
Theoretical Computer Science 362 (2006) 273–281
www.elsevier.com/locate/tcs

Multi-agent scheduling on a single machine to minimize total
weighted number of tardy jobs

T.C.E. Chenga,∗, C.T. Nga, J.J. Yuanb

aDepartment of Logistics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People’s Republic of China
bDepartment of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People’s Republic of China

Received 29 December 2005; received in revised form 25 June 2006; accepted 9 July 2006

Communicated by Ding-Zhu Du

Abstract

We consider the feasibility model of multi-agent scheduling on a single machine, where each agent’s objective function is to
minimize the total weighted number of tardy jobs. We show that the problem is strongly NP-complete in general. When the number
of agents is fixed, we first show that the problem can be solved in pseudo-polynomial time for integral weights, and can be solved
in polynomial time for unit weights; then we present a fully polynomial-time approximation scheme for the problem.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Multi-agent deterministic sequencing

1. Introduction and problem formulation

The following single-machine multi-agent scheduling problem was introduced by Agnetis et al. [1] and Baker and
Smith [2]. There are several agents, each with a set of jobs. The agents have to schedule their jobs on a common
processing resource, i.e., a single machine, and each agent wishes to minimize an objective function that depends on
the completion times of his own set of jobs. The problem is either to find a schedule that minimizes a combination
of the agents’ objective functions or to find a schedule that satisfies each agent’s requirements for his own objective
function.

Scheduling is in fact concerned with the allocation of limited resources over time. Scheduling situations involving
multiple customers (agents) competing for a common processing resource arise naturally in many settings. For example,
in industrial management, the multi-agent scheduling problem is formulated as a sequencing game, where the objective
is to devise some mechanisms to encourage the agents to cooperate with a view to minimizing the overall cost (see,
for example, [3,5]). In project scheduling, the problem is concerned with negotiation to resolve conflicts whenever the
agents find their own schedules unacceptable [6]. In telecommunication services, the problem is to do with satisfying
the service requirements of individual agents, who compete for the use of a commercial satellite to transfer voice, image
and data files to their clients [10].

∗ Corresponding author. Tel.: +852 2766 5216; fax: +852 2364 5245.
E-mail address: LGTCheng@polyu.edu.hk (T.C.E. Cheng).

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.07.011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81965488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:LGTCheng@polyu.edu.hk

274 T.C.E. Cheng et al. / Theoretical Computer Science 362 (2006) 273 –281

In the following we define the single-machine multi-agent scheduling problem in terms of common scheduling
terminology. We are given m families of jobs J (1), J (2), . . . ,J (m), where, for each i with 1� i�m,

J (i) =
{
J

(i)
1 , J

(i)
2 , . . . , J (i)

ni

}
.

The jobs in J (i) are called the ith agent’s jobs. Each job J
(i)
j has a positive integral processing time (length) p

(i)
j , a

positive integral due date d
(i)
j , and a positive integral weight w

(i)
j . All the jobs have a zero release time. The jobs will be

processed on a single machine starting at time zero without overlapping and idle time between them. A schedule is a
sequence of the jobs that specifies the processing order of the jobs on the machine. Under a schedule �, the completion
time of job J

(i)
j is denoted by C

(i)
j (�); job J

(i)
j is called tardy if C

(i)
j (�) > d

(i)
j , and early otherwise; U

(i)
j (�) = 1 if

J
(i)
j is tardy, and zero otherwise. For each job J

(i)
j , let f

(i)
j (·) be a non-decreasing function of the completion time of

job J
(i)
j (such an objective function is called regular in the scheduling literature).

In general, the ith agent’s objective function F (i)(�) has either one of the following two forms:

max-form F (i)(�) = max
1� j �ni

f
(i)
j (C

(i)
j (�)),

sum-form F (i)(�) = ∑
1� j �ni

f
(i)
j (C

(i)
j (�)).

Furthermore, the single-machine multi-agent scheduling problem includes the following two models:
• Feasibility model: 1||F (i) �Qi, 1� i�m. In this model, the goal is to find a feasible schedule � that satisfies

F (i)(�)�Qi , 1� i�m.
• Minimality model: 1||∑1� i �mF (i). In this model, the goal is to find a schedule � that minimizes

∑
1� i �m F (i)(�).

In this paper we always assume that f
(i)
j = w

(i)
j U

(i)
j and F (i) = ∑

1� j �ni
w

(i)
j U

(i)
j . Under this assumption, the

above minimality model is equivalent to the classical scheduling problem 1|| ∑ wjUj , which has been well studied.
Especially, when the weights of all the jobs are unit, Moore’s algorithm [8] solves the problem in O(n log n) time.
Hence, we study the feasibility model

1|| ∑
1� j �ni

w
(i)
j U

(i)
j �Qi, 1� i�m

in the following.
When m = 2 and w

(i)
j = 1 for each job J

(i)
j , by [1], the feasibility model 1||∑1� j �ni

U
(i)
j �Qi, 1� i�m, can be

solved in polynomial time.
This paper seeks to extend the above result to a more general context. The idea for the algorithms in this paper partially

comes from [1]. This paper is organized as follows. In Section 2 we present a simple approach that eliminates the agents
i with Qi = 0. In Section 3 we give an exact algorithm to solve the problem 1||∑1� j �ni

w
(i)
j U

(i)
j �Qi, 1� i�m,

in general. It is shown that, when m is fixed, the algorithm runs in pseudo-polynomial time, and when m is fixed
and w

(i)
j = 1 for each job J

(i)
j , the algorithm runs in polynomial time. In Section 4 we present a fully polynomial-

time approximation scheme for the considered problem when m is fixed. In Section 5 we show that the problem
1||∑1� j �ni

w
(i)
j U

(i)
j �Qi, 1� i�m, is strongly NP-complete in general.

2. Eliminating the agents i with Qi = 0

To save the computational effort, we first present an approach to eliminate the agents i with Qi = 0. The following
lemma can be observed.

Lemma 2.1. 1||∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, is equivalent to

1|pmtn| ∑
1� j �ni

w
(i)
j U

(i)
j �Qi, 1� i�m.

T.C.E. Cheng et al. / Theoretical Computer Science 362 (2006) 273 –281 275

Suppose Q1 �Q2 � · · · �Qm �0. Let m′ �m be the maximum such that Qm′ > 0. Without loss of generality, we
suppose m′ < m.

Write

J ∗ = J (m′+1) ∪ J (m′+2) ∪ · · · ∪ J (m),

and suppose |J ∗| = n∗ and J ∗ = {J1, J2, . . . , Jn∗}. The due date of a job Jj ∈ J ∗ is denoted by Dj . Since all the
jobs in J ∗ must be early in a feasible schedule, we call Dj the deadline of Jj .

We re-label the jobs in J ∗ in the earliest due date (EDD) order, i.e., D1 �D2 � · · · �Dn∗ . Then we define a sequence
of numbers (t1, t2, . . . , tn∗) by the following dynamic programming recursion:

tn∗ = Dn∗ ,
tj = min{Dj, tj+1 − pj+1}, j = n∗ − 1, n∗ − 2, . . . , 1.

Clearly, the sequence (t1, t2, . . . , tn∗) can be obtained in O(n∗) time.

Lemma 2.2. If 1|pmtn|∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, is feasible, then there is an optimal schedule � such that

the jobs in J ∗ are processed non-preemptively in non-decreasing order of their deadlines (EDD), and for each job
Jj ∈ J ∗, 1�j �n∗, the time interval occupied by the job Jj under � is exactly [tj − pj , tj).

Proof. By Lemma 2.1, there must be a feasible schedule for 1|pmtn|∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, such that (all

the jobs, and so) the jobs in J ∗ are processed non-preemptively. Let x ∈ {0, 1, . . . , n∗} be the minimum such that there
is a feasible schedule � for the problem, such that the jobs in J ∗ are processed non-preemptively and, for every job Jj

with x + 1�j �n∗, the time interval occupied by job Jj under � is exactly [tj − pj , tj). We only need to show that
x = 0.

Suppose to the contrary that x > 0. If there is some job Jy with 1�y�x such that Cy(�) > tx , then Dx �Dy �Cy(�)

> tx . By the definition of tj , 1�j �n∗, we have tx = tx+1−px+1, where we assume tn∗+1 = ∑
1� i �m,1� j �ni

p
(i)
j and

pn∗+1 = 0. So, at least one job Jj with j > x is processed before Jy . Suppose that the last of such jobs is Jz. Then,
Dz �Dy �Cy(�) and tz+1 − pz+1 �Cy(�). Thus, we must have

tz = min{Dz, tz+1 − pz+1}�Cy(�) > Cz(�) = tz,

a contradiction. Hence, for every job Jy with 1�y�x, we must have Cy(�)� tx . By shifting the processing of job Jx

later to the interval [tx − px, tx), we obtain another feasible schedule, which contradicts the choice of �. The result
follows. �

It should be pointed out that, by the above lemma, if t1 − p1 < 0, then the multi-agent scheduling problem has no
feasible schedules.

By Lemma 2.2, we can assume that each job Jj ∈ J ∗, 1�j �n∗, has been processed in the time interval [tj −pj , tj)

in advance. Follow the terminology in [9], the jobs in J ∗ are called fixed jobs. Then the remaining matter is to schedule
the other jobs (called free jobs in the following) in J (1)∪J (2)∪· · ·∪J (m′) preemptively in the time space not occupied
by the fixed jobs such that

∑
1� j �ni

w
(i)
j U

(i)
j �Qi, 1� i�m′. The corresponding problem is denoted by

1|FB, pmtn| ∑
1� j �ni

w
(i)
j U

(i)
j �Qi, 1� i�m′.

For each due date d
(i)
j of a free job J

(i)
j , let l

(i)
j be the sum of the length of the time slots occupied by the fixed jobs

before the time instant d
(i)
j . Applying the same technique as in [11], we can without loss of generality delete the fixed

jobs from consideration and modify the due dates in the following way:

d
(i)
j := d

(i)
j − l

(i)
j , 1� i�m, 1�j �ni.

After deleting the fixed jobs, preemption need not be considered. Hence, we have:

276 T.C.E. Cheng et al. / Theoretical Computer Science 362 (2006) 273 –281

Lemma 2.3. 1|FB, pmtn|∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m′, is reducible in linear time to the problem 1||∑1� j �ni

w
(i)
j U

(i)
j �Qi, 1� i�m′, with modified due dates.

The above discussion means that we can reduce in O(n1 +n2 +· · ·+nm′ +n∗ log n∗) time the problem 1||∑1� j �ni

w
(i)
j U

(i)
j �Qi, 1� i�m, to the problem 1||∑1� j �ni

w
(i)
j U

(i)
j �Qi, 1� i�m′, in which Qi > 0 for each agent.

3. An exact algorithm

In this section we will give an exact algorithm for the problem 1||∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, when the

weights of all the jobs and the values Qi of all the agents are positive integers. By Lawler and Moore [7], this problem
is binary NP-complete even when m = 1.

The following is an easy observation. The proof is the same as Lemma 7.1 in [1].

Lemma 3.1. If the problem 1||∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, is feasible, then there is a feasible schedule under

which all the early jobs are scheduled consecutively in the EDD order at the beginning of the schedule.

Now, suppose that the jobs are re-labelled in the EDD order, i.e.,
⋃

1� i �m J (i) = {J1, J2, . . . , Jn} such that
d1 �d2 � · · · �dn. This needs O(n log n) time. Write Jk = {J1, J2, . . . , Jk}.

We consider the multi-agent scheduling problem M(k; X1, . . . , Xm):

1|| ∑
j :J (i)

j ∈Jk

w
(i)
j U

(i)
j �Xi, 1� i�m,

subject to the jobs in Jk = {J1, J2, . . . , Jk}. Let C(k; X1, X2, . . . , Xm) be the minimum completion time of the last
early job in a feasible schedule for the problem. If no feasible schedule exists, we set C(k; X1, X2, . . . , Xm) = +∞.

Let � be a feasible schedule for the problem M(k; X1, . . . , Xm) such that the completion time of the last early job is
C(k; X1, X2, . . . , Xm). If Jk is an early job, it must be the last early job, and so we have C(k; X1, X2, . . . , Xm)�dk .
In this case, we have

C(k; X1, X2, . . . , Xm) = C(k − 1; X1, X2, . . . , Xm) + pk.

If Jk is a tardy job and Jk ∈ J (i), then we must have

C(k; X1, X2, . . . , Xm) = C(k − 1; X1, . . . , Xi−1, Xi − wk, Xi+1, . . . , Xm).

The above discussion implies the following dynamic programming recursion.
• Initial condition:

C(0 : X1, . . . , Xm) = 0 if all Xi �0,

C(k; X1, X2, . . . , Xm) = +∞ if k < 0 or some Xi < 0 or some Xi > Qi.

• Recursion function:
If Jk ∈ J (i) for some i with 1� i�m, then

C(k; X1, X2, . . . , Xm) = min

{
C(k − 1; X1, X2, . . . , Xm) + pk + f (k; X1, X2, . . . , Xm),

C(k − 1; X1, . . . , Xi−1, Xi − wk, Xi+1, . . . , Xm),

where f (k; X1, X2, . . . , Xm) = 0 if C(k − 1; X1, X2, . . . , Xm) + pk �dk , and +∞ otherwise.

The above recursion function has O(nQ1Q2, . . . , Qm) states. Each iteration needs constant computational time. The
problem 1||∑1� j �ni

w
(i)
j U

(i)
j �Qi, 1� i�m, is feasible if and only if C(n; Q1, Q2, . . . , Qm) < +∞. We conclude

the following result.

Theorem 3.2. The problem 1||∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, can be solved in O((n1 +n2 +· · ·+nm)Q1Q2, . . . ,

Qm) time. When m is fixed, it is pseudo-polynomial.

T.C.E. Cheng et al. / Theoretical Computer Science 362 (2006) 273 –281 277

When all the weights are unit, it is reasonable to assume Qi �ni . Hence, we further have:

Corollary 3.3. The problem 1||∑1� j �ni
U

(i)
j �Qi, 1� i�m, can be solved in O((n1 +n2 +· · ·+nm)n1n2, . . . , nm)

time. When m is fixed, it is polynomial.

4. A fully polynomial-time approximation scheme

In this section we present an approximation algorithm for the problem

P := 1|| ∑
1� j �ni

w
(i)
j U

(i)
j �Qi, 1� i�m.

Suppose that the weights of all the jobs and the values Qi of all the agents are positive numbers (but not necessarily
integers). For any given constant � > 0, the algorithm either finds a feasible schedule for the problem

P ′ := 1|| ∑
1� j �ni

w
(i)
j U

(i)
j �(1 + �)Qi, 1� i�m,

or determines that problem P has no feasible schedule. Note that problem P ′ is a relaxation of problem P in which
each Qi is enlarged by a factor of (1 + �).

Let � > 0 be a given constant. The weights of all the jobs J
(i)
j , 1�j �ni , 1� i�m, are rounded in the following

way:

v
(i)
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌈
2ni

�

⌉
+ ni + 1 if w

(i)
j > Qi,⌈

2niw
(i)
j

�Qi

⌉
otherwise.

The threshold values Qi , 1� i�m, are rounded in the following way:

Q∗
i =

⌈
2ni

�

⌉
+ ni.

We define problem P∗ as

1|| ∑
1� j �ni

v
(i)
j U

(i)
j �Q∗

i , 1� i�m.

Theorem 4.1. If problem P∗ has a feasible schedule �, then � is a feasible schedule for problem P ′; otherwise, problem
P has no feasible schedule.

Proof. If problem P∗ has a feasible schedule �, then

∑
1� j �ni

v
(i)
j U

(i)
j (�)�Q∗

i , 1� i�m.

By the definition of v
(i)
j and Q∗

i , we see that the following three statements hold:

(1) if w
(i)
j > Qi , then J

(i)
j is an early job in �;

(2) if w
(i)
j �Qi , then

w
(i)
j �v

(i)
j (�Qi/2ni);

(3) Q∗
i (�Qi/2ni)�(1 + �)Qi.

278 T.C.E. Cheng et al. / Theoretical Computer Science 362 (2006) 273 –281

Hence, for each agent i,∑
1� j �ni

w
(i)
j U

(i)
j (�)

�(�Qi/2ni)
∑

1� j �ni

v
(i)
j U

(i)
j (�)

�(�Qi/2ni)Q
∗
i

�(1 + �)Qi.

It follows that � is a feasible solution for problem P ′.
On the other hand, if problem P has a feasible schedule h, then, for each agent i,∑

1� j �ni

w
(i)
j U

(i)
j (h)�Qi,

and so ∑
1� j �ni

(2niw
(i)
j /�Qi)U

(i)
j (h)�2ni/�.

Since v
(i)
j �2niw

(i)
j /�Qi + 1, we deduce that

∑
1� j �ni

v
(i)
j U

(i)
j (h)�2ni/� + ni �Q∗

i

for each agent i. It follows that h is a feasible schedule for problem P∗. The result follows. �

Since Q∗
i = O(2ni/�) for each agent i, by the discussion of the last section, problem P∗ can be solved in O((n1 +

n2 + · · · + nm)n1n2 . . . nm(2/�)m) time. Consequently, we have the following result.

Theorem 4.2. For any given constant � > 0, there is a polynomial-time algorithm running in O((n1 + n2 + · · · +
nm)n1n2 . . . nm(2/�)m) time that either finds a feasible schedule for problem 1||∑1� j �ni

w
(i)
j U

(i)
j �(1 + �)Qi,

1� i�m, or determines that the problem 1||∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, has no feasible schedule.

When m is a fixed constant, Theorem 4.2 implies that, for the problem 1||∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, there

is a fully polynomial-time approximation scheme running in O((n1 + n2 + · · · + nm)n1n2 . . . nm(1/�)m) time for
any � > 0.

5. Strong NP-completeness

We show in this section that the problem 1||∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, is strongly NP-complete when m is

arbitrary.

Theorem 5.1. 1||∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, is strongly NP-complete.

Proof. By Garey and Johnson [4], the 3-partition problem is strongly NP-complete. In an instance I of the 3-partition
problem, we are given a set of 3t positive integers a1, a2, . . . , a3t , each of size between B/4 and B/2, such that∑3t

i=1ai = tB. The decision asks whether there is a partition of the ai’s into t groups of 3, each summing exactly to B?
Given an instance I of the 3-partition problem, we first re-label the 3t numbers in I such that a1 �a2 � · · · �a3t .

We construct an instance I ∗ of the scheduling problem 1||∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, as follows:

• t agents and 3t2 jobs with each agent having exactly 3t jobs, i.e.,

J (i) =
{
J

(i)
1 , J

(i)
2 , . . . , J

(i)
3t

}
, 1� i� t.

T.C.E. Cheng et al. / Theoretical Computer Science 362 (2006) 273 –281 279

• Processing times of the jobs are defined by

p
(i)
j = X + aj , 1� i� t, 1�j �3t,

where X = 3t2B.
• Due dates of the jobs are defined by

d
(i)
j = (t − 1)Xj + (t − 1)Aj , 1� i� t, 1�j �3t,

where Aj = a1 + a2 + · · · + aj .
• The weights of jobs are defined by

w
(i)
j = X + aj , 1� i� t, 1�j �3t.

• Threshold values are defined by Qi = 3X + B, 1� i� t .
• The decision asks whether there is a schedule � such that

∑
1� j �3tw

(i)
j U

(i)
j (�)�3X + B for each i with 1� i� t .

If I has a solution, then there is a t-partition I1, I2, . . . , It of {1, 2, . . . , 3t} (i.e., I1 ∪ I2 ∪ · · · ∪ It = {1, 2, . . . , 3t}
and Ii ∩ Ij = ∅ for i �= j) such that |Ii | = 3 and

∑
j∈Ii

aj = B for each i with 1� i� t . Define

U = {J (i)
j : j ∈ Ii, 1� i� t}.

Let J be the set of all the jobs. The job subset J \ U has the property that, for each j with 1�j �3t , the total length
of the jobs with a due date at most (t − 1)Xj + (t − 1)Aj is exactly (t − 1)Xj + (t − 1)Aj . Hence, under the EDD
sequence, every job in J \ U is early. The total weight of the ith agent’s jobs in U is

s
∑
j∈Ii

w
(i)
j = ∑

j∈Ii

(X + aj) = 3X + B = Qi.

Hence, an EDD sequence of the jobs in J \U , followed by an arbitrary sequence of the jobs in U , is a feasible schedule
for I ∗.

Conversely, suppose that there is a feasible schedule � for I ∗. We can assume without loss of generality that the early
jobs are scheduled in the EDD sequence before the processing of any tardy job. The set of all the tardy jobs under � is
denoted by U . For each job J , p(J) is used to denote the processing time of J and w(J) the weight of J .

Claim 1. |U | = 3t .

Note that, for each job J , we have X < p(J) = w(J) < X + B. If |U |�3t + 1, then∑
j∈U

w(J) > (3t + 1)X > Q1 + Q2 + · · · + Qt,

exceeding the threshold values, which is a contradiction. If |U |�3t − 1, then, by noting that the total processing time
of the jobs is 3t2X + t2B, we have∑

j∈U
p(J) < (3t − 1)X + (3t − 1)B < 3tX + tB = 3tX + A3t ,

and so the maximum completion time of the early job is greater than 3t (t − 1)X + (t − 1)A3t , the last due date of the
jobs. This contradicts the definition of U . We conclude that |U | = 3t . The proof of Claim 1 is completed.

Suppose that (v0, v1, . . . , vk) is the unique index sequence such that 0 = v0 < v1 < v2 < · · · < vk = 3t ,

avi+1 = avi+2 = · · · = avi+1 , i = 0, 1, . . . , k − 1

and

a1 = av1 < av2 < · · · < avk
= a3t .

For each u with 1�u�3t , set Ju = {J (i)
j : 1� i� t, 1�j �u}, Nu = U ∩ Ju and Nu = |Nu|.

280 T.C.E. Cheng et al. / Theoretical Computer Science 362 (2006) 273 –281

Claim 2. Nvs = vs for s = 1, 2, . . . , k.

If Nvs < vs for some s with 1�s�k−1, then the total length of the jobs in Nvs is less than (vs −1)X+ (vs −1)B <

vsX + Avs . Hence, the maximum completion time of the early jobs in Jvs is greater than (t − 1)vsX + (t − 1)Avs , the
maximum due date of the jobs in Jvs , contradicting the definition of Nvs . Consequently, Nvs �vs for s = 1, 2, . . . , k.
We notice that Nvk

= |U | = 3t = vk always holds.
If Nvs > vs for some s with 1�s�k − 1, then the total length of all the tardy jobs minus 3tX can be calculated by∑

J∈Up(J) − 3tX

= ∑
1� s �k

(Nvs − Nvs−1)avs (here, Nv0 = 0)

= ∑
1� s �k

(vs − vs−1)avs + ∑
1� s �k

((Nvs − vs) − (Nvs−1 − vs−1))avs

= ∑
1� j �3t

ai + ∑
1� s �k−1(Nvs − vs)(avs − avs+1)

<
∑

1� j �3t

ai = A3t .

That is,
∑

J∈Up(J) < 3tX + A3t . Consequently, the maximum completion time of the early jobs is greater than
3t (t − 1)X + (t − 1)A3t , the last due date of jobs. This contradicts the definition of U .

We conclude that Nvs = vs for s = 1, 2, . . . , k. The proof of Claim 2 is completed.
By Claim 2, for each s with 1�s�k, there are exactly ts = Nvs − Nvs−1 = vs − vs−1 tardy jobs in Jvs \ Jvs−1 with

a common processing time X + as . We construct a new set U∗ in the following way:
(1) For s from 1 to k we do the following: Sequencing the ts tardy jobs in Jvs \ Jvs−1 in an arbitrary order, say,

Js,1, Js,2, . . . , Js,ts . For each j with 1�j � ts , let x(s, j) be the agent index such that Js,j ∈ J (x(s,j)). We notice

that Js,j and J
(x(s,j))
vs−1+j belong to the same agent and have the same processing time and the same weight. Define

U∗
s = {J (x(s,j))

vs−1+j : 1�j � ts}.
(2) Set U∗ = ⋃

1� s �k U∗
s .

By the construction of U∗, we have

Yi := ∑
J∈U∩J (i)

w(J) =
∗∑

J∈U∩J (i)

w(J)�Qi = 3X + B

for each i with 1� i� t . For each u with 1�u�3t , the job set Ju \Ju−1 contains exactly one job in U∗, where J0 = ∅.
It follows that∑

1� i � t

Yi = 3tX + A3t = 3tX + tB.

Together with the fact that Yi �3X + B for 1� i� t , we deduce that Y1 = Y2 = · · · = Yt = 3x + B. By setting

Ii = {j : J
(i)
j ∈ U∗, 1� i� t},

we have

|Ii | = 3 and
∑
j∈Ii

aj = B for each i with 1� i� t.

We conclude that the instance I of 3-partition has a solution, too. The result follows. �

When m is arbitrary, it is still open whether the problem 1||∑1� j �ni
U

(i)
j �Qi, 1� i�m, is polynomially solvable.

6. Conclusions

In this paper we studied the feasibility model of multi-agent scheduling on a single machine, where each agent’s
objective function is to minimize the total weighted number of tardy jobs. We showed that the problem is strongly

T.C.E. Cheng et al. / Theoretical Computer Science 362 (2006) 273 –281 281

NP-complete in general. When the number of agents is fixed, we first showed that the problem can be solved in
pseudo-polynomial time for integral weights, and can be solved in polynomial time in unit weights; then we presented
a fully polynomial-time approximation scheme for the problem. For the future research, the complexity of the problem
1||∑1� j �ni

U
(i)
j �Qi, 1� i�m, is still open when m is arbitrary. The approximation algorithm for the problem

1||∑1� j �ni
w

(i)
j U

(i)
j �Qi, 1� i�m, also needs to be resolved when m is arbitrary.

Acknowledgements

This research was supported in part by The Hong Kong Polytechnic University under grant number S818. The third
author was also supported in part by NSFC(10371112), NSFHN (0411011200) and SRF for ROCS, SEM.

References

[1] A. Agnetis, P.B. Mirchandani, D. Pacciarelli, A. Pacifici, Scheduling problems with two competing agents, Oper. Res. 52 (2004) 229–242.
[2] K.R. Baker, J.C. Smith, A multiple-criterion model for machine scheduling, J. Scheduling 6 (2003) 7–16.
[3] I. Curiel, G. Pederzoli, S. Tijs, Sequencing games, European J. Oper. Res. 40 (1989) 344–351.
[4] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.
[5] H. Hamers, P. Borm, S. Tijs, On games corresponding to sequencing situations with ready times, Math. Programming 70 (1995) 1–13.
[6] K. Kim, B.C. Paulson, C.J. Petrie, V.R. Lesser, Compensatory negotiation for agent-based project schedule coordination, CIFE Working Paper

No. 55, Stanford University, Stanford, CA, 1999.
[7] E.L. Lawler, J.M. Moore, A functional equation and its application to resource allocation and sequencing problems, Management Sci. 16 (1969)

77–84.
[8] J.M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late jobs, Management Sci. 15 (1968) 102–109.
[9] M. Scharbrodt, A. Steger, H. Weisser, Approximability of scheduling with fixed jobs, J. Scheduling 2 (1999) 267–284.

[10] D. Schultz, S.-H. Oh, C.F. Grecas, M. Albani, J. Sanchez, C. Arbib, V. Arvia, M. Servilio, F. Del Sorbo, A. Giralda, G. Lombardi, A QoS concept
for packet oriented S-UMTS services, In: Proc. of the 1st Mobile Summit 2002, Thessaloniki, Greece.

[11] J.J. Yuan, Y.X. Lin, Single machine preemptive scheduling with fixed jobs to minimize tardiness related criteria, European J. Oper. Res. 164
(2005) 851–858.

