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Evidence for Two Nonoverlapping Functional Domains
in the Potato Virus X 25K Movement Protein
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To study subdomain organization of the potato virus X (PVX) movement protein (MP) encoded by the first gene in the triple
gene block (TGB), we mutated the 25-kDa TGBp1 protein. The N-terminal deletion of the helicase motifs I, IA, and II resulted
in loss of the ATPase activity and RNA binding. A frameshift mutation truncating the C-terminal motifs V and VI gave rise to
increase of the TGBp1 ATPase activity and had little effect on RNA binding in vitro. Fusions of the green fluorescent protein
with 25-kDa MP and its derivative lacking motifs V–VI exhibited similar fluorescence patterns in epidermal cells of Nicotiana
benthamiana leaves. Cell-to-cell movement of the 25K-deficient PVX genome was not complemented by the TGBp1 of
Plantago asiatica mosaic potexvirus (PlAMV) but was efficiently complemented by a chimeric TGBp1 consisting of the
N-terminal part of PlAMV protein (motifs I–IV) and the PVX-specific C-terminal part (motifs V–VI). These results suggest that
NTP hydrolysis, RNA binding, and targeting to the specific cellular compartment(s) are associated with the N-terminal domain
of the TGBp1 including the helicase motifs I–IV and that the C-terminal domain is involved in specific interactions with other

virus proteins. © 1999 Academic Press
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INTRODUCTION

Intercellular transport of nucleic acids and proteins in
lants involves specialized channels, the plasmodes-
ata (PD) (reviewed in Mezitt and Lucas, 1996; Ding,

997; Ghoshroy et al., 1997; MacLean et al., 1997). Plant
iruses recruit the plasmodesmal pathway for short- and

ong-distance movement that is potentiated by virus-
oded movement proteins (MPs) (reviewed in Atabekov
nd Taliansky, 1990; Carrington et al., 1996; Gilbertson
nd Lucas, 1996; Ghoshroy et al., 1997).

Many virus genomes code for a single MP with se-
uences falling into several distinct phylogenetic groups

Mushegian and Koonin, 1993). Biochemical studies and
ubcellular localization of the dissimilar MPs revealed
everal common features. For instance, the MPs of to-
acco mosaic virus (TMV), red clover necrotic mosaic
irus (RCNMV), and cucumber mosaic virus (CMV) were
hown to bind nucleic acids and GTP, to be targeted to
D, to modify PD by increasing their size exclusion limit,
nd to traffick nucleic acids through PD (reviewed in
arrington et al., 1996; Ghoshroy et al., 1997).
In a number of phylogenetically distant virus groups, a

istinct transport gene module, the triple gene block
TGB), was found (Morozov et al., 1989). The TGB codes
or three MPs referred to as TGBp1, TGBp2, and TGBp3

1 To whom reprint requests should be addressed. Fax: (095) 938–06-

c1. E-mail: atabekov@virus.genebee.msu.su.
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Solovyev et al., 1996). All of them were found to be
ecessary for virus cell-to-cell movement (Petty and

ackson, 1990; Beck et al., 1991; Gilmer et al., 1992;
ngell et al., 1996; Herzog et al., 1998). The TGBp2 and
GBp3 proteins possessing regions of highly hydropho-
ic sequences (Morozov et al., 1987) are able to associ-
te with membranes (Niesbach-Klosgen et al., 1990;
orozov et al., 1990, 1991; Donald et al., 1993) and cell
alls (Hefferon et al., 1997). The TGBp1 proteins contain
TPase/helicase sequence motifs required for virus
ovement in vivo (Gorbalenya and Koonin, 1989; Donald

t al., 1995; Bleykasten et al., 1996) and possess ATP/
TPase and RNA-binding activities in vitro (Rouleau et
l., 1994; Donald et al., 1995, 1997; Bleykasten et al., 1996;
alinina et al., 1996; Lough et al., 1998). It should be
oted that in contrast to the TGBp1 of foxtail mosaic
otexvirus (Rouleau et al., 1994), the RNA binding ability
f the PVX 25K MP was very low at physiological condi-

ions (Kalinina et al., 1996; Karpova et al., 1997). The
GBp1 protein is able to increase the PD size exclusion

imit and move through PD to adjacent cells (Angell et al.,
996; Lough et al., 1998). Thus some functional proper-
ies of the TGBp1 proteins resemble those of the TMV,
CNMV, and CMV MPs.

TGBp1 represents the superfamily 1 helicase, which
ontains seven conserved amino acid sequence motifs

reviewed in Gorbalenya and Koonin, 1993; Kadare and
aenni, 1997). In contrast to the numerous DNA heli-
ases of the superfamily 1, the helicase activity of the

0042-6822/99 $30.00
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56 MOROZOV ET AL.
uperfamily 1 NTPase/helicases of plus-RNA viruses has
nly been demonstrated for alphaviruses (de Cedron et
l., 1999). Experimental determination of the protein ter-

iary structure, mutagenesis, and computer predictions
howed that superfamily 1 DNA helicases comprise two
istinct spatial and functional domains with each domain
aving two subdomains. The subdomain 1A including
otifs I–IV is responsible for the NTPase activity,
hereas the subdomain 2A (motifs V and VI) may con-

ribute to conformational changes related to the coupling
f ATPase activity and DNA binding (Gorbalenya et al.,
989; Koonin and Rudd, 1996; Subramanya et al., 1996;
orolev et al., 1997; Hall et al., 1998).

In this study, deletion mutations were introduced into
he potato virus X (PVX) 25K TGBp1 to dissect the activ-
ties of the N-terminal (motifs I–IV) and C-terminal (motifs
–VI) portions of the protein. Our findings suggested that

he PVX TGBp1 region including the helicase motifs V–VI
s dispensable for NTP hydrolysis, RNA binding, and the

P targeting to specific cellular compartment(s) and
ould be involved in specific interactions with other virus
roteins.

RESULTS

eletion of the helicase motifs V and VI of the PVX
GBp1 does not abolish NTPase and RNA-binding
ctivities

To study the role of the putative structural domains in
he PVX 25K TGBp1 in the NTPase and RNA-binding
ctivities, we constructed several frameshift and deletion
erivatives of the protein lacking the N-terminal (DN-25K)
r the C-terminal regions (DC-25K and DCIII-25K) (Fig. 1).
he mutated proteins and the wild-type (wt) PVX 25K
rotein were expressed in Escherichia coli as fusions
ith N-terminal 6xHis tag, purified to near homogeneity

Fig. 3 and data not shown), and used for biochemical
ests.

The mutant protein DN-25K, in which motifs I, IA, and

FIG. 1. Sequences of the PVX 25K MP and its deletion mutants. Pos
ower case letters indicate artificial sequences present at the ends o
I were deleted, exhibited no ATPase activity (Fig. 2). This s
esult is consistent with the view that this portion of the
elicase protein is critical for binding and hydrolysis of
TPs (Gorbalenya and Koonin, 1993; Subramanya et al.,

996; Korolev et al., 1997). Furthermore deletion of a
egion including the motifs III–VI and a small part of motif
I (mutant DCIII-25K) greatly reduced ATPase activity of
he PVX TGBp1 (Fig. 2). Unexpectedly, deletion of the
elicase motifs V and VI in the DC-25K mutant did not

esult in decreased ATPase activity. Moreover the ATP-
se activity of this mutated protein was .2.5-fold higher

han that of the wt 25K protein (Fig. 2). GTPase and
TPase activities of the DC-25K mutant were also about

wofold higher than that of the wt 25K protein (data not
hown).

The NTPase activity of the PVX 25K protein could be
timulated by ssRNA (Kalinina et al., 1996; Fig. 2). In

he mutant protein DN-25K with no detectable ATPase
ctivity, ssRNA had no stimulating effect, whereas with
oth other deletion mutants (DC-25K and DCIII-25K),

of helicase motifs are indicated by underlining and Roman numerals.
expressed wt and mutated TGBp1 proteins.

FIG. 2. The ATPase activities of 25K protein and its mutant forms.
tandart ATPase assays were performed with 1 mCi of [g-32P]ATP and

he percentage of hydrolysed ATP was quantified. The hydrolysis of
TP by 500 ng of each protein is shown in the absence (dark bars) and

n the presence (light bars) of RNA (1mg of TMV RNA). The data
resented are from five independent experiments. The mean values are
itions
hown above each bar.
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57FUNCTIONAL DOMAINS IN THE PVX 25K MP
he ssRNA strongly stimulated ATPase activity (Fig. 2).
nterestingly, increase of the enzymatic activity in the
resence of ssRNA was more pronounced in the C-

erminally truncated mutants than in the wt protein
Fig. 2).

The PVX 25K protein has been shown to bind single-
tranded but not double-stranded nucleic acids in vitro,

hough the complex of the 25K protein with ssRNA was
ather nonstable and could be detected only at low ionic
trength (Kalinina et al., 1996). To examine the possible
orrelation of the RNA-binding with the ATPase activity,
e tested the RNA binding ability of the C-terminally

runcated 25K protein (DC-25K mutant). The mutated pro-
ein retaining ATPase activity was also able to bind
sRNA similarly to wt 25K protein, whereas the N-termi-
ally truncated DN-25K mutant had no detectable RNA
inding activity (Figs. 3A and 3B). Therefore both ATPase
nd RNA-binding activities are associated with the PVX
5K protein N-terminal region, which includes helicase
otifs I–IV. Unexpectedly, the mutant DCIII-25K exhibiting
low level of ATP hydrolysis but the highest level of

TPase stimulation by RNA (Fig. 2) can form stable com-
lexes with RNA even in 0.5 M NaCl, showing the RNA
inding ability similar to that of the 30K MP of TMV (Figs.
C and 3D). These findings suggest that RNA binding
omain (or at least its major part) of the PVX TGBp1 is

ocated in the region including N-terminal helicase mo-

FIG. 3. RNA binding activity of the 25K protein and its mutant forms in No
N-25K, and DCIII-25K proteins. The purified proteins (1 mg) were subjecte

ested for RNA binding activity of the 25K protein and its mutants. Followin
ybridized with a [32P]-labeled RNA probe, washed, dried, and exposed to
re shown at the left. (C) Ponceau S staining of the transferred the DCIII-2
nd the 30K movement protein of TMV at different concentrations of NaCI
ositions of the DCIII-25K protein and the 30K protein of TMV are indicate
ifs I, IA, and II. a
ubcellular distribution of the PVX TGBp1 and its
-terminally truncated mutant

Assuming that the C-terminal region of the PVX 25K
rotein is dispensable for its ATPase and RNA binding
ctivities in vitro, we examined the role of this domain in

he subcellular distribution of the protein in plant cells.
wo fusions of the wt 25K protein with green fluores-
ence protein (GFP) were constructed. The GFP se-
uence was fused to the N terminus of the 25K protein

GFP-25K) or to its C terminus (25K-GFP). In preliminary
xperiments, we tested the functional competence of the
FP fusions by trans-complementation of the PVX ge-
ome containing a frameshift mutation in the 25K protein
ene, pPVX.GUS-Bsp, as described by Morozov et al.

1997). The cell-to-cell movement of this movement-defi-
ient PVX mutant was restored by cobombardment of
lant leaves with the 35S promoter-driven 25K-GFP gene
onstruct (pRT-25K-GFP) but not by the plasmid pRT-GFP-
5K expressing the GFP-25K fusion protein (Figs. 4C and
D). Therefore for subsequent experiments, we used the
t 25K-GFP fusion and its C-terminal deletion mutant
C-25K-GFP lacking the helicase motifs V and VI (Fig. 1).
Fluorescent and confocal laser scanning microscopy

f the Nicotiana benthamiana leaves bombarded with
onstructs pRT-25K-GFP and pRT-DC-25K-GFP revealed
imilar fluorescence patterns in epidermal cells (Figs. 4G

tern binding assay. (A) Ponceau S staining of the transferred 25K, DC-25K,
% SDS–PAGE and transferred to nitrocellulose. (B) the same gel as in (A)
ations in 6 M urea and the renaturation buffer without NaCI, the blot was
y film. The positions of the protein markers and their sizes in kilodaltons
the TMV 30K proteins. (D) RNA binding activities of the DCIII-25K protein
enaturation buffer. NaCI concentrations are shown above the panel. The
een (C) and (D).
rthwes
d to 15

g incub
an X-ra

5K and
in the r
nd 4H). Punctate fluorescence was located within or
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58 MOROZOV ET AL.
FIG. 4. Particle bombardment of the N. benthamiana leaves with TGBp1 constructs. (A–F) complementation of cell-to-cell movement of the
VX genome containing a frameshift mutation in the 25K protein gene, PVX.GUS-Bsp, by different TGBp1 constructs. Following histochemical
etection of GUS activity, leaves were were destained with 70% ethanol and photographed at equal magnification. Each experiment was

epeated 6–10 times. The presented images show leaf areas of 12 3 8.8 mm. (A) bombardment of the leaf with pPVX.GUS-Bsp [mean size of
pots 5 58.6 6 12.1 (SE) mm]. Cobombardment of pPVX.GUS-Bsp with pRT-PVX.25K (B) (mean 5 522.7 6 28.4 mm), pRT-GFP-25K (C) (mean 5
5.4 6 24.8 mm), pRT-25K-GFP (D) (mean 5 496.9 6 36.8 mm), pRT-PlAP25K (E) (mean 5 488.4 6 32.1 mm), or pRT-PlAMV-25K (F) (mean 5
6.2 6 20.5 mm). (G–I) distribution of the GFP fluorescence in the epidermal cells of the leaves bombarded with pRT-25K-GFP (G),
RT-DC-25K-GFP (H), or pCK-GFP-S65C (I). (G) and (H) are the optical sections of the typical cells taken with confocal laser scanning

icroscope. The bar in (I) represents 50 mm for (G and H).
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59FUNCTIONAL DOMAINS IN THE PVX 25K MP
djacent to the cell wall. In control experiments with
CK-GFP-S65C producing nonfused GFP, no cell-wall
ssociation or other specific targeting of fluorescence
as observed in the epidermal cells (Fig. 4I) where
istribution of fluorescence was typical for free GFP in
lant cells (Reichel et al., 1996). The ability of the 25K-
FP fusion protein to complement cell-to-cell movement
f PVX.GUS-Bsp suggested that it retains subcellular
istribution properties resulting from the intracellular
rotein targeting inherent to the wt PVX 25K TGBp1. It
hould be noted that subcellular distribution of fluores-
ence was similar in the cells of leaves bombarded with
RT-25K-GFP (Fig. 4G) and cobombarded with the mix-

ure of pPVX.GUS-Bsp and pRT-25K-GFP plasmids (data
ot shown), suggesting that intracellular targeting of the
VX 25K protein was not seriously affected by the other
irus products. Thus deletion of the 25K MP C-terminal
omain containing the helicase motifs V and VI did not

nfluence the subcellular distribution of the protein.

GBp1 specificity in complementation experiments

Previously we reported that the cell-to-cell movement
f the movement-deficient PVX.GUS-Bsp mutant could be

estored by cobombardment with pRT-PVX.25K express-
ng homologous PVX 25K TGBp1 gene (Morozov et al.,
997). In this study, we tested the ability of a heterolo-
ous TGBp1 protein of Plantago asiatica mosaic potex-
irus (PlAMV) to complement cell-to-cell movement of
VX.GUS-Bsp. A plasmid was constructed with the
lAMV TGBp1 gene placed under control of the 35S
romoter, and cobombardment of this construct with
PVX.GUS-Bsp was carried out. The PlAMV TGBp1 pro-

ein is similar in sequence to the PVX 25K (Solovyev et
l., 1994). However, the cell-to-cell movement of the PVX.
US-Bsp could not be complemented by the PlAMV
GBp1 protein (Figs. 4B and 4F).

To further test the compatibility of the TGB proteins in
he related potexviruses, a Bsp120I site was engineered
n the PlAMV TGBp1 gene at the position precisely cor-
esponding to that in the homologous PVX gene, and a
lAMV analogue of the PVX DC-25K mutant was ob-

ained (mutant PlAMV-DC-25K). Similarly to the PVX DC-
5K, this mutant of the PlAMV TGBp1 protein was unable

o complement PVX.GUS-Bsp movement (data not
hown). Using the Bsp120I site as a junction point, we
onstructed a chimeric TGBp1 consisting of the PlAMV-
pecific N-terminal region with the helicase motifs I–IV
nd the PVX C-terminal portion containing the motifs V
nd VI (Fig. 1). This hybrid protein complemented cell-

o-cell movement of PVX.GUS-Bsp at a level comparable
ith the PVX 25K protein (Fig. 4E). Thus replacement of

he PlAMV TGBp1 C-terminal region by that of PVX ren-
ered protein ability to complement the TGBp1-deficient

VX genome. g
DISCUSSION

The well-studied plant virus MPs, e.g., those of TMV
nd RCNMV, were shown to comprise a set of functional
omains involved in binding nucleic acids, targeting to
D, increasing PD size exclusion limit, and trafficking
ucleic acids through PD (Giesman-Cookmeyer and
ommel, 1993; Lekkerkerker et al., 1996; Kahn et al.,
998; for review, see Carrington et al., 1996; Gilbertson
nd Lucas, 1996; Ghoshroy et al., 1997). In this study, we
emonstrate that the 25K MP of PVX, the TGBp1 protein,
onsists of at least two functional domains.

The structural data have been presented recently
howing that the DNA helicases of superfamily 1, which
re similar to plant virus TGBp1 NTPase/helicases (Gor-
alenya and Koonin, 1989), consist of four spatial sub-
omains. The subdomain 1A contains the conserved
otifs I–IV, and the subdomain 2A includes motifs V–VI

Subramanya et al., 1996; Korolev et al., 1997). Protein
equence alignment of the PVX TGBp1 with two well-
haracterized DNA helicases (Rep and PcrA) showed

hat the subdomains 1B and 2B of the latter proteins
located in the protein sequence between motifs IA–II
nd IV–V, respectively) are almost precisely deleted in

he TGBp1 (data not shown). Assuming probable similar-
ty of subdomain organization between TGBp1 and Rep
nd PcrA, we assayed several deletion variants of the
VX TGBp1 to study contribution of the two putative
tructural domains to its activities. The observations that

he mutations in motifs I, IA, and II of the TGBp1 proteins
nhibited both their ATPase activity and virus cell-to-cell

ovement (Donald et al., 1995, 1997; Bleykasten et al.,
996) are consistent with the hypothesis that the cell-to-
ell movement of viral genomes is an energy-dependent
rocess (for review, see Carrington et al., 1996; Ghoshroy
t al., 1997). In addition to the TGB, involvement of the
irus-coded NTPases was demonstrated for a number of
ther virus transport systems (Agranovsky et al., 1997,
998; Carrington et al., 1998; Roberts et al., 1998). There
re at least three stages where ATP hydrolysis may be

mportant: first, intracellular transport of MP and/or virus-
pecific ribonucleoproteins (RNPs) to the cell wall (to PD
r to a compartment in the vicinity of PD) through the
ytoskeleton and the endomembrane system; second,

ncreasing the PD size-exclusion limit; third, trafficking of
roteins and RNPs through PD that uses a combination
f protein/RNA unfolding and microchannel dilation (for

eferences, see Ghoshroy et al., 1997; Heinlein et al.,
998; Kahn et al., 1998; Kragler et al., 1998; Reichel and
eachy, 1998). Amazingly, the plant viruses involving ATP-
ses in the cell-to-cell movement possess the largest
enomic RNAs. For example, no MP-associated ATPase
ctivity was found in the monopartite plus-RNA plant
iruses with the genome length of ca. 4 kb (as in the
enera Tombusvirus and Umbravirus) to 8.2 kb (as in

enus Vitivirus), whereas movement-related ATPases
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60 MOROZOV ET AL.
ere found in the monopartite viruses with the genomes
f ca. 6 kb (genus Potexvirus), or 10 kb (genus Potyvirus),

o 20 kb (genus Closterovirus) (for review, see Morozov
nd Solovyev, 1999). It was proposed by Ryabov et al.

1999) that single-gene coded MPs of RNA viruses may
e adapted to transport the genomes of a certain size
nly by analogy with MPs of DNA-containing geminivi-

uses (Rojas et al., 1998). The putative cell enzymes that
ouple energy from nucleoside triphosphate hydrolysis

o PD microchannels dilation and RNA translocation
hrough them might be adapted to transport RNAs not
xceeding the average size of cell mRNAs (#2–3 kb in

ength as a rule). Taking into consideration these facts,
e hypothesize that plant viruses with the large RNA
enomes have evolved own energy-transducing proteins
ith abilities of enhanced ATP turnover related to high
rocessivity of translocation along RNA chain, which are
pecifically adapted to move viral RNAs from cell to cell.

clue to the role of the TGBp1 NTPase in these pro-
esses was provided recently by Lough et al. (1998). It
as shown that the potexvirus TGBp1 can increase the
D size-exclusion limit in the absence of other viral
roteins and traffick RNA to the adjacent cells with the
ssistance of two smaller TGB proteins and CP. Impor-

antly, the mutation of the helicase motif I significantly
nhibits these activities. These data taken together with
he results presented in this paper suggest that the NTP
inding/hydrolysis by TGBp1 is important for modifica-

ion of PD structure and/or transport to (and through) PD.
eletion of the C-terminal domain (motifs V and VI) did
ot impair the NTPase and RNA-binding activities of the
5K MP (Figs. 2, 3A, and 3B), which implies that these

unctions are associated with the N-terminal domain
motifs I–IV). These findings were strengthened further
y the observation that the 25K MP fragment including
otifs I, IA, and II exhibited, unlike the wt protein, very

trong RNA binding comparable with that of the TMV MP
Figs. 3C and 3D). It is conceivable that removal of the
-terminal part of the 25K MP (motifs III–VI) alters the
onformation of the protein molecule and allows strong
NA binding. These data are in agreement with the

esults of Kadare et al. (1996) showing that the putative
elicase domain in replicative 206K protein of turnip
ellow mosaic virus with deleted motifs III–VI can bind
NA more efficiently than the isolated full-length domain.
e presume that interactions of the PVX TGBp1 with

ther viral or cell proteins may result in conformational
hanges causing exposition of the N-terminal RNA bind-

ng site and more pronounced RNA binding ability. Such
ransient changes may explain the differences in the
fficiency of RNA binding between TGBp1 of potexvi-

uses observed in vitro (see Rouleau et al., 1994; Kalinina
t al., 1996).

Using the translational fusions of the GFP to the PVX
GBp1 protein and its truncated derivative lacking the

-terminal sequence with NTPase motifs V–VI, we dem- p
nstrated that such deletion did not influence intracellu-
ar distribution of the TGBp1 protein. This observation is
n line with the finding that motif VI was dispensable for
rafficking the white clover mosaic potexvirus TGBp1
etween cells (Lough et al., 1998). All these data support

he idea that intra- and intercellular trafficking of this
rotein is a function of the N-terminal protein domain

Lough et al., 1998).
The TGBp1 proteins of PVX and PlAMV were shown to

e similar in their sequences (Solovyev et al., 1994; Wong
t al., 1998). However, our results showed that the PlAMV
GBp1 was unable to complement cell-to-cell movement
f the PVX genome deficient in TGBp1 in the experiments
n transient complementation of the movement-deficient
US gene-tagged PVX upon cobombardment with
lAMV TGBp1 gene (Figs. 4B and 4F). Similarly, the
utation in the PVX TGBp1 could not be complemented

y the distantly related TGBp1 proteins of hordeiviruses
O. N. Fedorkin, unpublished data). These observations
uggested that specific interactions between the TGBp1
rotein and other virus proteins could be involved in virus
ovement. To further test the phenomenon of the inter-

iral TGBp1 MP compatibility, we constructed the chi-
eric TGBp1 protein with PlAMV-specific N-terminal por-

ion (motifs I–IV) and PVX-specific C-terminal domain
motifs V–VI). In contrast to the PlAMV TGBp1, the chi-

eric protein was able to complement the mutated PVX
GBp1 as efficiently as the homologous PVX TGBp1
rotein (Fig. 4E). Presumably, the C-terminal region (mo-

ifs V and VI) is involved in specific interactions of the
GBp1 with other virus protein(s). The TGBp2 and TGBp3
roteins seemed to be plausible candidates for interac-

ions with the TGBp1 because recent genetic evidences
uggested such interactions between the TGB proteins

Lauber et al., 1998; Solovyev et al., 1999). It is tempting
o speculate that interactions of the aforementioned pro-
eins in PD or a cell compartment in the vicinity of PD

ight result in transducing the allosteric effects from the
-terminal domain to the enzymatic N-terminal domain
nd leading to significant increase of RNA binding and
TP hydrolysis. This suggestion is in agreement with the
roposed role of motif VI in DNA helicases (Korolev et al.,
997; Hall et al., 1998) and the effects of motif VI deletion
n the potexvirus TGBp1 functioning in the transient
ell-to-cell RNA transport system (Lough et al., 1998).

These results suggest that the potexvirus TGBp1
roteins consist of at least two functional domains
orresponding to the spatially divided structural sub-
omains found in the DNA helicases of superfamily I.
he N-terminal domain determines the protein enzy-
atic functions involved in intra- and intercellular traf-

icking, whereas the C-terminal domain presumably
lays a structural role in interactions with other virus

roducts.
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METHODS

onstruction of the potexvirus TGBp1 mutant
nd chimeric forms

All recombinant DNA procedures were carried out by
tandard methods (Sambrook et al., 1989). E. coli strains
H5a and M15 [pREP4] were used for cloning of recom-
inant constructs and for protein superexpression, re-
pectively. The expression vector pQ25 carrying the
ene of the PVX 25K protein with a six-histidine tag at the
mino terminus was described previously (Kalinina et al.,
996). To obtain pQ25DC, the plasmid pQ25 was linear-

zed by Bsp120I at the site corresponding to the position
945 in the complete nucleotide sequence of PVX (Skry-
bin et al., 1988), blunted by Klenow fragment, and reli-
ated. To obtain pQ25IIIC, the plasmid pQ25 was di-
ested by SnaI at the site corresponding to the position
734 in the complete nucleotide sequence of PVX (Skry-
bin et al., 1988) and HindIII located in pQ25 downstream
f the PVX sequence, then the plasmid was blunted by
lenow fragment, and religated. To construct the
Q25DN, the plasmid pQ25 was digested by SnaI and
indIII, and the resulting DNA fragment was inserted

nto pQE30 plasmid (QIAGEN) digested by SmaI and
indIII.
For construction of the 25K fusions, a gene of red-

hifted GFP mutant from pCK-GFP-S65C plasmid
Reichel et al., 1996) was used. The PVX 25K protein gene

as PCR amplified with primers 59-ATTTGAATTCCATG-
ATATTCTCATCATTAG and 59-CGGTCTCGAGATGTCCC-
GCGCGGACATATG using as the template the plasmid
RT-PVX.25K (Morozov et al., 1997). The 59-terminal
rimer for PVX 25K gene contained EcoRI site (shown in
old), and the 39-terminal primer contained XhoI site

italic) replacing the termination codon. The gfp gene
as excised from pCK-GFP-S65C by NcoI-BamHI diges-

ion and cloned into similarly digested pRT100 (Töpfer et
l., 1987) to give pRT-GFP. To construct pRT-25K-GFP,
RT101 digested with EcoRI and BamHI was ligated with
hoI-BamHI fragment excised from pRT-GFP and with
coRI-XhoI-digested 25K PCR product. To construct pRT-
FP-25K, the plasmid pRT-GFP was modified to replace

he terminator codon of the GFP gene by the sequence
GATCCATGG containing BamHI and NcoI restriction

ites. Following digestion of the resulting plasmid with
coI, the fragment containing the GFP gene was isolated
nd cloned into NcoI-digested plasmid pRT-PVX.25K

Morozov et al., 1997). To obtain pRT-DC-25K-GFP, pRT-
5K-GFP recombinant plasmid was completely digested
ith Bsp120I and religated.
The PlAMV 25K protein gene was amplified with prim-

rs 59-GGCCATGGACTCCATTATCAACGCA and 59-CTT-
CTAGAGTCAGAGGGTGGGGTGAGGT containing NcoI
ite (shown in bold) and XbaI site (italic), and the result-

ng PCR product was digested with NcoI and XbaI and

loned into similarly digested pRT100 (Töpfer et al., 1987) M
o give the plasmid pRT-PlAMV-25K. To obtain plasmid
RT-PlAMV-25K-Bsp, the Bsp120I restriction site was en-
ineered at a positions of the PlAMV 25K protein gene
orresponding to the positions 4701–4706 in the PlAMV
enome (Solovyev et al., 1994). This restriction site pre-
isely matched the Bsp120I site in the PVX 25K gene
equence. To construct pRT-PlAMV-DC-25K, the plasmid
RT-PlAMV-25K-Bsp was completely digested by
sp120I, blunted by Klenow fragment, and religated. To
btain the plasmid pRT-PlAP25K with the chimeric
GBp1 gene, Bsp120I-XbaI-fragment from pRT-PVX.25K

Morozov et al., 1997) was cloned into similarly digested
RT-PlAMV-25K-Bsp to replace the PlAMV sequence by

hat of PVX.

xpression and purification of the potexvirus TGBp1
nd mutant forms

E. coli strain M15 transformed with the recombinant
ectors was grown at 37°C in liquid culture until an OD600

f 0.8–0.9 was reached. Expression of the proteins was
nduced with 1 mM IPTG followed by growth for 2–4 h at
7°C. The purification of recombinant proteins from cul-

ures followed a general procedure described by the
anufacturer (QIAGEN) for denaturing Ni–NTA chroma-

ography.

TPase and RNA binding assays

ATPase assays were carried out as described previ-
usly (Kalinina et al., 1996). In brief, in a final volume of 10
l reaction mixtures contained 10 mM Tris–HCl pH 8.0,

0% glycerol, 1 mM DTT, 1 mM EDTA, 5 mM MgCl2, 5 mM
TP, 1 mCi [g-32P]ATP, and 0.5 mg of protein. When indi-
ated, the TMV RNA was included in the reaction mixture
t the concentration of 100 mg/ml. Reactions were incu-
ated for 1 h at 37°C and stopped by the addition of
DTA to a final concentration of 20 mM. To estimate the
TPase activity, unreacted ATP was precipitated by ad-
ition of 300 ml of 7.5% activated charcoal in 50 mM
Cl/5 mM H3PO4; the mixtures were vortexed and al-

owed to stand for 5 min, then charcoal was centrifuged
n a microcentrifuge for 10 min, and half of supernatant

as analyzed by Cherenkov’s counting.
RNA-binding assays were performed with filter-bound

roteins as described previously (Kalinina et al., 1996).
he purified recombinant proteins were separated by
lectrophoresis in 15% SDS–PAGE and electroblotted
nto nitrocellulose membranes. Membranes were washed

wice for 30 min with 6 M urea containing 0.1% Tween 20.
embrane-bound proteins were renatured in buffer R (20
M Tris–HCl, pH 7.5, 0.2 g/l BSA, 0.2 g/l Ficoll, 0,2 g/l

olyvinylpyrrolidone) for 1 h with two to three changes of
uffer. Following renaturation, the membranes were in-
ubated at room temperature with 32P-labeled RNA tran-
cript (1–2 3 106 dpm/ml) in 2–5 ml of buffer R during 1 h.

embranes were washed with buffer R three to four



t
s
m
p

P

m
1
l
t
S
m
o
b
e
c
c
b
o
f
4
a

s
t
a
a
C
l
h
p
F
t
b
a

A

A

A

A

B

B

C

C

D

d

D

D

D

D

G

G

G

G

G

G

H

H

H

H

J

62 MOROZOV ET AL.
imes for 30 min, dried, and autoradiographed. Labeled
ingle-stranded RNA was synthesized by T7 RNA-poly-
erase in the presence of [a-32P]UTP from linearized

XT7–25 template (Morozov et al., 1990).

article bombardment

Particle bombardment was performed using flying disk
ethod with a high-pressure helium-based apparatus PDS-

000 (Bio-Rad) as described in Morozov et al. (1997). Rep-
ication and movement of PVX.GUS was monitored by his-
ochemical detection of GUS expression (Jefferson, 1987).
amples were infiltrated in the colorimetric GUS substrate
odified to limit the diffusion of the intermediate products

f the reaction (De Block and Debrouwer, 1992). After incu-
ation overnight at 37°C, the leaves were fixed in 70%
thanol and examined by light microscopy. GFP fluores-
ence was detected using Zeiss Axioscope 20 fluores-
ence microscope (excitation filter BP 450–490, chromatic
eam splitter FT 510, and long pass emission filter LP 520
r band pass filter HQ 535/50x) or Bio-Rad MRC-1024 con-

ocal laser scanning imaging system with excitation light of
88 nm produced by krypton/argon laser tuned to 15 mW
nd filters UBHS and E2.
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änen, L. (1999). RNA helicase activity of semliki forest virus replicase
protein NSP2. FEBS Lett. 448, 19–22.

ing, B. (1997). Cell-to-cell transport of macromolecules through plas-
modesmata: a novel signalling pathway in plants. Trends Cell Biol. 7,
5–9.

onald, R. G., Lawrence, D. M., and Jackson, A. O. (1997). The barley
stripe mosaic virus 58-kilodalton b protein is a multifunctional RNA
binding protein. J. Virol. 71, 1538–1546.

onald, R. G., Zhou, H., and Jackson, A. O. (1993). Serological analysis
of barley stripe mosaic virus-encoded proteins in infected barley.
Virology 195, 659–668.

onald, R. G., Petty, I. T. D., Zhou, H., and Jackson, A. O. (1995).
Properties of genes influencing barley stripe mosaic virus movement
phenotypes. In ‘‘Fifth International Symposium on Bio/Technology
and Plant Protection: Viral Pathogenesis and Disease Resistance,’’
pp. 135–147. World Scientific, Singapore.

hoshroy, S., Lartey, R., Sheng, J., and Citovsky, V. (1997). Transport of
proteins and nucleic acids through plasmodesmata. Annu. Rev. Plant
Physiol. Plant Mol. Biol. 48, 27–49.

iesman-Cookmeyer, D., and Lommel, S. A. (1993). Alanine scanning
mutagenesis of a plant virus movement protein identifies three func-
tional domains. Plant Cell 5, 1783–1794.

ilbertson, R. L., and Lucas, W. J. (1996). How do viruses traffic on the
“vascular highway”? Trends Plant Sci. 1, 260–268.

ilmer, D., Bouzoubaa, S., Hehn, A., Guilley, H., Richards, K., and Jonard,
G. (1992). Efficient cell-to-cell movement of beet necrotic yellow vein
virus requires 39 proximal genes located on RNA 2. Virology 189,
40–47.

orbalenya, A. E., and Koonin, E. V. (1989). Viral proteins containing the
purine NTP-binding sequence pattern. Nucleic Acids Res. 17, 8413–
8440.

orbalenya, A. E., and Koonin, E. V. (1993). Helicases: amino acid
sequence comparisons and structure-function relationships. Curr.
Opin. Cell Biol. 3, 419–429.
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