two groups:

patients whose tumors counderexpressed the two SL-paired

genes (SL� group) and patients whose tumors expressed at least

one of these genes (SL+ group). For each SL pair, we computed a

signed Kaplan-Meier (KM) score (Extended Experimental Proce-

dures). The higher the signed KM score is, the better the prog-

nosis of the SL� group is compared to the SL+ group. Indeed,

the signed KM score of the SL pairs is significantly higher than

those of randomly selected gene pairs (one-sided Wilcoxon

rank sum p value of 3.093 10�59). To examine if this result arises

from the mere essentiality of genes in the SL network rather than

the interaction between them, we repeated the analysis with
randomly selected gene pairs involving genes from the SL

network that are not connected by SL interactions. Reassuringly,

the SL pairs have significantly higher signed KM scores also

compared to these random SL network gene pairs (one-sided

Wilcoxon rank sum p value of 2.00 3 10�9). Highly significant

KM plots were obtained based on 271 SL pairs (log rank and

Cox regression p values <0.05, following multiple hypotheses

testing correction) (Figure 6A; Table S7).

Next, we classified the patients according to all the SL pairs

in the network together. For each sample, we computed a

global SL score that denotes the number of SL pairs it counder-

expressed. As predicted, samples that counderexpressed a

high number of SL pairs had a significantly better prognosis

compared to those that counderexpressed a low number of SL

pairs (log rank p value of 1.482 3 10�7; Figures 6B and 6C).

Again, we examined if this result is due to the mere essentiality

of the SL network genes rather than due to the specific SL

interactions; we repeated this analysis using 10,000 topology

preserving randomized networks consisting of the breast cancer

essential genes (Marcotte et al., 2012) (Extended Experimental

Procedures). Reassuringly, none of these random networks

managed to predict patient survival as significantly as the SL

network.

Because breast cancer is a highly heterogeneous disease, we

examined whether higher global SL scores are associated with

improved prognosis in specific and more homogenous groups

of patients—all consisting of the same subtype, grade, or

genomic instability level (Bilal et al., 2013). This is indeed the

case for all groups except one—grade 1 patients. The global

SL scores provide the most significant separation in the grade

2 normal-like subtype and moderate genomic instability groups

(log rank p values of 8.64 3 10�5, 1.01 3 10�3, and 1.25 3

10�4, respectively). As expected, the global SL score is signifi-

cantly negatively correlated with the tumor grade and genomic

instability level (Spearman correlation coefficients of �0.407

and�0.267, p values of 2.583 10�62 and 2.433 10�27, respec-

tively) and highly associated with the tumor subtype (ANOVA

p value of 4.25 3 10�102; Figure S5). Normal-like tumors have

the highest global SL scores, while basal tumors have the

lowest scores (Figure S5E). Notably, the prognostic value of

the global SL score is significant even when accounting for the

tumor grade, subtype, or genomic instability level (Cox p values

of 7.18 3 10�4, 3.12 3 10�7, and 4.37 3 10�8, respectively).

Lastly, the prognostic value of the global SL scores is superior

to that obtained by using genomic instability levels (Figures S5I

and S5J).

Harnessing SDL Interactions to Predict Drug Efficacy
We utilized the SDL network to predict the response of various

cancer cell lines to anticancer drugs. As these drugs mainly

target oncogenes, we used the SDL network to predict their ef-

ficacy rather than the SL network, whose performance is indeed

inferior in this task (Supplemental Information). Based on the

SDL network and the genomic profiles of the cancer cell lines,

we predicted for each drug which cell lines are sensitive and

which are resistant to its administration (Extended Experimental

Procedures). More specifically, if one of the drug targets had

more than one overexpressed SDL partner in a given cell line,
Cell 158, 1199–1209, August 28, 2014 ª2014 Elsevier Inc. 1203
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Figure 5. Predicting Cell-Specific Gene Essentiality Based on the SL Network

(A) The fraction of cell lines for which the unsupervised SL network predictor successfully differentiated between essential and nonessential genes (y axis). This is

plotted for ten different SLessentialitycutoff values (x axis), denoting the minimal number of inactive SL partners a predicted essential gene has (Extended

Experimental Procedures). Results are shown when considering only SL network genes (pink and light blue) or all genes (gray and blue) as the background

random model and testing the predictions based on the Marcotte et al. (2012) (pink and gray) or Achilles (Cheung et al., 2011) (blue and light blue) screen. All the

results are statistically significant (empirical p value <3.40 3 10�3).

(B and C) The experimental essentiality scores (median and confidence interval) of genes across different cancer cell lines as a function of the number of SL

partners they have lost, according to (B) the Marcotte and (C) the Achilles screens (lower experimental gene essentiality scores denote higher essentiality).

(D and E) The ROC curves obtained when predicting gene essentiality across the (D) Marcotte and (E) Achilles cancer cell lines via the supervised SL-based

predictors.

(F) The ROC curves obtained by predicting gene essentiality in BT549 via the supervised SL-based predictor and testing the predictions with the genes that were

found essential in all screens (blue), in theMarcotte shRNA screen (green), or in the siRNA screen we conducted under normoxia (red) and under hypoxia (yellow).

The predictor was trained based on the gene essentiality reported inMarcotte et al. (2012), excluding the BT549 cell line data that was used exclusively for testing.

See also Figure S4 and Tables S5 and S6.
the cell line was predicted to be sensitive to the drug administra-

tion (Supplemental Information).

To test this approach, we utilized two data sets of drug effi-

cacies that were measured in a panel of cancer cell lines: (1)

the Cancer Genome Project (CGP) data (Garnett et al., 2012),

and (2) the Cancer Therapeutics Response Portal (CTRP) data

(Basu et al., 2013). The SDL network enabled to predict the

response of 593 cancer cell lines to 23 drugs and of 241 cancer

cell lines to 33 additional drugs when utilizing the CGP and CTRP

data sets to test the predictions, respectively. Overall, drugs are

significantly more effective in the predicted sensitive cell lines

than in the predicted resistant cell lines (empirical p values <5.34

3 10�4; Figures 7A and 7B; Table S8). Considering only the pre-

dictions that were obtained for drugs with a sufficiently high

number of SDL interactions increases the fraction of drugs that

are significantly predicted (Figure 7C). As predicted, the effi-
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cacies of drugs increase with the number of overexpressed

SDLpartners that their targets have in a given cell line (Figure 7D).

Exceptions to this trendmay be explained by noting that drug ef-

ficacy is determined only partially by the essentiality of the drug

targets, and additional factors, like the drug membrane perme-

ability, may affect drug efficacies. For comparison, we predicted

drug response by applying two other well established ap-

proaches: (1) based on the mutation and copy-number status

of the drug target(s), and (2) based on the genomic instability in-

dex of the cancer cells. The SDL network generates significant

predictions for more than twice as many drugs compared to

these competing predictors (Supplemental Information).

Focusing on the drugs that were most accurately predicted by

using the SDL-network, we found that each one of the SDL inter-

actions involving the targets of these drugs enables, on its own,

to accurately predict the response to the pertaining drug
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Figure 6. Predicting Clinical Prognosis Based on the SL Network

In parenthesis next to the name of each group are the number of patients and the number and percentage of deaths in that group.

(A) The KMplot obtained when dividing the breast cancer samples according to the expression ofPOLA2 andKIF14 (themost predictive SL pair in terms of breast

cancer survival). The red and purple arrows point to the estimated effect of KIF14 underexpression, in the context of POLA2 expression and underexpression,

respectively.

(B) KMplots depicting the survival of samples that counderexpressed a high number of SL pairs (global SL score above the 90th percentile, in blue) and of samples

that counderexpressed a low number of SL pairs (global SL score below the 10th percentile, in red).

(C) The KM plots depict the survival of breast cancer patients uniformly divided into four groups according to their global SL score. As predicted, higher global SL

scores are characterized with better 15 year survival.

See also Figure S5 and Table S7.
(Figure 7E; Extended Experimental Procedures). Among these

interactions is the predicted SDL interaction between EGFR

and IGFBP3, whose overexpression should accordingly induce

sensitivity to drugs targeting EGFR. Reassuringly, it has been

shown that IGFBP3 is underexpressed in Gefitinib-resistant

cells, and the addition of recombinant IGFBP3 restored the abil-

ity of Gefitinib to inhibit cell growth (Guix et al., 2008). Another

interesting example is the predicted SDL interaction between

PARP1 and MDC1. The latter contains two BRCA1 C-terminal

motifs and also regulates BRCA1 localization and phosphoryla-

tion in DNAdamage checkpoint control (Lou et al., 2003). Indeed,

BRCA1/BRCA2 are known to be synthetically lethal with PARP1

(Lord et al., 2008).

In a manner analogous to that described earlier for predicting

gene essentiality, we utilized the SDL network to build super-

vised neural network predictors of drug efficacies in cancer

cell lines (Extended Experimental Procedures). Using only 53

features, we predicted drug efficacies with Spearman correla-

tion coefficients of 0.721 and 0.547 and p values <1 3 10�350

for the CGP and CTRP data, respectively (Figures 7F–7I). We

further examined our SDL-based predictors by analyzing re-

sults of a large pharmacological screen carried out recently

by the same team as CTRP. In this study, the efficacies of

�500 compounds were measured across >850 cancer cell

lines (P.A.C., personal communication). One hundred and

twenty six of the tested compounds have at least one target

in the SDL network, enabling to predict the response to their

administration. Based the SDL network and the genomic pro-

files of these cell lines (Barretina et al., 2012), we predicted
the efficacies of these drugs by using the unsupervised and

supervised predictors (trained on the CTRP data). The SDL-

based predictors obtained significant predictions (p value <

0.05) of drug efficacy for 83 (65.87%) and 70 (55.6%) drugs,

when applying the unsupervised or supervised approach,

respectively.

DISCUSSION

DAISY is a genome scale, data-driven, approach for the identifi-

cation of cancer SL and SDL interactions. As shown, DAISY

successfully captures the results obtained in key large scale

experimental studies exploring SLs in cancer, identifies valid

SL interactions, and enables to predict gene essentiality, drug

efficacy, and clinical prognosis in cancer.

DAISY presents a complementary effort to genetic and chem-

ical screens, narrowing down the number of gene pairs that

need to be examined experimentally to detect SL and SDL inter-

actions in cancer. Based on the ROC curve presented in Fig-

ure 2A, an experimental screen for discovering SL interactions

could be designed to check the SL pairs predicted by DAISY

such that 5%, 25%, 50%, or 70% of all the SL interactions

that are out there will be detected by examining only 0.25%,

4%, 14%, or 24% of all possible gene pairs, respectively.

Hence, testing only the most confident predictions will enable

to find up to 20 times more SL pairs than expected by random.

Likewise, by applying DAISY to design an siRNA screen for

detecting the SL interactions of VHL we identified almost four

times as many SL interactions compared to a screen that was
Cell 158, 1199–1209, August 28, 2014 ª2014 Elsevier Inc. 1205
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Figure 7. The SDL Network Predicts the Efficacy of Anticancer Drugs in Cancer Cell Lines
(A and B) The prediction signal obtained when predicting the response of cancer cell lines to different drugs and testing the predictions based on (A) the CGP data

and (B) the CTRP data. Drugs that are significantly predicted via the unsupervised SDL-based predictor are colored in red.

(C) The fraction of significantly predicted drugs when considering only drugs whose targets have an above-threshold number of SDL interactions (unsupervised).

(D) The IC50 (left) and area-under-dose-curve (right) of drugs decrease in cell lines where their target(s) have an increasing number of overexpressed SDL partners

(lower values denote higher efficacy).

(E) A subnetwork of the SDL network that enables to significantly predict the sensitivity to ten anticancer drugs. Each node denotes a gene: a drug target (purple)

or an SDL partner of a drug target (pink). Each edge represents an SDL interaction. Self-loops denote that the gene is an SDL-partner of itself (see Supplemental

Information for further discussion and results concerning such SDL interactions). The edge color denotes the predictive power of the SDL interaction (blue, and

red denote a p value lower than 13 10�3, and 0.05, respectively). The significance of the prediction based on the entire set of SDL interactions is written next to

the name of the drug, in parenthesis; predictions that were tested based on the CGP and CTRP data are written in black and blue, respectively.

(F–I) The drug efficacy predictions obtained by the supervised SDL-based predictors. (F) The predicted versus experimental IC50 log values of 41 drugsmeasured

across 414 cancer cell lines (CGP data). (G) The predicted versus experimental area-under-dose-curve of 50 drugs measured across 241 cancer cell lines (CTRP

data). (H–I) For each cancer cell line we computed the Spearman correlation between the measured and predicted efficacies of different drugs in it. The his-

tograms show the distribution of these correlation coefficients across the different cancer cell lines in (H) the CGP and (I) the CTRP data. The blue lines mark the

median correlation coefficient.

See also Figure S6 and Table S8.
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designed by applying biological reasoning. In light of these re-

sults DAISY could facilitate a more rapid and rational discovery

of SL interactions in cancer by guiding focused experimental

screens.

Nonetheless, DAISY has several limitations one needs to ac-

count for. First, it is restricted to the identification of SL interac-

tions in cancer, as it is based on unique cancer-specific data that

captures the genomic instability of cancer cells (e.g., SCNA). As

such DAISY cannot be tested by applying it to identify SL inter-

actions in model microorganisms as yeast. Second, DAISY iden-

tifies SL interactions based on large scale genomic data and

shRNA screens, which are at times noisy and inaccurate

(Bhinder et al., 2014). Third, as DAISY is based on the identifica-

tion of gene inactivation, additional mechanisms of gene inacti-

vation, such as epigenetic and posttranscriptional regulation,

should be accounted for in the future. Fourth, the genomic loca-

tion of genes may result in false-negative and false-positive

predictions of SL and SDL interactions, respectively (see Sup-

plemental Information for further analysis). Last, the ability of

the SL network to accurately predict gene essentiality in vivo re-

mains to be determined.

We have shown that SL and SDL interactions have a marked

cumulative effect (Figures 5B, 5C, and 7D). Thus, a gene can

form a useful drug target due to the (possibly partial) inactivation

or overactivation of several of its SL or SDL partners, respec-

tively. SL-based treatment can therefore be especially effective

in targeting genetically unstable tumors that harbor many gene

deletions and amplifications. Furthermore, a drug may be able

to kill a broad array of genomically heterogeneous cells, each

sensitive to the drug due to the inactivity (overactivity) of a

different subset of the SL (SDL) partners of the drug targets.

Targeting a gene with many inactive SL and/or overactive SDL

partners may hence counteract the development of treatment

resistance, especially if the SL/SDL partners reside on different

chromosomes or in distant genomic locations. Moreover, SL-

based treatment can induce the reactivation of a tumor suppres-

sor or the inactivation of an oncogene by targeting its SL or SDL

pair, respectively.

Four main translational challenges could potentially be

tackled by utilizing SL and SDL networks: (1) ranking existing

treatments for a given patient based on the genomic character-

istics of the tumor, as initially shown here in cell lines; (2) repur-

posing approved drugs that are currently used to treat other dis-

eases to treat cancer, as shown here for treating a VHL-

deficient cancer; (3) systematically identifying new drug targets;

and (4) predicting cancer prognosis, as shown here for breast

cancer. Taken together, SL and SDL network-based analysis

combined with personalized genomics can provide an impor-

tant future tool for assessing response to treatment and for

developing more selective and effective personalized

therapeutics.
EXPERIMENTAL PROCEDURES

Description of DAISY

DAISY identifies candidate SL and SDL interactions by applying three separate

statistical inference procedures. Each procedure has its own input and outputs

a set of candidate SL or SDL pairs. Gene pairs that are identified as candidate
SL or SDL pairs by all three procedures are identified by DAISY as SL or SDL

pairs, respectively. The three inference procedures are described below (com-

ments in parenthesis refer to changes made to identify SDL pairs):

(1) The genomic SoF procedure analyzes a set of input data sets denoted

as SoFdata sets. Each data set includes SCNA profiles of cancer sam-

ples and optionally their mRNA and somatic mutation profiles. For

every pair of genes, denoted as A and B, and every data set S in

SoFdata sets, a Wilcoxon rank sum test is conducted to examine if

gene B has a significantly higher SCNA level in samples in which

gene A is inactive (overactive) than in the rest of the samples. The

output consists of gene pairs that, according to at least one of the

data sets in SoF data sets, pass the test described above in a statisti-

cally significant manner (a Wilcoxon rank sum p value <0.05 following

Bonferroni correction for multiple hypotheses testing).

(2) The shRNA-based functional examination procedure analyzes a set of

data sets denoted as shRNAdata sets. Each data set includes the results

obtained in a gene essentiality (shRNA) screen together with the SCNA

and gene expression profiles of the cancer cell lines examined in that

screen. For every pair of genes, denoted as A and B, and every data

sets S in shRNAdata sets, a Wilcoxon rank sum test is conducted to

examine if gene B has significantly lower shRNA scores in samples in

which gene A is inactive (overactive) than in the rest of the samples

(the lower the shRNA score is, the more essential the gene is). The

output consists of gene pairs that, according to at least one of the

data sets in shRNAdata sets, pass the test described above in a statisti-

cally significant manner (a Wilcoxon rank sum p value <0.05).

(3) The pairwise gene coexpression procedure is given a set of transcrip-

tomic data sets of cancer samples and returns gene pair whose

expression, in at least one of the data sets, is significantly positively

correlated (a Spearman correlation coefficient RRmin and a p value <

0.05 following Bonferroni correction for multiple hypotheses testing).

The candidate SL or SDL pairs that are identified in the first and third proce-

dures are obtained with highly stringent statistical cutoffs, a p value <0.05

following Bonferroni correction. The data obtained in shRNA screens has a

low statistical power and is hence utilized (in the second procedure) only to

further refine the already highly statistically significant SL and SDL sets iden-

tified in the first and third procedures.

The first and second procedures are based on the detection of gene inacti-

vation and overactivation in the samples analyzed. A gene is defined as inac-

tive in a sample if it is underexpressed and its SCNA is below �0.3 or if it is

mutated with a deleterious mutation. The latter refers to nonsense and

frame-shift mutations. Likewise, a gene is defined as overactive in a sample

if it is overexpressed and its SCNA is above 0.3. Of note, the SCNA parameters

(�0.3 and 0.3) used here are more stringent cutoffs compared to those used in

the literature to define gene amplification and deletion (Beroukhim et al., 2010).

A gene is defined as underexpressed in a given sample if its expression level is

below the 10th percentile of its expression levels across all samples in the data

set, and similarly, as overexpressed if its expression level is above its 90th

percentile. In the third procedure we set Rmin to 0.5.

To find the candidate pairs and construct the SL and SDL networks, we

applied DAISY with the data sets listed in Table S1 and traversed over all

�535 million gene pairings. To do so efficiently, DAISY was implemented

and run on the HTcondor architecture, which enables parallel computing

(Thain et al., 2005).
Network Availability and Visualization

Interactivemaps of the networks are accessible through http://www.cs.tau.ac.

il/�livnatje/SL_network.zip and can be explored using the freely available Cy-

toscape software (Cline et al., 2007). The maps include different gene proper-

ties and annotations, as well as alternative views that dissect the network hubs

or genes with specific characteristics. We clustered the SL and SDL networks

by applying the Girvan-Newman fast greedy algorithm as implemented by the

GLay Cytoscape plug-in (Morris et al., 2011; Su et al., 2010) and performed

gene annotation enrichment analysis for every network and every network

cluster via DAVID (Huang et al., 2009).
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