ORIGINAL ARTICLE

Salivary PCR detection of Helicobacter pylori DNA in Egyptian patients with dyspepsia

Moataz M. Sayeda, Wesam A. Ibrahim a,*, Sameh A. Abdel-bary a, Sara M. Abdelhakamb, Sherin A. El-Masry c, Dalia Ghorabab

a Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
b Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
c Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt

Received 31 May 2011; accepted 28 July 2011
Available online 12 October 2011

KEYWORDS
Salivary PCR; Helicobacter pylori; Functional dyspepsia; Acid ulcer syndrome

Abstract Several methods are available for detecting Helicobacter pylori infection: (1) invasive methods based on gastric biopsies, (2) non invasive methods like Urea Breath Test (UBT), serology and stool antigen tests. Importance of salivary PCR in detection of H. pylori is still questionable. To evaluate the role of salivary PCR technique in detecting H. pylori gastric affection in Egyptian patients with dyspepsia and in differentiating between functional dyspepsia and acid-ulcer syndrome. This study included 60 patients with dyspepsia classified into three groups: (Group 1) patients with gastric H. pylori and ulcers or erosions (n = 20), (Group 2) patients with gastric H. pylori and no ulcers or erosions and had functional dyspepsia (n = 20), (Group 3) patients without H. pylori and had functional dyspepsia (n = 20). All underwent upper gastrointestinal endoscopy with biopsies, rapid urease test and salivary samples for H. pylori PCR. Significant difference between the three groups regarding salivary PCR values. No significant difference between Group 1 and Group 2 but both had significant difference with Group 3, significant difference between gastric H. pylori positive patients (n = 40) and negative ones (n = 20). Salivary PCR test had sensitivity of 85%, specificity of 70% in diagnosing H. pylori. PCR value of 534000 IU/ml had best sensitivity (75%) and specificity (100%) for diagnosing H. pylori, highly significant positive correlation...
It is estimated that 50% of the world’s population is infected by *Helicobacter pylori* [1]. Around the world, the prevalence of *H. pylori* infection ranges from 20% to over 90% in adult populations. Infection rates average at about 30% in Western populations while infection rates in Asian countries and in developing countries are higher and range from 60% to 90% [2]. According to Mohammad et al. [3], the overall prevalence of *H. pylori* infection was 72.38% among Egyptian school children.

*H. pylori* infection is associated with chronic gastritis, peptic ulcers, atrophic gastritis, intestinal metaplasia, gastric adenomas, gastric hyperplastic polyps, adenocarcinomas of the distal part of the stomach, and lymphomas of mucosa-associated lymphoid tissue [4]. These diseases, in most instances, develop many years after the host colonization [5]. The World Health Organization has categorized *H. pylori* infection as a definite human carcinogen class I since 1994 [6].

*H. pylori* infection can be diagnosed by invasive techniques requiring endoscopy and biopsy (histological examination, culture, polymerase chain reaction) and by noninvasive techniques (serology, urea breath test, detection of *H. pylori* antigen in stool specimen) [7].

Human is the only known host of *H. pylori*. Its transmission route is not yet clearly understood. Epidemiological studies suggest person-to-person transmission, by either fecal–oral or oral–oral routes, to be the major mechanism. In developing countries, there is evidence for both food- and water-borne transmission of *H. pylori* [8]. The human stomach is considered as the reservoir of this pathogen [9].

The first documentation of the presence of *H. pylori* in the oral cavity was reported in 1989, when the bacterium was cultured from the dental plaque of one of 29 patients with *H. pylori* associated gastric disease [10]. Since then, some reports indicated that Helicobacter may be present in oral cavity (particularly gingival pockets) which can serve as a reservoir for bacteria and a source of gastric reinfection [11]. *H. pylori* has also been detected by culture and PCR in both dental plaques and saliva [12].

In 2006, “Rome III” classification [13] functional dyspepsia (FD) was included in the subcategory of functional gastrointestinal disorders [14]. Of patients with functional dyspepsia, 30–60% carry *H. pylori*, but this prevalence is not much different from that in the unaffected population [15]. Various studies have focused on the effect of *H. pylori* eradication in patients with both functional and uninvestigated dyspepsia. A meta-analysis of 13 randomized studies of functional (non-ulcer) dyspepsia showed that *H. pylori* eradication was associated with an 8% relative risk reduction compared with placebo [16].

### 1. Introduction

This study aimed to evaluate the role of salivary PCR technique in detecting *H. pylori* gastric affection in Egyptian patients with dyspepsia and in differentiating between functional dyspepsia and acid-ulcer syndrome.

### 2. Aim of the work

In this study 60 dyspeptic patients (defined symptomatically as abdominal discomfort related to meal) attending the outpatient clinics of Internal Medicine and Tropical Medicine Departments, Ain Shams University Hospital were included after approval of the ethical committee and the taking of their informed consent.

All patients with hepatic, pulmonary, renal and cardiac diseases or with contraindication to endoscopy were excluded from the study. All studied patients did not receive non-steroidal anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPI) or antibiotics within the previous two months.

All studied patients were subjected to: History taking, Complete clinical examination, Complete blood picture, Kidney function tests (urea and creatinine), Liver function tests (SGOT, SGPT, serum bilirubin, serum albumin, prothrombin time). Upper GIT endoscopy by the same operator: to evaluate for the presence of gastritis, erosions or ulcers. Four quadrant biopsies were taken from antral mucosa within 5 cm of the pyloric opening for detection of *H. pylori* infection using [(1) rapid urease test (2) Histopathological examination] and Salivary PCR for *H. pylori* DNA.

- Rapid urease test: One biopsy specimen was placed in urea broth, incubated at 37 °C, and examined after 4 hours and after overnight incubation. Urease positive test changed the color of the indicator from yellow to purple – pink [27].
- Histopathological examination: Biopsy taken from antral mucosa was fixed in 10% buffer formalin and was prepared from paraffin block for modified Giemsastain for detection of *H. pylori* [27].
- Salivary PCR for *H. pylori* DNA examination: Saliva samples (2–3 ml) were collected in a sterile container prior to endoscopy. DNA extraction was done with MagNA pure compact Nucleic Acid Isolation Kit (Roche Diagnostics Nederland BV) according to the manufacturer’s instructions. Real-time PCR was performed with a Light Cycler (Roche, Mannheim, Germany). for Real-Time PCR analysis. The nucleic acid sequence for the oligonucleotide primer pairs specific for two sequences flanking an internal 294 bp fragment of the urease C gene of *H. pylori*; These oligonucleotides
were Forward primer was 5' AAG CTT TTA GGG TTG TTA GGT T-3' and for the Reverse primer was 5' AAG CTT ACT TTC TAA CAC TAA CGC 3' both were supplied by Tip Mol Biol, USA. Master mix was prepared to reach a total volume of 20 µl (5.0 µl 10X reaction buffer, 5.0 µl dNTPs 10 mM, primer set final 100 nM each (forward & reverse primers), 0.5 µl Prime TaqDNA polymerase (DNA plasmid)(Quality, Genet Bio Roche diagnostic, with Syber Green buffer, Korea), serial dilution of positive standard control 10^2–10^5 copies/ml for calibration curve, 5.0 µl DNA, RNase-free water). The thermal cycler was programmed in three steps: (Step 1: 5 min at 94 °C, Step 2: 30 sec. at 94 °C, 30 sec. at 52° C, 1 min at 72 °C, this was repeated for 35 cycles, Step 3: 5 min at 72 °C) [28].

According to the results of upper GIT endoscopy, H. pylori rapid urease and histopathology, selected patients were divided into 3 groups. Group 1: Patients confirmed to be gastric H. pylori positive and with ulcers or erosions (20 patients). Group 2: Patients with functional dyspepsia (according to Rome III criteria) confirmed to be gastric H. pylori positive without ulcers or erosions (20 patients). Group 3: Patients with functional dyspepsia (according to Rome III criteria) proved to be gastric H. pylori negative (20 patients).

3.1. Statistical analysis

Data were collected, revised, verified, and then edited and analyzed statistically using Statistical Package for Social Sciences program (SPSS v16). The following tests were used in this study: mean, standard deviation, T test for independent samples, ANOVA test (analysis of variance), Post Hoc test, Spearman coefficient of rank correlation (rho), ROC curve analysis. Significance levels: $P > 0.05$ insignificant, $P < 0.05$ significant and $P < 0.001$ highly significant.

4. Results

This study included 32 males (53%) and 28 females (47%) presented with dyspepsia (defined as abdominal discomfort related to meals) with their mean age of 35.63 ± 14.23 years.

Patients were divided into three groups:

Group 1: their mean age was 41.4 ± 15.1 years, (60% males and 40% females).

Group 2: their mean age was 36.8 ± 16.7 years, (50% males and 50% females).

Group 3: their mean age was 28.7 ± 7.34 years, (50% males and 50% females).

- Salivary PCR test was positive in 20/20 patients (100%) of Group 1, 14/20 (70%) of Group 2 and 6/20 (30%) of Group 3.

- On comparing the three groups as regard H. pylori salivary PCR values Table 1, we found significant difference between the three groups ($P = 0.04$) with patients with functional dyspepsia and gastric H. pylori (Group 2) showed the highest values. Post hoc analysis revealed that there was no significant difference between Group 1 and Group 2 ($P = 0.3018$) but there was significant difference between Group 1 and Group 3 ($P = 0.0056$) (Group 1 mean values were higher than Group 3) and highly significant difference between Group 2 and Group 3 ($P < 0.0001$) (Group 2 mean values were higher than Group 3).

- Comparison between gastric H. pylori positive patients ($n = 40$) and gastric H. pylori negative patients ($n = 20$) (regarding salivary PCR test):

  1. There was significant difference between both groups ($P = 0.0017$) with gastric H. pylori positive patients having higher salivary PCR mean value Table 2.

  2. Among the 40 gastric H. pylori positive patients, 34 patients (85%) were positive gastric PCR. While among the 20 gastric H. pylori negative ones, only 6 patients (30%) showed positive salivary PCR. This gives the PCR test sensitivity of 85%, specificity of 70%, positive predictive value of 85% and negative predictive value of 70% in diagnosing H. pylori affection Table 3.

  3. The ROC curve analysis showed that the best cutoff value for diagnosing H. pylori positivity by salivary PCR was 534000 Iu/ml with the best sensitivity (75%) and specificity (100%) and highly significant P-value ($P = 0.0001$) $P = 0.0001$).

  4. Spearman coefficient of rank correlation showed highly significant positive correlation (rho = 0.649) between H. pylori gastric affection and salivary PCR ($P = 0.0001$).

- Comparison between patients with acid ulcer syndrome ($n = 20$) and those with functional dyspepsia ($n = 40$):

  1. There was no significant difference between both groups as regards salivary PCR mean values ($P = 0.598$) (Table 2).

  2. Salivary PCR test was positive in 20/20 patients (100%) with acid ulcer syndrome and in 20/40 patients (50%) with functional dyspepsia. This gives the test a sensitivity of 100%, specificity of 50%, positive predictive value of 50% and negative predictive value of 100% in differentiating between patients with acid ulcer syndrome and those with functional dyspepsia (Table 3).

  3. The ROC curve analysis showed that the best cutoff value for differentiating acid ulcer syndrome from functional dyspepsia by salivary PCR was 440000 Iu/ml with the best sensitivity (100%) and specificity (55%) but with non significant P-value ($P = 0.0508$) (Fig. 1).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison between the three groups as regard salivary PCR values.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salivary PCR</td>
<td>Group 1 ($n = 20$)</td>
</tr>
<tr>
<td>Mean</td>
<td>948300</td>
</tr>
<tr>
<td>SD</td>
<td>± 388252.22</td>
</tr>
<tr>
<td>$F$</td>
<td>6.950</td>
</tr>
<tr>
<td>$P$</td>
<td>0.04 (S)</td>
</tr>
</tbody>
</table>
5. Discussion

Recent studies have demonstrated that *H. pylori* can be found in the human oral cavity as it provides an excellent microaerophilic environment, therefore, being a potential reservoir for *H. pylori*. It is unclear whether the oral cavity is a permanent or transient reservoir [12,17,18]. Souto and Colombo [19] found that 20% and 33% of subjects had positive samples in saliva and dental plaque, respectively.

One of the first investigations of the influence of oral *H. pylori* on stomach infection was carried out by Miyabayashi et al. [20]. Their study revealed that there is relationship between gastritis induced by *H. pylori* infection and oral colonization of the bacterium and that oral *H. pylori* is resistant to typical triple anti-*H. pylori* therapy used to eradicate it from the stomach. So, patients with oral *H. pylori* were at a significantly greater risk of gastric reinfection following successful therapy.

Both cultures and urease tests carried out on the oral cavity samples revealed that the methodology used for the detection of *H. pylori* is not sufficiently sensitive for the detection of the microorganism in the oral cavity [22,23]. Successful amplification and specific detection of *H. pylori* DNA directly from salivary samples in the majority of infected subjects indicates that this approach is feasible and demonstrates that it has true potential in aiding the diagnosis and management of patients with active *H. pylori* infection [21]. But the results of salivary PCR are still conflicting and differ among various studies.

Rasmussen et al. [24] studied 78 adults presenting with recurrent abdominal pain. *H. pylori* infection was confirmed from gastric biopsies using PCR, Southern blotting, histology and urease test and compared the results with salivary PCR technique results. Of the 66 patients who were *H. pylori* positive in their gastric biopsies, salivary PCR was positive in 71.2%. Salivary PCR was positive in 50% of gastric *H. pylori* negative patients. A statistically significant correlation was observed between the presence of *H. pylori* in the gastric biopsies and the oral cavity (\(P < 0.0001\)).

Tiwari et al. [21] studied one hundred patients (80 symptomatic with dyspepsia and 20 asymptomatic) who underwent gastroscopy and were investigated for the presence of *H. pylori* in saliva and stomach. Seventy two of the symptomatic group and ten asymptomatic subjects were infected with *H. pylori* in the stomach as determined by histology and direct PCR amplification of gastric biopsy DNA obtained from each subject. *H. pylori* DNA was identified in the saliva of seventy symptomatic subjects and twelve asymptomatic control subjects.

In the study performed by Silva et al. [25], *H. pylori* was not detected in saliva in any of the control group (individuals with no gastric disease who were *H. pylori* positive). In the case

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Comparison between gastric <em>H. pylori</em> positive and negative patients and comparison between patients with acid ulcer syndrome and those with functional dyspepsia (regarding salivary PCR test).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salivary PCR</td>
<td>Gastric <em>H. pylori</em> positive ( (n = 40) )</td>
</tr>
<tr>
<td>Mean</td>
<td>1163550</td>
</tr>
<tr>
<td>SD</td>
<td>± 908534.9384</td>
</tr>
<tr>
<td>T-test</td>
<td>−3.462</td>
</tr>
<tr>
<td>P</td>
<td>0.0017 (S)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Salivary PCR test in diagnosing <em>H. pylori</em> affection and in differentiating between acid ulcer syndrome and functional dyspepsia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Gastric <em>H. pylori</em> positive ( (n = 40) )</td>
</tr>
<tr>
<td>Salivary PCR positive</td>
<td>34</td>
</tr>
<tr>
<td>Salivary PCR negative</td>
<td>6</td>
</tr>
<tr>
<td>Sensitivity = 85%, specificity = 70%, positive predictive value = 85% negative predictive value = 70%</td>
<td></td>
</tr>
</tbody>
</table>

**Figure 1** Salivary PCR ROC curve for differentiating between acid ulcer syndrome and functional dyspepsia patients.
group, (individuals with gastric disease who were \textit{H. pylori} positive) \textit{H. pylori} DNA was detected in 16/30 (53.3\%) saliva samples.

In the current study, there was significant difference (\(P = 0.0017\)) between group of patients with gastric \textit{H. pylori} infection (\(n = 40\)) and those without (\(n = 20\)) as regard salivary PCR values. Patients having gastric \textit{H. pylori} infection showed higher salivary PCR mean values (1163,550 vs. 144,500, respectively). Thirty four out of the forty gastric \textit{H. pylori} positive patients (85\%) had positive salivary PCR. On the other hand, 6 out of the 20 gastric \textit{H. pylori} negative patients (30\%) were \textit{H. pylori} positive by salivary PCR. Our results showed lower detection rates than the results of Tiwari et al. [21] and Voland P. H pylori and gastric cancer: shifting the global burden. World J Gastroenterol 2005;12:5458–64.

On the contrary, this study results showed higher detection rates than those reported by Silva et al. [25] and Rasmussen et al. [24]. This study is not in agreement with the study of Kignel et al. [26] who found that of the 20 patients with \textit{H. pylori} detected by rapid urease in the stomach, the organism was detected in none of the salivary samples by PCR (0\%). The discrepancies in the detection rates of \textit{H. pylori} by salivary PCR test that were found between the current study and other studies may be attributed to factors affecting PCR accuracy. These factors include the choice of primers and target DNA, specimen preparation, bacterial density, and technical issues regarding the PCR procedure [29]. Previous investigators stated that because \textit{H. pylori} in saliva generally reflects the reflux of organisms from the stomach, their detection rates may vary. There is also the possibility of cross-reactivity with spiral urease-containing organisms normally present in the mouth, especially if primer pairs are not carefully selected [30].

Our results showed highly significant positive correlation between \textit{H. pylori} gastric affection and salivary PCR values (rho = 0.649, \(P = 0.0001\)). This is consistent with the results of Rasmussen et al. [24]. On evaluating the role of salivary PCR in \textit{H. pylori} gastric detection, salivary PCR test had a sensitivity of 85\%, specificity of 70\%, positive predictive value of 85\% and negative predictive value of 70\% making this test valuable in diagnosing \textit{H. pylori} gastric affection. Using ROC curve analysis, salivary PCR test showed best sensitivity (75\%) and specificity (100\%) for diagnosing \textit{H. pylori} gastric positivity at cutoff value of 534,000 IU/ml with highly significant \(P\)-value (\(P = 0.0001\)).

PCR values were higher in patients with functional dyspepsia and gastric \textit{H. pylori} (group2) followed by patients with ulcers or erosions and \textit{H. pylori} (group 1) then patients with functional dyspepsia who are gastric \textit{H. pylori} negative (group 3). There was no significant difference between Group 1 and Group 2, but there was significant difference between each group and group 3.

On evaluating the role of salivary PCR test as a tool in differentiating acid ulcer syndrome patients (\(n = 20\)) from functional dyspepsia patients (\(n = 40\)), we found no significant difference between both groups as regard salivary PCR mean values (\(P = 0.598\)) and salivary PCR test was not of value making differentiation between both groups.

6. Conclusion

\textit{Helicobacter pylori} salivary PCR may be of value in diagnosing \textit{H. pylori} gastric affection and is strongly correlated with it but it is of limited value in differentiating between acid ulcer syndrome and functional dyspepsia.

References


