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ABSTRACT The effects of chaperonin-like cage-induced confinement on protein stability have been studied for molecules of
varying sizes and topologies. Minimalist models based on G�oo-like interactions are employed for the proteins, and density-of-
states-based Monte Carlo simulations are performed to accurately characterize the thermodynamic transitions. This method
permits efficient sampling of conformational space and yields precise estimates of free energy and entropic changes associated
with protein folding. We find that confinement-driven stabilization is not only dependent on protein size and cage radius, but also
on the specific topology. The choice of the confining potential is also shown to have an effect on the observed stabilization and
the scaling behavior of the stabilization with respect to the cage size.

INTRODUCTION

The cellular environment in which a protein folds and per-

forms its functions is crowded with several biological mole-

cules including lipids, carbohydrates, and other proteins.

Most of the experimental, theoretical, and computational studies

on protein folding, however, have relied on studying proteins

in the infinitely dilute limit. This idealized dilute environ-

ment is different from that inside the cell, even if the specific

interactions between the protein and the surroundings are

minimal. The geometrical restrictions imposed by the neigh-

boring molecules can have an appreciable impact on protein

structure, merely by virtue of their excluded volume. Nature,

in fact, utilizes such phenomena to its advantage. For ex-

ample, the effects of confinement on protein folding are

relevant to the functioning of chaperonin molecules. The

recognition of a protein molecule by chaperonins, followed

by its encapsulation in the chaperonin cage, is an important

step in the folding pathway of several proteins. As a result of

the aforementioned observations, folding under confinement

is emerging as an active area of research. Several recent

studies that include experimental (1–4), theoretical (5–7),

and computational (8–13) work have been conducted to un-

derstand this phenomenon.

Eggers and Valentine (1) showed experimentally that con-

finement often leads to protein stabilization. For the specific

case of a-lactalbumin encapsulated in a silica matrix, they

found that the melting temperature increases by ;30�C.
Other experimental studies (3,4) also demonstrated the en-

hancement of protein stability in confined environments and

advocated the use of nanoporous matrices for applications

involving immobilized enzymes. Theoretical studies per-

formed by Zhou and Dill (5,6) attributed this stabilization to

a reduction of the entropy of the unfolded state. Based on

concepts of statistical mechanics and polymer physics, they

discussed how confinement enhances protein stability and

folding rates. Recently, several computational groups (9–13)

have also addressed this problem through the use of

minimalistic models and molecular dynamics simulations.

Thirumalai and co-workers (9) employed an off-lattice G�oo
model of a b-hairpin in a soft repulsive spherical cavity and

reported a nonmonotonic dependence of the folding rate on

the cavity radius. Takagi et al. (10) reported protein stabi-

lization in a cylindrical cage and, based on the results of

simulations, identified a scaling law that describes the in-

crease in melting temperature of their simulated proteins.

Most of these computational studies have relied on the use

of molecular dynamics techniques to simulate proteins in the

bulk (no confinement) and inside a cage. Proteins, however,

exhibit rough free energy landscapes (14,15), and canonical

sampling below the melting temperature of the protein may

not be sufficient to visit all the underlying minima. To over-

come this limitation, several molecular dynamics simula-

tions could be performed over a wide range of temperature,

and the data could be combined using a weighted histogram

approach (16); however, the statistical error associated with

the tails of the sampled distributions is usually large and can

propagate when data from simulations at different temper-

atures are merged. In this article, we use density-of-states-

based (17–19) Monte Carlo methods to study proteins in the

bulk and in confined environments. These methods, which

rely upon uniform sampling of energy space, can yield ther-

modynamic data over the entire temperature range of interest

and have been shown to overcome large free energy barriers.

Using a G�oo-like model (20), we report findings for four dif-

ferent proteins of various sizes and topologies. Results are

presented in the form of confinement effects on the specific

heat, the free energy, and the entropy of the proteins. It is

shown that confinement effects on stability are protein-specific
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and do not always follow universal scaling as reported pre-

viously (10). For certain confining environments, individual

proteins do exhibit a power-law dependence, but the rela-

tionship is different for each molecule. In other cases, the

increase in stability upon confinement interestingly demon-

strates nonmonotonic behavior.

MODEL AND METHODS

Protein

Four different proteins are used in this work: Protein A (1BDD), b-hairpin

(16 residue fragment of 1GB1), Protein G (2GB1), and SH3 (1SRL). A

schematic representation of these model proteins is given in Fig. 1.

These proteins are modeled using a coarse grain, G�oo-like (20) approach.

Such models and their variants have been used to investigate several kinetic

and thermodynamic properties of various proteins (21–28). They have also

been used to examine the effects of confinement on protein stability (9,10).

Though minimalist in nature, these models have been shown to be in quali-

tative, and sometimes quantitative, agreement with experimental observa-

tions (10,25,29). In a G�oo model, native interactions are defined by introducing

an energetic bias toward the native structure. The particular implementation

employed in this study is that of Hoang and Cieplak (21). We model the

peptide with a bead and spring representation, with the beads placed at the

Ca positions obtained from the Protein Data Bank. The interaction potential

consists of the sum of the backbone potential, native interactions, and re-

pulsive nonnative interactions. For proteins under confinement, a confining

potential is added to the above mentioned interaction energy.

Confining potential

Two different potentials (9,11,12) are employed in this work (see Fig. 2).

The first (9), given by Eq. 1, assigns a short-range repulsive potential

between the beads of the polypeptide chain and the surface of a confining

sphere. Assuming that the monomers experience a 1/r12 repulsion from the

surface of the sphere, an integration is performed over the entire spherical

surface to arrive at the following cage potential, VA
c :

V
A

c ¼ 4p
ecRc

5r

s

Rc � r

� �10

� s

Rc 1 r

� �10
" #

; (1)

where the monomer bead is located at position R~; r ¼ jR~j; Rc is the cage

radius, ec ¼ 1.25 kcal/mol, and s ¼ 3.8 Å is the average distance between

two successive Ca atoms. The protein feels the effect of this cage potential

even when it is completely inside the cage. The effect is minimal when the

confining radius Rc is large compared to the size of the protein.

The second confining potential considered here is given by Eq. 2. It was

originally introduced by Shea and co-workers (12), and is based on the idea

that the protein should not feel the cage potential as long as it is within the

cage. To capture crowding in the cell, the protein is allowed to wander

outside the cage but it feels a radially inward force whenever a monomer

hops out of the cage. The potential function is given by

V
B

c ¼ 0:01

Rc

e
r�Rcðr � 1Þ � r

2

2

� �
: (2)

Fig. 3 shows the qualitative difference between each type of potential and

demonstrates the diversity of models that can be obtained using two different

approaches. Later, in the Results and Discussion section, we show how the

use of different cage potentials can lead to different thermodynamic behavior

for the confined protein. The superscripts A and B are henceforth used in this

article to differentiate between the two potentials.

Density of states

The thermal stability of the peptide was probed using a density-of-states-

(DOS) based method (17). Previously, this method has been applied to char-

acterize folding transitions in coarse-grained peptides on a lattice (18) and

atomistic proteins in a continuum (19,30). Here, we extend these methods to

examine the effect of confinement on the stability of proteins.

The DOS method has been described previously (18,19). The key

quantity obtained from these simulations is the density of states, V(U),

which is the degeneracy of energy state U. Thermodynamic quantities of

FIGURE 1 Cartoon representation of different proteins used in this study: (a) b-hairpin, (b) Protein A, (c) Protein G, and (d) SH3.

FIGURE 2 Schematic representation of Protein A in (a) a soft, repulsive

cavity and in (b) a hard cavity.
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interest can be determined from the knowledge of the density of states.

Those pertinent to this study are the internal energy U(T) and the specific

heat capacity C(T). They are calculated according to

UðTÞ ¼ ÆUæT ¼
+UVðUÞe�bU

+VðUÞe�bU ; (3)

CðTÞ ¼ ÆU2æT � ÆUæ2T
kBT

2 : (4)

The stability of the peptide is measured in each case by determining the

heat capacity as a function of temperature using Eq. 4 and assigning the

transition temperature according to the position of the peak.

Once the density of states is known, other arbitrary quantities, X, such as
order parameters can be determined from

XðTÞ ¼ ÆXæT ¼
+XðUÞVðUÞe�bU

+VðUÞe�bU : (5)

In this work, the radius of gyration, Rg, and the fractional nativeness, Q,

are calculated using Eq. 5 and are used to analyze the structure of the protein.

If one adopts the view that the protein is a two-state folder, configura-

tions sampled during the simulation can be classified into ‘‘folded’’ and

‘‘unfolded’’ ensembles based upon the number of native contacts present.

The free energy of stabilization of the folded state at any temperature can

then be computed from

DG ¼ Gfolded � Gunfolded ¼ �kT log
Pf

1�Pf

� �
; (6)

where Pf is the probability of the folded state at temperature T. The enthalpy

change DH associated with the folding can be computed from the difference

between the average potential energy of the folded and unfolded states. The

entropic contribution to DG can then be estimated from TDS ¼ DH � DG.
It should be noted that DG of stabilization depends on temperature and on

the definition of the folded state. Different reference states have been used in

the literature. To be consistent in our treatment of different proteins, we use

the fractional nativeness at the melting temperature, Q(Tf), to be the

threshold value for defining a folded state (a protein is considered folded if

Q . Q(Tf)). Different proteins exhibit different amount of nativeness at

the transition temperature, Tf; but such a treatment yields DG ¼ 0 at the

transition temperature for all the proteins. This facilitates comparison of the

confinement effects across several proteins in a consistent manner.

To estimate the statistical errors associated with these calculations, four

independent sets of simulations, each with different random number seeds,

were performed for the case of Protein A. In our simulations, different Monte

Carlo moves consisting of pivot moves, random atom displacements, and

TABLE 1 Changes in free energy, enthalpy and entropy for

different proteins subjected to confinement potential VA
c

DG DH TDS

Protein Rc Å Tf K kJ/mol kJ/mol kJ/mol

Bulk 207.6 0.00 �49.53 �49.53

Protein A 30 214.4 �1.08 �45.50 �44.42

Rg ¼ 9.4 Å 20 227.9 �2.97 �42.41 �39.44

17 214.9 �1.19 �35.48 �34.29

Bulk 466.8 0.00 �26.77 �26.77

b-Hairpin 30 – �0.79 �25.10 �24.31

Rg ¼ 7.5 Å 17 – �2.75 �21.51 �18.76

14 – �3.17 �22.22 �19.04

Bulk 353.3 0.00 �62.00 �62.00

Protein G 40 378.3 �1.99 �51.55 �49.55

Rg ¼ 10.6 Å 25 456.1 �4.22 �40.99 �36.77

20 – �7.41 �44.44 �37.02

Bulk 378.9 0.00 �89.84 �89.84

SH3 40 385.6 �1.36 �83.12 �81.76

Rg ¼ 10.1 Å 25 436.9 �5.88 �64.31 �58.44

20 500.0 �10.44 �65.01 �54.57

FIGURE 3 Qualitative depiction of the cavity potentials used in this

study.

FIGURE 4 Effect of two different confining potential on the melting of

protein SH3 ((a) VA
c , (b) V

B
c ).
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hybrid Monte Carlo/molecular dynamics moves were utilized to sample the

phase space efficiently.

RESULTS AND DISCUSSION

The effect of confinement on the thermodynamic properties

of several model proteins was investigated by performing

DOS simulations over a large range of temperatures. The

proteins were able to sample the complete unfolded and

folded states in this range. A distinct advantage of the DOS

method is that it yields the specific heat as a continuous

function of temperature (see Eq. 4). We computed the tran-

sition temperature for the bulk proteins and the proteins

under different degrees of confinement. We also computed

the free energy of stabilization (Eq. 6) and the enthalpic

and entropic contributions. The results are summarized in

Table 1 for cage potential VA
c and in Table 2 for cage po-

tential VB
c . Earlier, Takagi et. al (10) reported that proteins

with different topology and size exhibit identical behavior.

We now discuss specific results for our model proteins under

confinement.

FIGURE 5 Specific heat and the associated error as a function of tem-

perature for Protein A.

FIGURE 6 Thermodynamics of folding of Protein A: (a) free energy,

(b) enthalpy, and (c) entropy. Statistical errors are computed based on data

from four independent sets of simulations. The confined cases are for VA
c .

TABLE 2 Changes in free energy, enthalpy and entropy for

different proteins subjected to confinement potential VB
c

DG DH TDS

Protein Rc Å Tf K kJ/mol kJ/mol kJ/mol

Bulk 207.6 0.00 �49.53 �49.53

Protein A 30 212.6 �0.85 �48.11 �47.27

Rg ¼ 9.4 Å 20 215.1 �1.04 �44.24 �43.19

17 216.9 �1.42 �44.35 �42.93

Bulk 466.8 0.00 �26.77 �26.77

b-Hairpin 30 470.6 �0.75 �26.38 �25.63

Rg ¼ 7.5 Å 17 474.3 �1.13 �25.23 �24.10

14 – �1.41 �23.89 �22.48

Bulk 353.3 0.00 �62.00 �62.00

Protein G 40 367.8 �1.42 �57.14 �55.72

Rg ¼ 10.6 Å 25 389.9 �2.44 �47.43 �44.99

20 415.6 �3.19 �43.09 �39.90

Bulk 378.9 0.00 �89.84 �89.84

SH3 40 384.1 �0.98 �85.36 �84.38

Rg ¼ 10.1 Å 25 394.0 �2.53 �79.79 �77.26

20 402.4 �3.17 �72.55 �69.38
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SH3

SH3 is a 56 residue all b-protein. Fig. 4 shows the specific

heat as a function of temperature for the two different cage

potentials. The transition temperature increases as confine-

ment radius decreases. Clearly, for the same degree of con-

finement, cage potential V A
c has a more significant effect

than VB
c . This is expected from the functional form of the two

potentials. Potential A has a larger effect because the protein

feels it even when located completely within the cavity. The

stabilization effect of confinement is also reflected in the free

energy of stabilization at the melting temperature (see Tables

1 and 2). Confinement limits the conformational space avail-

able to the unfolded state and hence destabilizes the unfolded

state by reducing its entropy. There is an enthalpic penalty

for confining the protein but the favorable contribution of

entropy dominates over the enthalpy.

Protein A

This is a 46-residue, all-helical protein that is slightly smaller

than SH3. Protein A, however, exhibits a different behavior

than that observed for SH3 or reported earlier for several

proteins (10). Fig. 5 shows the specific heat of Protein A

under different degrees of confinement defined by VA
c . The

transition temperature increases with confinement in the

beginning but, in contrast to the behavior of SH3, this in-

crement is smaller for comparable values of Rg/Rc. Upon

further confinement (Rg/Rc . 0.5), the melting curves shift

toward a lower temperature, indicating that the protein is

destabilized. This demonstrates that confinement effects are

protein specific. Protein A, in a cage defined by potential VB
c ,

does not exhibit this reverse trend for the range of confine-

ment radii studied here; however, the amount of stabilization

is markedly smaller than that observed for other proteins.

To understand the nonmonotonic stabilization of Protein

A in more detail, Fig. 6 shows the free energy, enthalpy, and

entropy of folding for Protein A in the bulk and for con-

finement according to VA
c . The temperature is normalized

with respect to the folding temperature of the molecule in the

bulk. The free energies are consistent with the specific heat

curves. The lowest-melting temperature case is the peptide in

the bulk, and it has the highest free energy near the melting

temperature. The free energies also show the same reverse

stabilization trend that was described above.

Panels b and c of Fig. 6 show the enthalpic and entropic

contributions to the free energy and demonstrate that the

origin of the stability of the protein under confinement is

entropic in nature. For each confined case, the entropic cost

of folding is less than that of its bulk counterpart. We also see

that the enthalpy of folding is not as favorable for any degree

of confinement as it is in the bulk. Thus, the stabilizing

effects of confinement on the protein arise from two com-

peting factors. Folding is favored entropically but hindered

energetically, and since the entropic contribution is larger in

magnitude, the result is an overall increased stability for

confined Protein A. Moreover, Tables 1 and 2 demonstrate

that this enthalpy/entropy competition extends to all the pep-

tides in this study. We also note that similar results have been

seen for Protein A when tethered to a surface (31). In this

respect, a surface can be thought of as partial confinement.

The 16-residue fragment of protein 1GB1, b-hairpin, ex-
hibits a small peak in the specific heat; changes in the tran-

sition temperature as a result of confinement are minimal

(within statistical errors). DG, however, shows a stabilizing

(Tables 1 and 2) behavior similar to that reported earlier by

FIGURE 7 Population analysis for Protein A

(a and b) and SH3 (c and d). The SH3 landscape is

broader, implying that SH3 unfolded states have a

larger size (Rg [¼ ] Å) compared to those for Protein A.
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Klimov et al. (9). Protein G, which has the same number of

residues (N ¼ 56) as SH3, shows similar large increments in

its transition temperature; however, its fractional increment

in Tf was larger than that of SH3. These results highlight

the fact that confinement effects are dependent not just on a

protein’s size, but also on its overall topology and local

secondary structure. Thus, we conclude that not all proteins

follow a universal behavior, as originally proposed in a

recent study (10), and that protein topology does play a

crucial role in governing to what extent confinement will

stabilize a protein.

To understand why confinement effects are markedly dif-

ferent in different proteins, we now examine in more detail

the cases of SH3 and Protein A. Based on the analysis of Cv

data and the DH and TDS contributions to DG, we gather

that confinement does reduce the entropy of the unfolded

state. This, however, comes with an enthalpic penalty, and

whether confinement results in an overall stabilization of the

protein or not depends upon the relative magnitude of DH
and TDS. Two different proteins of similar size need not

show a similar balance between the enthalpic and entropic

contributions to the free energy and hence will exhibit dif-

ferent behavior upon confinement. Fig. 7 shows population

density maps as a function of radius of gyration, Rg, and

fractional nativeness, Q, for Protein A (panels a and b) and
SH3 (panels c and d) at their transition temperatures, in the

bulk, and under confinement. As expected, the unfolded

proteins visit a conformational space corresponding to larger

sizes when the proteins are in the bulk than when they are

confined.

A more detailed, quantitative analysis shows that for

Protein A, ;50% of the population is inside the native-like

basin (defined as 9.3 Å , Rg , 10.4 Å); the rest of the

configurations correspond to unfolded states with larger radii

of gyration. Upon confinement, the unfolded state loses

entropy and 99% of the population is within the native-like

basin. A similar analysis of SH3 shows a much larger role of

entropy. In the case of bulk SH3, at T ¼ Tf, only 30% of the

population lies in the native-like basin (10.0 Å , Rg , 11.1

Å), whereas unfolded states occupy 70% of the conforma-

tional space. Therefore, when SH3 is confined, there is a

larger favorable entropic contribution to the free energy

than that observed in Protein A. As a result, SH3 exhibits

confinement-driven stabilization to a greater extent than

Protein A.

We now consider how confinement effects scale with pro-

tein size (Rg) and confinement radius (Rc). A recent sim-

ulation study (10) identified a universal scaling law of the

form (Tf – Tf
o) ; Rc

�3.25; which was reported to hold for

multiple test cases. Two of these proteins, Protein G and

SH3, are common to our study. Fig. 8 plots the fractional

increment in the melting temperature as a function of the

ratio of protein size and cavity radius. For the case of

potential VA
c , Protein A exhibits a nonmonotonic behavior.

This potential is different from that used by Takada and co-

workers. Potential Vc
B, however, is similar to theirs and we

do see (Fig. 8 b) that the three proteins follow a scaling law.

The scaling exponent n, however, is different for each pro-

tein. The scaling does not appear to be universal. We believe,

based on results for potential VA
c (n; 3 for Protein G and;4

for SH3), that n is governed by the effective cage size im-

posed by the confining potential. For the same value of

confining radius, Rc, potential V
A
c yields an effective pore

size smaller than that of potential Vc
B, and hence the latter

exhibits a smaller value of n.

CONCLUSIONS

We have presented a detailed analysis of confinement effects

on the thermodynamics of protein folding. DOS-based

Monte Carlo simulations are used to obtain precise estimates

of specific heats and free energies of stabilization of folded

states. Confinement reduces the entropy of the unfolded

state by limiting the conformational space available to the

FIGURE 8 Fractional increment in melting temperatures plotted against

Rg/Rc for the two confinement cases: (a) cage potential ¼ VA
c , and (b) cage

potential¼ Vc
B. The lines in b are fits to the scaling law: DTf/Tf

o ; (Rg/Rc)
n.

Different proteins exhibit different scaling exponents.
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unfolded ensemble. It is found that proteins exhibit different

stabilizing behavior under different confining potentials.

Surprisingly, for the specific case of a soft repulsive potential

and Protein A, it is shown that a larger degree of confinement

can have a destabilizing effect. Moreover, the results for the

proteins considered in this work demonstrate that confine-

ment-driven stabilization does not always follow universal

scaling as reported previously (10). It is, in fact, a result of

the interplay between entropic stabilization and enthalpic

destabilization. A protein’s local structure and its overall

topology play a crucial role in governing the relative im-

portance of entropic and enthalpic contributions to the free

energy of stabilization. The simplistic models used in this

study do capture certain essential elements of the stabilizing

effect of confinement. However, a more accurate treatment

should take into account the crucial effect of confinement-

induced changes in the water structure in the first few hy-

dration layers surrounding the protein.
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