
Journal of Computational and Applied Mathematics 128~13 (1985) 131-143 
North-Holland 

131 

Lattice methods for multiple integration * 

Ian H. SLOAN 
University of New South Wales, Sydney, N.S. W. 2033, Australia 

Abstract: This paper reviews the use of lattice methods for the approximate integration of smooth periodic functions 
over the unit cube in any number of dimensions. 
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1. Introduction 

The objective of this paper is the numerical integration of smooth periodic functions in s 
dimensions. That is, we consider 

r(f)=/!../*& ,..., x3) dx,...dx,=/Uf(x) dx, 0.1) 
0 0 

where US is the s-dimensional unit cube (which for later convenience we take to be open on part 
of the boundary), 

U’= {xEuV:O~Xi<l, l<i<s}, 0.2) 

and f is periodic with period 1 with respect to each coordinate separately, or equivalently 

f(x+j)=f(x), jEZJ, XER’. (1.3) 

In one dimension the problem reduces to 

I(f) =lolf(x) dx9 

where f is periodic with period 1. For that problem the favoured method of numerical integration 
(see, for example, [4, p. 1061) is the trapezoidal rule, or what is equivalent (because of the 
periodicity of f ), the rectangle rule 

.(f)=ggf($). (1.4) 

The justification may be expressed in terms of the Euler-Maclaurin expansion, as in [4], or in 
terms of a Fourier series argument (see Section 2). 
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What is the s-dimensional analogue of the l-dimensional rectangle rule? There is no unique 
answer, but probably the most obvious generalization is the product-rectangle rule (hereafter 
called simply the rectangle rule), 

. . . yf[; ,...) $), 
L-0 

(1.5) 

in which the total number of points N is given by N = n’. The rectangle rule suffers badly from 
the ‘curse of dimensionality’, in that for fixed n the total number of points N rises very rapidly 
indeed as s increases. 

A more interesting generalization is the number-theoretic ‘good-lattice’ method of Korobov 
[lo] and others [2,7,8,12,17]. (Useful reviews are in [5,6,12,16,18].) In this method one first 
chooses the total number of points N (with N often taken to be prime, or the product of two 
primes), and chooses an integer vector p E k”. (The choice of p will be discussed later.) Then 
I(f) is approximated by 

where the braces about a vector indicate that the fractional part of each component is to be taken 
(with the fractional part lying in [0, 1)). For example, for s = 2 we obtain, by choosing N = 5 and 
P = (1, 21, 

I,(f) =i[f(O, 0) +f(h 3) +f(h 2) +fK 4) +fC :)I* 

As here, we shall always assume that at least one component of p is relatively prime with N, so 
that the quadrature rule (1.6) uses N distinct points in U”; in practice this is usually achieved by 
choosing p1 = 1. the one-dimensional rectangle rule (1.4) is recovered by setting s = 1 and p1 = 1. 

In this paper we shall call a rule of the form (1.6) a ‘single-generator rule’, because all the 
quadrature points are generated by the single vector p/N-a fact that makes the rule remarkably 
easy to code. 

Much of the number-theoretic literature referred to above is concerned with proving that in a 
certain sense, to be made precise later, there exist ‘good lattices’, that is good choices of N and p 
for use in (1.6). These arguments are based on the following simple expression for the error in 
(1.6): if f has the absolutely convergent Fourier series representation 

f(x) = C u(m) e2nim’x, 
mEi!’ 

(1.7) 

where m - x = mlxl + - - - +m,x,, then, as is easily shown, the error in (1.6) is 

Mf)-I(f)= c 4m), 
m.p=O(mod N) 

(1.8) 

where the prime indicates that the m = 0 term is to be omitted from the sum. Note that the values 
of m not satisfying the equation m-p = 0 (mod N) contribute nothing to the error, the 
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corresponding Fourier components being integrated exactly by the rule (1.6). Thus the villains of 
the piece are the non-zero values of m that satisfy the diophantine equation: for them the rule 
(1.6) gives the wrong answer IN(e2nim’X ) = 1, because each term in the sum in (1.6) now equals 1. 

The point of view taken here, as in a recent paper of Sloan and Kachoyan [13], is that the 
rectangle rule (1.5) and the single-generator rule (1.6) are both special cases of a much more 
general family of ‘lattice methods’, of the form 

Mf) = + yf(xj), 
J'o 

where x1,..., xN are the points of a suitable periodic lattice that lie in U”. (Precise definitions are 
given in the next section.) The important point is that every lattice method yields an error 
expression analogous to (1.8); the precise result, quoted from [13], is stated as Theorem 1. Some 
of the arguments that have been used in the number-theoretic literature can then be extended to 
lattice methods in general, and a sketch of that development is given in Section 3. None of this 
would be of much interest, however, unless the theory leads to the development of interesting 
lattice methods different from those known already. At the end of the paper some first attempts 
in this direction, taken from [14], are reported. 

2. Lattice methods 

A lattice, in the sense required here, is an infinite set S of points in W” with the following three 
properties: 

(1) x, x’ E s * x f x’ E s; 
(2) S contains s linearly independent points; 
(3) Zl a sphere centred at 0 that contains no point of S other than 0 itself. 
Of particular interest to us are lattices that have the same periodicity property as f: 

Definition [13]. A lattice S is a multiple-integration lattice if it contains H” as a sub-lattice. 

For each multiple-integration lattice there exists a corresponding lattice method: 

Definition [13]. A lattice method is a quadrature rule of the form (1.9) in which the points 
x0,. . . , x~_~ are all the points of a multiple-integration lattice S that he in U”. 

Both (1.5) and (1.6) are examples of lattice methods. 
is the rectangular lattice 

S=(($ ,..., +): &EZ,l<i$s}, 

For the former the corresponding lattice 

(2.1) 
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and for the latter it is 

s = j$+k: jEZ, kEZ’). (24 

The following result, proved by group-theoretical arguments in [13], is a generalization of (1.8). 

Theorem 1 [13]. Let IN be a lattice method, corresponding to the multiple-integration lattice S, and 
let f have the absolutely convergent Fourier series representation (1.7). Then 

Mf)-I(f)= C’ 44, 

mE.7’ 

where S ’ is the ‘dual’ of S. 

The ‘dual’ of a lattice is a concept of geometric number theory [l], which also plays an 
important role in coding theory [15], X-ray diffraction [9], solid-state physics [9], and now 
mu1 tiple integration. 

Definition. The dual of the lattice S is 

sL= {mERJ:m~xEH,vxES}. (2.3) 

The dual of a lattice is a lattice in its own right [l]. The dual of a multiple-integration lattice is 
easily seen to be a subset of HS. Further properties of lattices and duals are given in [1,15] and 

P31. 

Example 1. For the one-dimensional rectangle rule (1.4), the dual of the corresponding lattice is 

Sl=NZ. (2.4) 

Thus, from Theorem 1, we have 

Mf)--I(f)= C’ a(m). 
msO(mod N) 

Example 2. For the s-dimensional rectangle rule (1.5), the dual of the corresponding lattice (2.1) 
is 

SL = (nh)‘. (2.5) 

Thus 

MfW(f)= c 44 

m, &i&i N), 
l*i<s 

Example 3. For the single generator rule (1.6) the dual of the corresponding lattice (2.2) is easily 
seen to be 

S’= {~EH’: rn-p=O(mod N)}. 

Thus the error expression (1.8) is recovered. 

(2.6) 
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In general, the construction of the dual of a lattice is an easy task once so-called ‘generators’ of 
the lattice are known. (A linearly independent subset {a,, . . . , us} of the lattice S is a set of 
generators if S consists of the integer linear combinations of ui, . . . , a,.) For further details see 
[15] and [13]. 

3. Good lattices 

Theorem 1 makes it possible to compare theoretically the performance of different lattice 
methods, once we decide on a suitable class of test functions f. Following Korobov, we define, 
for each a > 1 and each c > 0, a class E,“(c): 

where a(m) is the mth Fourier coefficient of f (see (1.7)) and 

m= 
( 

m, if Irnl> 0, 

1, if m=O. 

Then the following result is an immediate consequence of Theorem 1. 

(3.1) 

(3.2) 

Corollary. If f E E,“(c), where a > 1 and c > 0, and if IN is a lattice method corresponding to the 
lattice S, then 

The error bound in the Corollary may be written as 

IIN(fF-I(f)l~cP~~ f~E,“(ch (3.3) 
where 

pa= C’ (- l--)a. (3.4 
ItZESl m,... s 

This quantity may be used, for fixed a (e.g. (Y = 2), as a quantitative measure of the performance 
of different lattices-the smaller the value of Pa the better is the lattice, in the sense of giving a 
better bound in (3.3). 

The quantity Pa is the integration error for the particular function f, E E,“(l) defined by 

fp(4 = C (_ ’ ~ y2qimY (3.5) 
mEZ’ ml... s 

since Theorem 1 gives 

pa = 4vm -I(fJ. (3-6) 

The function f, is a ‘worst’ function in E,“(l), in that for f = f, and c = 1 the inequality (3.3) 
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becomes an equality. Note that f, is a product of functions of 

f,(x) = WA *. - fih(X,)~ 
where 

F,(x) = C $e2vimx. 
mEi! 

a single variable, 

(3.7) 

For a = 2,4, . . . the function F, can be obtained explicitly; in particular, it is easily verified that 

F2(x) = 1 + 2a2(x2 -x + ;), OfX<l, 

&(x)=1+&i?4(1-30x2(1-x)2), Ogx<l, 

together with, for all a, 

F=(x)=r’h(x+l), XER. 

In the number-theoretic literature, a particular choice of N and p in the formula (1.6) is said 
to give a good lattice, or some such phrase, if it gives sufficiently good behaviour for Pa as 
N + co. For example, Korobov’s rather technical definition of a sequence of ‘optimal coeffi- 
cients’ (for details see, for example, [5]) has the property that for such a sequence there exist 
c, > 0 and /3 > 0, with /3 depending only on s, and c, only on a and s, such that 

(3.8) 

It has been a significant achievement of the number-theorists to show that such sequences exist. 
However, the proofs are generally not constructive. For example, in the simplest case Korobov 
restricts N to be prime, takes p to be of the form p = (1, a, u2,. . . , a’-‘), for 1 d a Q N - 1, and 
shows that averaging over the allowed values of a already yields the rate of convergence (3.8) for 
suitable c, and /3; thus the best values of a must do as well or better. To find good coefficients in 
practice, one usually fixes N, and finds p by minimising Pa or a similar quantity by a more or 
less exhaustive search. 

Zaremba’s criterion of a good lattice is expressed slightly differently, in terms of an integer p: 

p=min(zi,...Ei,), subjecttom.p=O(mod N), m#O. 

According to Zaremba [18], a particular choice of N and p gives a good lattice if 

p > (s - l)!N,‘(2 log N)? (3 -9) 

It is natural to extend the definition of p to the case of an arbitrary lattice S; thus we define 

~=min(Eir...Ei,), subjecttomESL, m#O. (3.10) 

Intuitively, one expects that large values of p will correspond to small values of P,, since the 
largest terms in (3.4) are equal to l/p”. Zaremba and others have made this notion precise for the 
case of single-generator rules by estimating the sum Pa in terms of p, the sum now being over the 
non-zero solutions of m - p = O(mod N). It turns out that the key point in several of those 
arguments is that the solutions of the diophantine equation form a lattice. That fact allows some 
of the arguments to be extended to the dual of an arbitrary multiple-integration lattice S. In that 
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way the following result, which generalizes a theorem of Hua and Wang [8] for the case of 
single-generator rules, has been proved in [13]: 

Theorem 2 [13]. Let S be a multiple-integration lattice. Then for a > 1 

P, < d(s, a)p-“(1 + log p)“-‘, 

where d(s, a) depends only on s and a. 

The numerical results in subsequent sections show that the size of p is a good, but not perfect, 
guide to the size of P,. (The intuitive argument above misses one important aspect: there may be 
a number of terms in (3.4) of the same size l/p”, and that number can be markedly different for 
different kinds of lattice.) 

4. Examples 

We begin with some two-dimensional examples. In Fig. 1 we show the quadrature points for a 
good single-generator rule, with N = 89 and p = (1, 55), due to Zaremba [17]. That this is a good 
lattice (using the words here in a general sense) is apparent from the dual lattice, shown in Fig. 2: 
roughly speaking, there are no non-zero points in the dual very close to the origin. From the 
point of view of the error bound (3.3) the worst points in the dual are those at f(34, 1) (which 
happen to be off the picture). Accordingly, p, defined by (3.10), has the value 34. (It is no 
accident that the numbers 34, 55 and 89 are consecutive Fibonacci numbers. For details of the 
Fibonacci construction for s = 2, see Zaremba [17]. There seems to be no known analogue of this 
construction for s > 2.) The values of Pz and P4 obtained with the quadrature points in Fig. 1 are 
given in the first line of Table 1, and may be considered satisfactorily small. 

The quadrature points for a less good single-generator rule with the same number of points are 

1 

0.5 

Fig. 1. Quadrature points for a good single-generator 
rule with N = 89 and p = (1, SS), due to Zaremba [17]. 
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Fig. 2. The dual of the lattice in Fig. 1. 
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Fig. 3. Quadrature points for the single-generator rule 
with N = 89 and p = (1, 47). 

Fig. 4. The dual of the lattice in Fig. 3. 

shown in Fig. 3-in this case the vector p has been rather arbitrarily taken as (1,47). This time 
the dual lattice, shown in Fig. 4, has non-zero points closer (in the relevant sense) to the origin: 
the worst points are at +(5, - 2), giving p = 10, which is markedly worse than before. It is 
therefore no surprise that the corresponding values of P2 and P4 in Table 1 are much larger than 
those for the first lattice. 

We also show in Table 1 the result for two rectangular lattices, with N = 16 = 42 and 
N = 64 = 82 respectively. The quadrature points for the first of these are shown in Fig. 5, and the 
corresponding dual is shown in Fig. 6. In any number of dimensions the worst points in the 
rectangular dual lattice (2.5) are those at st (n, 0,. . . , 0) and similar points on the other axes, thus 
the value of p is 

p=n = N’/“. (4.1) 

In particular, p = 4 and 8 respectively for the two rectangular lattices in Table 1. The latter is a 
very poor value compared with the value p = 34 obtained with the good single-generator rule with 
a comparable number of points. In a sense that poor value of p ‘explains’ the relatively poor 
values of P2 and P4 obtained with the 64-point rectangle rule. 

The two remaining entries in Table 1 are explained in the next section. 

Table 1. 
Results for s = 2. 

N lattice P p2 p4 

89 p = (1, 55) 34 0.016 0.000 008 
89 p = (1947) 10 0.032 0.0002 
16 rectangular 4 0.45 0.017 
64 rectangular 8 0.11 0.001 
32 w42 8 0.13 0.0011 
64 W.44 16 0.04 0.000 10 
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Fig. 5. Quadrature points for the rectangle rule with 
N = 16 = 42 points. 
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Fig. 6. The dual of the lattice in Fig. 5. 

5. Other lattices 

Lattice methods are not in short supply, since many well-understood lattices (see, for example, 
the tables of Sloane [15]) can be transformed into multiple-integration lattices by a suitable 
scaling. 

Here we follow a different approach, as in [13,14], and ask if the ‘worst’ points in the dual of 
the rectangular lattice can be removed by the judicious addition of further quadrature points-the 
addition of quadrature points adds points to the lattice S, and correspondingly depletes the dual 
lattice S * . 

We recall that the worst points in the rectangular dual, from the point of view of the sum (3.4), 
are the innermost points on each axis. These can all be removed by adding to the rectangular 
lattice (2.1) one point at the centre of each of the small cubes of side l/n: that is, we replace the 
rectangular lattice (2.1) by the ‘body-centred cubic’ lattice [13] 

s=(($ ,..., +)+&(I )...) l>:j, )..., j,, kEZ}. 

The total number of points in the corresponding lattice method is N = 2n”; and as the worst 
points in the dual are now f (2n, 0,. . . , 0) (and similar points on the other axes), we have 

p = 2n = 21-‘/‘N’/’ 
(5.1) 

which is certainly better than (4.1). 
We may go further in the same direction, following [14], and introduce the lattice W,,, 

1 dr~n, defined by 

s=((+ ,..., i)+;(l)...) l>:j* ,..., i,, kEZ}. (5 4 
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Table 2 
Results for s = 6. 

N lattice P p2 p4 

2129 p = (1,41, . ..) 4 2.0 0.019 
2187 %3 9 1.5 0.007 

15019 p = (1, 8743, . ..) 8 0.2 0.0007 
16384 W4 16 0.3 0.0007 
71053 p = (1, 18010, . ..) 18 0.033 0.00003 
78125 w,, 25 0.11 0.000 1 

The total number of points in the corresponding lattice method is N = m’, and the value of p can 
be shown to be [14] 

p=rn= rl-w~l/~* (5.3) 

The cases r = 1 and 2 give the rectangle and body-centred cubic rules respectively. Another case 
of particular interest is r = n: for the lattice W,, we have the result 

p = n2 = @(“+‘), (5.4) 

which is markedly better than the result (4.1) for the rectangular lattice. 
Numerical results for the two-dimensional lattices W,, and W, are shown in Table 1. The 

quadrature points for the latter are shown in Fig. 7, and the corresponding dual lattice is shown 
in Fig. 8. Note that W,, with N = 64, has p = 16, a quite respectable value, and correspondingly 
reasonable values for P2 and P4- certainly much better values than those for the 64-point 
rectangle rule. 

We turn now to more serious calculations and higher dimensions. In Table 2 (for s = 6) we 
show values of p, P2 and P4 for the lattices Wss, W, and II&, and also for three single-generator 
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Fig. 7. Quadrature points for W,. Fig. 8. The dual of the lattice W,. 
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Table 3 
Results for s =lO. 

N 

155093 
177 147 

lattice P p4 

p = (1, 90485, . . .) 4 0.069 
w3 9 0.020 

‘good lattices’ with comparable values of N. (The coefficients and the values of p for the latter 
are taken from the tables of Maisonneuve [ll].) 

The results in Table 2 for the largest values of N show that a well chosen single-generator rule 
with a number of points comparable to W,, yields better results than W&, at least as judged by P2 
or Pd. On the other hand, for the two smallest values of N the better results are given by W,,; 
and for the two cases in the middle the result is a tie. The better performance of the good 
single-generator rules for large enough N is, of course, inevitable, given (3.8). However, the 
results also remind us that for smaller values of N the asymptotic order estimates are not 
necessarily a reliable guide. 

The point is seen even more strikingly in Table 3: there we see that for s = 10 the largest 
single-generator rule in the tables of [ll] yields a worse value of P4 than I+‘,, does. Thus the 
higher order of convergence of the single-generator rules may seem, in this case, rather academic. 

6. Discussion 

Among the important aspects of lattice methods that we cannot do justice to here are: 
(1) Methods for periodizing non-periodic functions. (For a discussion in the context of 

single-generator rules, see [l&8].) 
(2) Extrapolation. (Whereas the convergence of the number-theoretic single-generator rules is 

erratic, a sequence of rectangle rules, or similarly of the rules W,,,, may allow Richardson 
extrapolation for suitable functions f.) 

(3) Error estimation. (The method of Cranley and Patterson [3] can be extended to any lattice 
method. Alternatively, for regular sequences such as { W,,,} extrapolation arguments may be 
useful for estimating the error if s is not too large.) 

Table 4 
Approximate integrals of the function (6.1). 

4 N lattice Zh4f 1 
6/n’ 71053 p = (1, . ..) 1.0026 

78 125 KS 1.048 

1 71053 p=(l, . ..) 1.033 
78 125 w,, 1.112 

15/l? 71053 p = (1, . ..) 1.306 
78 125 w,4 1.247 
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(4) Symmetric integrands. (For an integrand with many of the symmetries of the cube, a 
symmetric rule such as the body-centred cubic rule may become attractive, because of the great 
reduction that can result in the number of quadrature points, especially in high dimensions. By 
contrast, the single-generator rules usually have as their on/y symmetry inversion in the centre of 
the cube, so that the reduction in the number of quadrature points due to symmetry is in this case 
at most a factor of one half.) 

I want to conclude on a note of caution. The use of the numbers P2 and P4 to compare 
different lattices, as we have done in Sections 4 and 5, and which is at the very heart of the notion 
of good lattice in the number-theoretic literature, can be misleading. We recall that the use of 
these quantities is based on the error bound (3.3), and that Pa is actually the integration error for 
a ‘worst’ function f, in the class E,“(l). The trouble is that the relative performance of different 
lattices can change significantly under apparently quite small changes in the function f. 

To help make the point, I show in Table 4 some s = 6 results, for the function 

(6.1) 

for three different values of the parameter q. Note that for q = 1 the function is just f2, so we 
recover results already seen in Table 2. The first value of q is smaller than 1, and so fcq) has 
some of its Fourier coefficients reduced compared to f 2. (The reduction is by a factor q’, where 
I= !(m) is the number of non-zero components of m.) The change is seen to favour the 
single-generator rule more than it favours W,,. Conversely, the third value of q is greater than 1, 
and this time the change is seen to cause relatively less harm to W,, than to the single-generator 
rule. The different behaviour is understandable in terms of the different nature of the dual 
lattices in the two cases. (The ‘worst’ points in the dual of W,, have only one or two non-zero 
components, whereas for the well chossn single-generator rules the ‘worst’ points in the dual may 
have many non-zero components). However, it bedevils any attempt to use a single number to 
characterise the performance of a lattice method. 

In spite of this difficulty of interpretation, the results for W,, in Section 5 do suggest that 
these lattices might have a role to play for suitable classes of functions f. More importantly, they 
may encourage the search for other and better lattices. It seems clear that an essential tool for the 
design of such lattices is the dual lattice: for, in the end, a lattice is only as good as its dual. 
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