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SUMMARY

Transcription factor (TF) DNA sequence preferences
direct their regulatory activity, but are currently
known for only�1% of eukaryotic TFs. Broadly sam-
pling DNA-binding domain (DBD) types frommultiple
eukaryotic clades, we determined DNA sequence
preferences for >1,000 TFs encompassing 54
different DBD classes from 131 diverse eukaryotes.
We find that closely related DBDs almost always
have very similar DNA sequence preferences,
enabling inference of motifs for �34% of the
�170,000 known or predicted eukaryotic TFs. Se-
quences matching both measured and inferred
motifs are enriched in chromatin immunoprecipita-
tion sequencing (ChIP-seq) peaks and upstream of
transcription start sites in diverse eukaryotic line-
ages. SNPs defining expression quantitative trait
loci in Arabidopsis promoters are also enriched for
predicted TF binding sites. Importantly, our motif
‘‘library’’ can be used to identify specific TFs whose
bindingmay be altered by human disease risk alleles.
C

These data present a powerful resource for mapping
transcriptional networks across eukaryotes.
INTRODUCTION

Transcription factor (TF) sequence specificities, typically repre-

sented as ‘‘motifs,’’ are the primary mechanism by which cells

recognize genomic features and regulate genes. Eukaryotic

genomes contain dozens to thousands of TFs encoding at

least one of the >80 known types of sequence-specific DNA-

binding domains (DBDs) (Weirauch and Hughes, 2011). Yet,

even in well-studied organisms, many TFs have unknown

DNA sequence preference (de Boer and Hughes, 2012; Zhu

et al., 2011), and there are virtually no experimental DNA

binding data for TFs in the vast majority of eukaryotes. More-

over, even for the best-studied classes of DBDs, accurate pre-

diction of DNA sequence preferences remains very difficult

(Christensen et al., 2012; Persikov and Singh, 2014), despite

the fact that identification of ‘‘recognition codes’’ that relate

amino acid (AA) sequences to preferred DNA sequences has

been a long-standing goal in the study of TFs (De Masi et al.,

2011; Desjarlais and Berg, 1992; Seeman et al., 1976). These

deficits represent a fundamental limitation in our ability to
ell 158, 1431–1443, September 11, 2014 ª2014 Elsevier Inc. 1431
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analyze and interpret the function and evolution of DNA

sequences.

The sequence preferences of TFs can be characterized sys-

tematically both in vivo (Odom, 2011) and in vitro (Jolma and Tai-

pale, 2011; Stormo and Zhao, 2010). The most prevalent method

for in vivo analysis is currently chromatin immunoprecipitation

sequencing (ChIP-seq) (Barski and Zhao, 2009; Park, 2009), but

ChIP does not inherently measure relative preference of a TF to

individual sequences and may not identify correct TF motifs

due tocomplicating factors suchaschromatin structureandpart-

ner proteins (Gordân et al., 2009; Li et al., 2011; Liu et al., 2006;

Yan et al., 2013). In contrast, it is relatively straightforward to

derivemotifs from all of the commonmethods for in vitro analysis

of TF sequence specificity, including protein bindingmicroarrays

(PBMs), bacterial 1-hybrid (B1H), and high-throughput in vitro

selection (HT-SELEX) (Stormo and Zhao, 2010), all of which

have been applied to hundreds of proteins (Berger et al., 2008;

Enuameh et al., 2013; Jolma et al., 2013; Noyes et al., 2008).

Previous large-scale studies have reported that proteins with

similar DBDsequences tend to bind very similar DNA sequences,

even when they are from distantly related species (e.g., fly and

human). This observation is important because it suggests that

the sequence preferences of TFs may be broadly inferred from

data for only a small subset of TFs (Alleyne et al., 2009; Berger

et al., 2008; Bernard et al., 2012; Noyes et al., 2008). However,

these analyses have utilized data for only a handful of DBD clas-

ses and species and they contrast with numerous demonstra-

tions that mutation of one or a few critical DBD AAs can alter

the sequence preferences of a TF (Aggarwal et al., 2010; Cook

et al., 1994; De Masi et al., 2011; Mathias et al., 2001; Noyes

et al., 2008), which suggest that prediction of DNA binding pref-

erences by homology should be highly error-prone. To our

knowledge, rigorous and exhaustive analyses of the accuracy

and limitations of inference approaches to predicting TF DNA-

binding motifs using DBD sequences has not been done.

Here, we determined the DNA sequence preferences for

>1,000 carefully-selected TFs from 131 species, representing

all major eukaryotic clades and encompassing 54 DBD classes.

We show that, in general, sequence preferences can be accu-

rately inferred by overall DBD AA identity, suggesting that muta-

tions that dramatically impact sequence specificity are relatively

rare. By identifying distinct confidence thresholds for each indi-

vidual DBD class (i.e., levels of protein sequence identity above

which motifs can be assumed to be identical between two pro-

teins), we infer sequence preferences for roughly one-third of

all known eukaryotic TFs, based on experimental data for fewer

than 2% of them. Cross-validation indicates that �89% of pre-

dicted sequence preferences are as accurate as experimental

replicates of the same TF. We demonstrate the functional rele-

vance and utility of both known and inferred motifs by showing

that they coincide with ChIP-seq binding peak sequences, are

enriched in the promoter regions of diverse eukaryotes, and

significantly overlap eQTLs in Arabidopsis. We also demonstrate

how our data can be used to predict the specific TFs whose

binding would be altered by a human disease risk allele. To

house the data and the resulting inferences, we have created

the Cis-BP database (catalog of inferred sequence binding pref-

erences), freely available at http://cisbp.ccbr.utoronto.ca.
1432 Cell 158, 1431–1443, September 11, 2014 ª2014 Elsevier Inc.
RESULTS

PBM Data for >1,000 Diverse Eukaryotic TFs
We sought to examine the relationship between the DBD AA

sequence identity and the DNA sequence specificity of any

two proteins and to simultaneously broadly survey the sequence

specificity of eukaryotic TFs. To identify TFs, we first scanned the

AA sequences for each of 81 different types of DBDs for which

there is an available Pfam model (Weirauch and Hughes,

2011), using known or predicted proteins in 290 sequenced

eukaryote genomes. We identified a total of 166,851 putative

TFs that fit these criteria. From these, we selected 2,913 individ-

ual TFs to analyze, using several different criteria aimed at

achieving the goals of our study, including a relatively even bal-

ance among DBD classes and species, a survey of different

levels of sequence identity among proteins, and a deeper focus

on several model organisms and abundant DBD classes (see

Experimental Procedures). Figure S1, available online, depicts

the overall scheme.

We analyzed each TF using PBM assays, following proce-

dures previously described (Berger et al., 2006; Weirauch

et al., 2013). The PBM technique can be summarized as follows:

a GST-tagged DNA-binding protein is ‘‘hybridized’’ to a double-

stranded DNA microarray, and subsequent addition of a

fluorescently tagged antibody reveals the DNA sequences that

the protein has bound and to what degree. Each PBM contains

a diverse set of �41,000 35-mer probes, designed such that all

possible 10-mers are present once and only once; thus, all

nonpalindromic 8-mers are present 32 times, allowing for a

robust and unbiased assessment of sequence preference to all

possible 8-mers. Values for individual 8-mers are typically given

as both E scores (that represent relative rank of intensities and

range from �0.5 to + 0.5) (Berger et al., 2006) and Z scores

(that scale approximately with binding affinity) (Badis et al.,

2009). PBMs also allow derivation of position weight matrices

(PWMs) up to 14 bases wide (Badis et al., 2009; Berger et al.,

2006; Mintseris and Eisen, 2006; Weirauch et al., 2013), as well

as International Union of Pure and Applied Chemistry (IUPAC)

consensus sequences (Ray et al., 2013). PWMs can be repre-

sented as sequence logos (Schneider and Stephens, 1990)

that are typically taken as synonymous with ‘‘motifs.’’ Here, we

report 8-mer scores, PWMs, and consensus sequences, and

use whichever is best suited to individual analyses. For example,

while motifs are well suited for visualization of sequence prefer-

ences, and convenient for scanning longer sequences, they can

underestimate reproducibility of experiments due to the intro-

duction of uncertainties in the process of PWM derivation (Weir-

auch et al., 2013; Zhao and Stormo, 2011).

We analyzed each of the 2,913 proteins using two different

PBM arrays, designated ‘‘ME’’ and ‘‘HK’’ after their designers

(Lam et al., 2011). Of these, 1,032 (encompassing 1,017 different

TFs) yielded data that satisfy our stringent success criteria,

including E scores >0.45 on both arrays, and agreement in

both 8-mer data and motifs between the two arrays (Berger

et al., 2008; Weirauch et al., 2013) (see Experimental Proce-

dures). The distribution of the 1,032 proteins over 131 species

and 54 DBD classes is summarized in Figure 1A. Many values

in this matrix are zero because the majority of DBD classes are

http://cisbp.ccbr.utoronto.ca
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Figure 1. Overview of the Motif Data Set

(A) TFs characterized in this study by species and

DBD class. TFs with multiple DBD classes are

indicated with a ‘‘+’’ (e.g., AP2+B3). DBD classes

and species containing fewer than five members

are grouped into ‘‘Other.’’ Species are ordered by

the total number of TFs with characterized motifs.

(B) PBM-derived motifs are similar to previously

characterized motifs. We compared new PBM-

derived motifs to previously determined motifs for

the same TF. p values were calculated using the

TomTom PWM similarity tool (Tanaka et al., 2011),

with Euclidean distance and default parameter

settings. Dashed lines indicate mean (bottom) and

mean + 1 SD (top) of p values obtained from

10,000 randomly selected PWM pairs. ‘‘PBM

(same)’’ and ‘‘PBM (dif)’’ indicate PBMs from other

studies performed using the same, or different

array designs as this study, respectively.

See also Figure S1 and Tables S1, S2, and S6.
only present in certain subsets of species (e.g., plant-specific

TFs) (Weirauch and Hughes, 2011). PBM failures may be due

to any of several causes, including protein misfolding, require-

ment for cofactors, or bona fide lack of sequence-specific

DNA binding activity.

For 123 of the 1,017 examined TFs, there are previously

described motifs. In most cases, the new motifs we obtained

are highly similar to motifs compiled from the literature (JASPAR

and Transfac), derived from PBMs in other studies, derived from
Cell 158, 1431–1443, Sep
other technologies (B1H and HT-SELEX),

or derived from ChIP-seq experiments

(Figure 1B; sources provided as Table

S1; full motif comparisons provided as

Table S2). Importantly, a large majority

of the proteins we analyzed (894/1,017)

had no previous binding data, and among

these, roughly half yielded a motif that

is highly different from any previously

known motif (see Experimental Proce-

dures). For several DBD classes (CG-1,

CxC, GRAS, LOB, and Storekeeper) we

characterized sequence specificity for

the first time. CxC domains, for example,

span a wide range of organisms encom-

passing plants, animals, and protists

and recognize variations of a unique,

largely conserved TTTCGAAA motif.

Inference of TF Sequence
Specificity Using Degree of Identity
in the DNA-Binding Domain
We next used the PBM data to ask how

well the percent protein sequence identity

in the DBD between two proteins corre-

lates with similarity in their DNA sequence

preferences. As a measure of DNA

sequence preference similarity, we calcu-
lated the overlap in high-scoring 8-mers (e.g., E score >0.45) (see

Experimental Procedures), as the E scores are on a uniform scale

that facilitates direct comparison. The boxplots shown in Figure 2

and Data S1 illustrate that there are different characteristic rela-

tionships between DBD identity and 8-mer overlap for different

DBD classes. However, virtually all of the plots display a

sigmoidal appearance, such that a particular threshold defines

the %AA identity over which the majority (75% or more) of pro-

tein pairs have very similar DNA binding preferences (i.e., are
tember 11, 2014 ª2014 Elsevier Inc. 1433



A

B

Figure 2. Motif Inference Thresholds by DBD Class

(A) Relationship between similarity in DBD AA sequence and DNA sequence preferences. Boxplots depict the relationship between the %ID of aligned AAs

and% of shared 8-mer DNA sequences with E scores exceeding 0.45, for the three DBD classes with the most PBMs in this study. Red lines indicate the median

value of each bin. Edges of the blue boxes indicate the 25th and 75th percentiles. Whiskers extend to the most extreme data points not considered outliers. Red

crosses indicate outliers. %ID bins range from 0 to 100, of size 10, in increments of five. Bottom: number of DBD pairs in each bin. Pink asterisks indicate the

precision of the corresponding bin (i.e., the fraction of protein pairs with 8-mer similarity at least as high as the 25th percentile of replicates). Horizontal line

indicates the 75% precision line used to choose the inference threshold. Vertical lines indicate AA %ID threshold (i.e., the point before the pink asterisks drop

below the horizontal line). Percentage in lower left corner indicates cross validation success rate.

(B) Relationship for all DBD classes. Boxplots for all DBD classes for which we could establish an inference threshold, depicted as in (A). DBD classes are ordered

by the number of TFs characterized in this study.

NR, nuclear receptor. See also Figures S2 and S6.

1434 Cell 158, 1431–1443, September 11, 2014 ª2014 Elsevier Inc.



at least as similar as the 25th percentile of replicates of the

same protein—see Experimental Procedures) (Figure 2). For ho-

meodomains, this threshold is 70% AA identity (Figure 2A),

almost exactly what we previously reported (65%) (Berger

et al., 2008).

Strikingly, such a threshold can be drawn for virtually every

DBD class (Figure 2 and Data S1). Moreover, exactly the same

trends and thresholds are observed in a leave-one-out cross

validation prediction framework, in which the high-scoring

8-mers are predicted to be identical to those of the protein

with the closest %AA identity (see Experimental Procedures).

Using this framework, we estimate that �89% of predicted

sequence preferences (hereafter, ‘‘inferences’’) above the

thresholds shown in Figure 2 are as accurate as experimental

replicates (Data S1), with similar precision obtained whether in-

ferences are derived from only orthologs (88%) or only paralogs

(90%). The distribution of DBD AA similarities among the 1,017

proteins we analyzed is nearly identical to the distribution among

all sequenced eukaryotes (data not shown), so the same

numbers can be expected for de novo predictions. Furthermore,

comparisons among PWMs (i.e., motifs) confirm these thresh-

olds, despite the potential variation contributed by motif deriva-

tion (Weirauch et al., 2013; Zhao and Stormo, 2011). To illustrate

this concept, Figure 3 depicts PBM-derived motifs obtained for

the Myb/SANT family, grouped according to the relationship of

their DBD AA sequences. Darkly shaded regions, which invari-

ably contain nearly indistinguishable motifs, indicate groups of

TFs with DBD similarity exceeding the 87.5% threshold for this

family.

We conclude that TFs with DBD AA sequence identity above

these thresholds will typically have very similar sequence spec-

ificity. As previously proposed, this presents a simple approach

for broadly predicting the sequence preferences of TFs (Alleyne

et al., 2009; Berger et al., 2008; Bernard et al., 2012; Noyes et al.,

2008): the 8-mer data, motifs, and consensus sequences can be

directly transferred from the nearest protein above the threshold

for which data are available. The data presented here encom-

pass 37 DBD classes with sufficient data (i.e., comparisons in

each of the bins in the box plots) to produce thresholds, together

representing �85% of all known eukaryotic TFs. Until more

data are available, we propose that a threshold of 70% AA

identity (the mean, median, and mode across all DBD classes)

can be applied to the remaining DBD classes (boxplots in

Figure S2 show the aggregate of all of the classes with no

threshold).

Cis-BP: A Catalog of Direct and Inferred Sequence
Binding Preferences
Using the DBD identity thresholds generated above, we globally

assigned probable motifs (and other sequence preference data,

if available) to TFs from 290 eukaryotic genomes. To do this, we

supplemented the PBM data collected in this study with 4,234

additional published motifs (674 from PBMs and 3,560 from

other sources—see Table S1) derived from 1,850 different pro-

teins, mainly in human (623 proteins), mouse (409), fly (316), or

yeast (216). Altogether, there are experimentally determined

motifs for only 1.7% (2,750) of the 166,851 unique TFs within

these genomes. Using the thresholds determined here, it is
C

possible to infer a motif for roughly one-third of all TFs encoded

by sequenced eukaryotes, bringing the total (known + inferred) to

57,165. Figures 4A and 4B summarize the coverage by DBD

class and by species (see Table S3 for all DBD classes and spe-

cies). Lineages that benefit most from the inference scheme

include vertebrates, plants, fungi, and insects, which contain

many orthologs conserved in the model species analyzed most

heavily. For example, the motif collection for zebrafish (Danio

rerio), which largely consists of inferred motifs, is as complete

as that of mouse and human (Figure 4B).

To facilitate use of the known and inferred motifs by the scien-

tific community, we created a database called catalogue of in-

ferred sequence preferences of DNA-binding proteins (Cis-BP)

(http://cisbp.ccbr.utoronto.ca). In addition to the new experi-

mental data reported here, Cis-BP contains comprehensive

8-mer binding scores, position weight matrices, and IUPAC

consensus motifs from publicly available sources (JASPAR (Por-

tales-Casamar et al., 2010), Transfac (public data only) (Matys

et al., 2006), FlyFactorSurvey (Zhu et al., 2011), FactorBook

(Wang et al., 2013), and data from 674 PBM experiments taken

from other studies (compiled in UniPROBE) (Newburger and

Bulyk, 2009).

In-Vitro-Derived Motifs Predict ChIP-Seq Peaks
To examine the relationship between in-vitro-defined motifs

(both measured and inferred) and in vivo binding sites, we

asked how well the motifs in Cis-BP predict in vivo binding,

based on ENCODE human ChIP-seq data (see Experimental

Procedures). To gauge the ability of a motif to discriminate

between real ChIP peaks (positives) and peak sequences

permuted using an algorithm that maintains all dinucleotide

frequencies (negatives), we used the area under the receiver

operating characteristic (AUROC) summary statistic, in which

perfect discrimination between positives and negatives scores

1.00 and random guessing scores 0.50. Nearly all (111) of the

114 PBM-derived motifs achieved AUROC scores exceeding

the 0.50 random expectation level in at least one ChIP data

set (Figure 5A and Table S4). Strikingly, over one-third of the

motifs (43 of 114), in a variety of DBD classes and cell types,

achieve AUROCs exceeding 0.90 in at least one ChIP data

set, including GABPA in H1-hESC cells (Ets family, AUROC =

0.99), USF2 in GM12878 cells (bHLH, 0.97), and FOS in K562

cells (bZIP, 0.97). Motifs inferred from in vitro data from related

proteins achieve AUROC values similar to those obtained using

in vitro motifs from exactly the same protein that was ChIPped

(Figure 5A). Overall, PBM-derived motifs are equally accurate as

those derived from other sources; the mean AUROCs across

the 19 TFs with at least one PBM-derived motif and one

Transfac motif are 0.834 and 0.827, respectively (Figure 5B

and Table S4), and 0.826 versus 0.831 for the 14 TFs with

both PBM and HT-SELEX-derived motifs (Figure 5C and Table

S4). The small number of cases in which motifs derived from

these other sources performed better than PBM motifs appear

to correspond to multimeric binding that was not detected in

the PBM assays. From this analysis, we conclude that there is

generally no fundamental discrepancy between motifs obtained

from different assays and between the in vivo and in vitro

sequence preferences of TFs.
ell 158, 1431–1443, September 11, 2014 ª2014 Elsevier Inc. 1435
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Figure 3. Overview of Myb/SANT Family Motifs

PBM-derived motifs from the Myb/SANT family (84 from this study, 13 from other studies) are shown. Tree reflects the percent of identical AAs after alignment.

Dark shading, 87.5% AA identity (standard inference threshold); light shading, >70% AA identity (relaxed inference threshold). TBF1 and DOT6 each have two

motifs because they were examined in two different studies.
Motifs Display Positional Bias in Promoters across
Eukaryotes
Enrichment and positional bias of TF motifs in promoters has

been reported in several model species and human (FitzGerald

et al., 2004; Lee et al., 2007; Mariño-Ramı́rez et al., 2004; Ohler

et al., 2002), and in some cases TFs appear to be involved in

determining promoter identity (de Boer et al., 2014; Megraw
1436 Cell 158, 1431–1443, September 11, 2014 ª2014 Elsevier Inc.
et al., 2009). However, it is unknown whether this is a general

property of eukaryotic promoters. We found that genomes

from vertebrates, plants, fungi, and protists all displayed enrich-

ment of binding sites for their TFs just upstream of the TSS,

relative to permuted sequences and also relative to unrelated

(control) motifs taken from other lineages (Figure 6). The enrich-

ment involved both directly determined and inferred motifs
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Schistosoma mansoni (120)
Homo sapiens (856)

Danio rerio (883)
Dictyostelium discoideum (48)

Arabidopsis thaliana (662)
Oryza sativa (635)

Zea mays (773)
Chlamydomonas reinhardtii (6)

Volvox carteri (7)
Cyanidioschyzon merolae (0)

Phytophthora ramorum (12)
Paramecium tetraurelia (26)

Toxoplasma gondii (3)
Plasmodium falciparum (22)
Cryptosporidium parvum (1)

Trypanosoma cruzi (0)
Leishmania major (0)
Naegleria gruberi (9)

Giardia lamblia (0)
Trichomonas vaginalis (19)

Homeodomain (11124)
Myb/SANT (1699)

bZIP (3794)
bHLH (6729)

Zinc cluster (1488)
C2H2 ZF (6879)

AP2 (2837)
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AT hook (363)
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Forkhead (2587)
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Dof (35)
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ARID/BRIGHT (289)
CxxC (131)
CxC (115)
DM (256)
SBP (376)
E2F (348)

SAND (135)
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Homeobox+Pou (605)
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IRF (94)
GCM (133)

Other (selected) (7882)
Other (not selected) (1852)
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Figure 4. TF Motif Coverage

TFswithmultiple protein isoforms are counted as a

single gene.

(A) Motif coverage by DBD class. DBD classes

sorted top to bottom by number of TFs character-

ized in this study. Those with fewer than eight pro-

teins characterized in this study are grouped into

‘‘Other.’’ ‘‘Other (selected)’’ indicates DBD classes

selected for characterization in this study. ‘‘Other

(not selected)’’ indicates DBD classes not charac-

terized here. ‘‘Direct’’ includes those experimen-

tally characterized in this study, but not previously

known. ‘‘Total inferred’’ excludes those experi-

mentally characterized in this or previous studies.

(B) Motif coverage by species. Tree at left,

phylogenetic relationships between organisms

(Baldauf et al., 2000).

See also Table S3.
(Figure 6). Strikingly, the TF classes with motifs enriched in pro-

moters differed between lineages of organisms (Figure S3), indi-

cating that these trends either arose independently in different

lineages, or have evolved considerably in most of them. Further-

more, we found little to no correspondence between overall

motif enrichment and motif sequence composition (i.e., overall

GC-content) (Table S5), and the enrichment was observed

whether the promoters were characteristically GC-rich or AT-

rich (i.e., predicted to be nucleosome favoring or disfavoring,

respectively). We observed similar trends using a reduced set

of nonredundant motifs for each organism (Figure S4), showing

that the phenomenon is not due to expansion of a small number

of TFs families that bind promoters. These observations indicate

that, across eukaryotes, the region just upstream of the TSS typi-

cally is enriched for binding sites that may function in either pro-

moter definition or gene regulation.

ArabidopsisExpressionQuantitative Trait Loci SNPsAre
Enriched for TF Binding Sites
Identifying causal genetic variants and their mechanisms of

action is a fundamental challenge in association studies. As

our data greatly expand the motif collection in the model plant

Arabidopsis, we examined a data set of expression quantitative

trait loci (eQTLs) defined from Arabidopsis genomic sequences

and matched seedling RNA sequencing (RNA-seq) taken from

19 strains (Gan et al., 2011). Among highly significant eQTLs

found within 1 kb upstream of a TSS, there was a striking enrich-

ment (>3-fold for the SNPs with strongest association) for over-

lap with TF motif matches (Figure 7A), strongly suggesting that

these SNPs impact transcription factor binding. As an example,

Figures 7B and 7C show a SNP in the promoter of the

AT5G47250 gene, in which loss of a potential binding site for

the VNI2 TF in the ‘‘A’’ allele correlates almost perfectly with a

dramatic increase in AT5G47250’s expression level, consistent

with the well-characterized role of VNI2 as a transcriptional

repressor (Yamaguchi et al., 2010; Yang et al., 2011). Both
Cell 158, 1431–1443, Sep
VNI2 and AT5G47250 were associated

with the plant defense response to the

pathogenic oomycete H. arabidopsidis
in a recent genome-wide association study examining 107

different phenotypes (Atwell et al., 2010). Taken together,

these results suggest that VNI2 represses the expression of

AT5G47250 in a pathogen response context, a mechanism

dependent on the specific SNP present in the AT5G47250 pro-

moter region. We expect that the Cis-BP motif collection will

be useful for similar analyses in other organisms: eQTL analysis

can be performed in virtually any species for which there aremul-

tiple strains (or individuals) and does not require well-developed

genetic systems. In fact, in this analysis, a similar level of enrich-

ment was observed using only a set of 65 motifs inferred from

organisms other than Arabidopsis thaliana (Figure S5), suggest-

ing that the motif data need not be derived from the organism in

question (see also below).

Identification of TFs Affected by Disease-Associated
Genetic Variants
Recent analyses indicate that between 85% and 93% of dis-

ease- and trait-associated variants are located in noncoding re-

gions (Hindorff et al., 2009;Maurano et al., 2012), suggesting that

many might alter TF binding events. However, the identification

of specific TFs whose binding might be affected by a given

variant remains a challenging and laborious task. We devised a

system that utilizes all available PBM data to produce a ranked

list of human TFs whose binding might be affected by any given

genetic variant (see Experimental Procedures). To examine the

utility of this system for analyzing human disease-associated

variants, we collected a set of 15 SNPs whose alleles have

been experimentally demonstrated to affect the binding of a spe-

cific TF. One of these SNPs affects two TFs, bringing the total of

analyzed TF/SNP pairs to 16. Strikingly, in ten of these 16 cases,

this procedure ranked the correct TF (or a highly related TF from

the same DBD class) in the top five and often number one (Fig-

ure 7D and Data S1). We note that most of the novel high-ranking

TFs we identify have likely never been experimentally examined

and thus might also represent bona fide cases.
tember 11, 2014 ª2014 Elsevier Inc. 1437
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Figure 5. PBM-Derived Motifs Identify

In Vivo TF Binding Locations

(A) AUROC analysis, showing ability of directly

determined and inferred motifs to distinguish

ChIP-seq peak sequences from scrambled se-

quences. We identified TFs with available

ENCODE ChIP-seq data that also have PBM data

available either for that TF, or for related TFs

(based on the inference threshold for the DBD

class). We then gauged the ability of the PBM-

derived motifs to distinguish real ChIP peaks from

scrambled sequences (maintaining all dinucleo-

tide frequencies) using the AUROC (see Experi-

mental Procedures). For each DBD class, results

are binned by DBD%AA ID (key indicated at upper

right). Numbers below each bar indicate the count

in each bin. Error bars indicate SE. ‘‘Random’’

indicates results obtained with a randomly as-

signed, unrelated TF motif. Fox, Forkhead box.

NR, nuclear receptor. Figure S7 shows results

obtained using an alternative null model.

(B) Comparison of AUROC for PBM-derivedmotifs

and literature-derived motifs. We identified TFs

with ENCODE ChIP-seq experimental data that

also have both Transfac and PBM-derived motifs

available. For each TF, we calculated the best

AUROC obtained by any PBM or any Transfac

motif on any of the ENCODE cell line ChIP exper-

iments for that TF. For TFs with multiple motifs

from the same source, the plot shows the mean

AUROC across the motifs.

(C) PBM-derivedmotifs versus HT-SELEX-derived

motifs. Same as for (B), but including only TFs with

motifs available both from PBMs and a recent HT-

SELEX study (Jolma et al., 2013).

See also Table S4.
In one example, a recent study implicated rs554219 in

estrogen-receptor-positive breast cancer tumors and used a

series of experiments to predict and eventually establish that

this SNP causes the differential binding of two Ets family TFs,

ELK4 and GABPA (French et al., 2013). Because rs554219

does not overlap ChIP-seq binding peaks from ENCODE or

other sources, ELK4 and GABPA were identified using a

series of EMSA competition experiments involving known

TF binding sites, a laborious process involving substantial

guesswork. Our automated computational procedure correctly

ranked ELK4 number one and GABPA number two out of

all human TFs (their EMSA data demonstrate strong and

moderate differential binding of ELK4 and GABPA, respec-

tively). The ELK4 prediction is based on an inference from the

pufferfish Tetraodon nigroviridis ELK4 protein (81% AA ID to

human ELK4), further illustrating the utility of cross-species in-

ferences. Moreover, differential binding of ELK4 to the alleles of

rs554219 can also be predicted using data inferred from

Drosophila melanogaster Ets21C (57% AA ID to human ELK4)

and Caenorhabditis elegans F19F10.1 (only 33% AA ID

to ELK4). Thus, our system (available at http://cisbp.ccbr.

utoronto.ca/TFTools.php) can accurately predict the specific

TFs whose binding is affected by risk alleles of disease-associ-

ated SNPs, even when using PBM data inferred from distantly

related organisms.
1438 Cell 158, 1431–1443, September 11, 2014 ª2014 Elsevier Inc.
DISCUSSION

We anticipate that the new data collected here—as well as the

inferred motifs across eukaryotes—will be an invaluable

resource and knowledge base for functional genomics and anal-

ysis of gene regulation. In addition to the data itself, the Cis-BP

database also contains web-based interfaces to tools for scan-

ning DNA sequences for putative motifs, reporting the TFs with

motifs similar to a given motif, predicting the motif recognized

by a given TF based on its DBD AA sequence, and identifying

TFs that will bind differentially to two different DNA sequences

(e.g., disease risk and nonrisk alleles). Cis-BP will enable dissec-

tion of regulatory mechanisms from expression data even in the

vast majority of species for which there are currently no genetic

tools.

The analyses here present a strategy to rapidly populate TF

motif collections across the eukaryotes. As we previously pro-

posed for RNA-binding proteins (Ray et al., 2013), targeting

members of the largest groups of uncharacterized proteins for

experimental analysis will allow the largest number of inferred

motifs to be obtained. Motif inference based on DBD identity

alone is only a first approximation, but it is remarkably cost

effective: the analyses described here indicate that motifs

can be inferred for 34% of all TFs, using data from only 1.7%.

We extrapolate that 1,032 additional successful experiments

http://cisbp.ccbr.utoronto.ca/TFTools.php
http://cisbp.ccbr.utoronto.ca/TFTools.php
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Figure 6. Positional Bias of Motif Matches in Eukaryotic Promoters

PBM-derived PWMs (direct, top heatmap; inferred, bottom heatmap) scored in 20 bp bins, normalized to dinucleotide-permuted controls, averaged across all

promoters, and displayed as Z scores (see Experimental Procedures). Each row in the heatmap corresponds to one PWM. Rows were clustered using hierar-

chical clustering (Pearson correlation, average linkage). Summary plots at the bottom indicate the median Z score, taken across all PWMs from the indicated

species (‘‘Real PWMs’’), or across a set of PWMs from unrelated lineages (‘‘Control PWMs’’) (see Experimental Procedures).

See also Table S5 and Figures S3 and S4.
(<0.5% of all TFs and a number identical to that in this study)—

one from each of the largest groups of orthologs and paralogs

with no known motifs—would increase coverage across the

eukaryotes from 34% to 48%.

The inference scheme described here relies on the high

degree of conservation among DBDs. Indeed, our analyses

confirm the ‘‘deep homology’’ that has been described for meta-

zoan developmental processes and the TFs that regulate them
C

(e.g., homeodomains) (Berger et al., 2008; Carroll, 2008; Noyes

et al., 2008) and furthermore indicate that deep homology is a

property of the sequence preferences of many TFs in all eukary-

otic kingdoms. Our initial analyses (data not shown) suggest that

many motifs likely date to the base of metazoans, land plants,

angiosperms (flowering plants), or euteleostomi (bony verte-

brates), consistent with well-established TF expansions in these

lineages (de Mendoza et al., 2013; Weirauch and Hughes, 2011).
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Figure 7. Overlap of Predicted TF Binding

Sites with cis-eQTLs

(A) Number and percentage of Arabidopsis cis-

eQTLs overlapping motifs, as a function of eQTL

significance. Shaded region indicates one stan-

dard deviation in the expected distribution (see

Experimental Procedures).

(B) A cis-eQTL affecting the expression of the

AT5G47250 gene. Boxplots (see Figure 2 legend)

indicate the median normalized gene expression

level for each allele of the cis-eQTL. ‘‘Reference’’

indicates the allele present in the Arabidopsis

reference genome assembly.

(C) The same cis-eQTL ‘‘breaks’’ a putative binding

site for the VNI2 transcriptional repressor.

Sequence logo depicts the DNA-binding motif we

obtained for VNI2. Sequences below indicate the

reference (top) and alternative (bottom) alleles of

the cis-eQTL SNP (boxed) and its flanking bases.

(D) Prediction of human TF binding events altered

by disease risk alleles. We created a method for

using PBM data to predict TFs whose binding is

affected by disease-associated genetic variants

and applied it to 16 known examples. Shown here

are the ten cases inwhichwe ranked the correct TF

(column labeled ‘‘exact’’) or a highly related TF from

the same DBD class (column labeled ‘‘related’’)

within the top five TFs. The ‘‘Event’’ column in-

dicates whether the risk allele results in a ‘‘Loss’’ or

‘‘Gain’’ of binding of the TF. N/A, indicates that

PBM data are not available for the corresponding

TF; �, indicates that the TF did not receive a rank

because both alleles had an E score >0.45.

See also Figure S5.
Despite widespread conservation, TF repertories do change

over evolutionary time,and thesechanges likely shapeeukaryotic

evolution (de Mendoza et al., 2013). TFs that tend to diversify,

such as the large metazoan C2H2 class (Stubbs et al., 2011),

will present an ongoing challenge to a complete characterization

of eukaryotic TF motifs. In other lineages, other classes of TFs

have expanded and diversified, including the nuclear receptor

class in C. elegans (Maglich et al., 2001), the zinc cluster/GAL4

class in fungi (Shelest, 2008), and several classes in plants

(Lang et al., 2010). The data described here confirm that the

sequence specificities of at least some of these factors have

also diversified. Mapping recognition codes represents an alter-

native approach to more complete cataloguing of TF motifs,

and the data presented here provide many new examples for

the study of TF-DNA recognition. Exceptions to the simple AA

similarity rules described here should also be informative

regarding mechanisms of sequence recognition, because they

will identify AA residues critical for DNA sequence specificity

(De Masi et al., 2011; Noyes et al., 2008). Ongoing efforts to

further the collective knowledge of TF binding specificities will

greatly advance our understanding of TF-DNA interactions, as

well as our ability to interpret the function of DNA sequences,

including understanding the functional impact of natural genetic

variants in human and other species.

EXPERIMENTAL PROCEDURES

Full details are provided in the Extended Experimental Procedures.
1440 Cell 158, 1431–1443, September 11, 2014 ª2014 Elsevier Inc.
Data Availability

PBM data are available in the Gene Expression Omnibus (GEO) database

under accession number GSE53348. PBM data, clone information, and other

data from analyses carried out in this study are available on the project web

site: http://hugheslab.ccbr.utoronto.ca/supplementary-data/CisBP/. Addi-

tional data (including 8-mer scores, PWMs, sequence logos, and information

on TFs) are found on the CisBP web server (http://cisbp.ccbr.utoronto.ca/).

Selection, Cloning, and PBM Analysis of TFs

We compiled the predicted proteomes of 290 eukaryotic organisms from a

variety of sources and supplemented them with an additional 49 known TFs

from organisms without fully sequenced genomes. We scanned all protein se-

quences for putative DNA-binding domains (DBDs) using the 81 Pfam (Finn

et al., 2010) models listed in Weirauch and Hughes (2011) and the HMMER

tool (Eddy, 2009). Each protein was classified into a family based on its

DBDs and their order in the protein sequence. We selected 2,913 individual

TFs to analyze, using several different criteria, including a relatively even bal-

ance among DBD classes and species, a survey of different levels of sequence

identity among proteins, and a deeper focus on several model organisms and

abundant DBD classes. Formost constructs, we designed primers to clone the

region encompassing all DBDs plus the 50 flanking endogenous AAs on either

side (or until the termini of the protein) by conventional PCR methods into one

of a panel of T7-GST vectors for expression in E. coli (referred to hereafter as

‘‘plasmid constructs’’). PBM laboratory methods were identical to those

described in Lam et al. (2011) and Weirauch et al. (2013). Each plasmid was

analyzed in duplicate on two different arrays with differing probe sequences

(denoted ‘‘ME’’ and ‘‘HK’’). Calculation of 8-mer Z and E scores was performed

as previously described (Berger et al., 2006). To obtain a single representative

motif for each protein, we used a procedure similar to a recent study from our

group in which we generated motifs for each array using four different algo-

rithms and chose the best-performing single motif based on cross-replicate

array evaluations (Weirauch et al., 2013).

http://hugheslab.ccbr.utoronto.ca/supplementary-data/CisBP/
http://cisbp.ccbr.utoronto.ca/


Inference Scheme

We established a separate inference threshold for each DBD class. We first

aligned the DBD sequences of all constructs within a DBD class using

clustalOmega (Sievers et al., 2011). We then calculated the AA %ID for all

construct pairs (i.e., the number of identical AAs in the alignments). Within

each DBD class, we grouped all PBM construct pairs into bins, based on AA

%ID. We used overlapping bins of size 10, ranging from 0 to 100, increasing

by 5. We calculated the precision of each bin by comparing the DNA sequence

preferences obtained from all characterized protein pairs contained in the bin.

We quantified the similarity of the DNA sequence preferences of two proteins

as the fraction of shared high-scoring 8-mers. We considered a prediction to

be correct only if this fraction exceeded the value obtained at the 25th percen-

tile of experimental replicates (i.e., the fraction of shared 8-mers between ME

and HK arrays for the same protein). The proportion of predictions scored as

correct (i.e., precision) for each bin of each DBD class is shown as magenta

stars in Figure 2 and Data S1.

We chose inference thresholds for each DBD class based on the precision

scores of each AA %ID bin. Because we used the 25th percentile threshold

to define precision, we would expect a precision of 0.75 or higher in each

AA %ID bin. We therefore chose an inference threshold for each DBD class

by identifying the final AA %ID bin before precision drops below 0.75 (vertical

bars in Figure 2). Similar thresholds were obtained regardless of the E and Z

score 8-mer thresholds used and also regardless of the replicate overlap

percentile considered (i.e., 25th percentile, requiring 0.75 precision or 20th

percentile, requiring 0.80 precision) (Figure S6). The final threshold for a

DBD class was chosen as the median threshold across the eight 8-mer simi-

larity measures (see Figure S6 and Data S1). We found this scheme to be

appropriate for most DBD classes (all of which are depicted in Figure 2). For

three DBD classes (IRF, CXXC zinc fingers, and Dof zinc fingers), we could

not establish a threshold—these therefore received a threshold of 100%. We

used a threshold of 40% for AT-hook TFs, which recognize AT-rich sequences,

based on manual inspection of the data (see Data S1). For the remaining

classes, with suggestive but insufficient data, we chose a threshold of 70%,

which is the mean, median, and mode threshold across all DBD classes.

We used the AA%ID of all pairs of proteins to infer motifs, 8-mer scores, and

consensus sequences within each DBD class by simple transfer (i.e., aligning

the DBD sequences of all proteins and all constructs in a given DBD class, as

described above, and calculating the AA %ID of each protein with each

construct). We also evaluated the effectiveness of our inference scheme in a

leave-one-out cross validation framework, in which the PBM data for each

characterized protein was held out and compared to the PBM data of its near-

est neighbor (i.e., the characterized protein with highest AA %ID), using a

similar scoring scheme to that used to calculate the precisions.

Comparison to ChIP-Seq Data

We calculated AUROC scores on real and permuted (maintaining dinucleotide

frequencies) ChIP-seq peak sequences following Weirauch et al. (2013). We

obtained ENCODE consortium human ChIP-seq data from the UCSCGenome

Browser (Rosenbloom et al., 2012). For each ChIP experiment, we extracted

the top 500 scoring peak region sequences and scored them (and the

permuted sequences) using all direct and inferred PWM models for the given

TF. For each PWM/experiment pair, we then calculated the AUROC using

these sets of 500 positives and 500 negatives. Similar results were obtained

using a negative set consisting of ChIP-bound peaks from unrelated TFs

with matched GC-content (Figure S7).

Positional Bias of Motifs in Eukaryotic Promoters

Weobtained the 1,000 bases upstream of transcription start sites (or, if unavai-

lable, translation start sites) and scored the PWMs of each organism at each

position. We then placed the resulting scores into 20 bp bins, summed the

scores for each bin, and took the average across all promoters for the given

species for each bin. To correct for mono- and dinucleotide biases, we also

scored shuffled promoter sequences, which were created by shuffling the se-

quences within each 20 bp bin (while maintaining dinucleotide frequencies).

For each PWM, we then calculated the ratio of each bin’s real score relative

to the score of the shuffled sequence. The resulting ratios were then normal-

ized across all bins for the given PWMusing a standard Z score transformation.
C

We also calculated Z scores for a negative control set of TF PWMs for each

organism, consisting of a collection of random motifs from species in other

clades that were unrelated to any PWM from the given species.

Arabidopsis eQTL Analysis

We used a publicly available data set (Gan et al., 2011) containing genome-

wide RNA-seq variance-stabilized expression levels (Huber et al., 2002) taken

from 19 strains of seedling Arabidopsis thaliana and matching genome se-

quences. We identified matches to each A. thaliana PWM within the 1,000

bases upstream of each TSS. We calculated the percentage of genetic vari-

ants that affect these putative binding sites, as a function of the cis-eQTL

p value of the variant (red line, Figure 7). We also created a null distribution

(blue line and blue shaded region, Figure 7) to exclude the possibility that

the observed percentagesmight solely be due to the higher density of TF bind-

ing sites in promoter regions.

Human Disease SNP/TF Analysis

We devised a system for utilizing our collection of PBM data to identify candi-

date human TFs whose binding might be affected by the allelic sequences of

genetic variants. In this system, we score each variant (along with its flanking

genomic bases) using 8-mer E scores taken from the 3,132 PBM experiments

contained in our database. For each PBM experiment, we identify the highest

scoring 8-merE score attained by any of the risk allele sequences (Erisk) and the

highest attained by any nonrisk allele (Enonrisk). We then identify all PBM exper-

iments where only one of Erisk and Enonrisk has an E score value exceeding 0.45

(values above this threshold will likely be strongly bound by the given TF

(Berger et al., 2008)) and map these experiments to human using the inference

scheme. This procedure thus produces a ranked list of human TFs whose

binding is likely to be affected by the alleles of a given SNP (e.g., strongly bind-

ing to one allele but not binding to the other).
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