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Abstract

Previous constructions of supersymmetry for double field theory have relied on the so-called strong
constraint. In this paper, the strong constraint is relaxed and the theory is shown to possess supersymme-
try once the generalised Scherk–Schwarz reduction is imposed. The equivalence between the generalised
Scherk–Schwarz reduced theory and the gauged double field theory is then examined in detail for the super-
symmetric theory. As a biproduct we write the generalised Killing spinor equations for the supersymmetric
double field theory.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Double field theory has been through a recent rebirth. After its original inception [1,2] and
development [3–5] there has been a huge number of works by a variety of groups extending
the formalism in numerous directions and exploring its consequences [6–20,23–64]. See the
following and references therein for a review of the subject [65,66].
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In double field theory one doubles the dimension of the space to make the O(D,D) symmetry
manifest on a 2D-dimensional space and then imposes a separate so-called section condition that
restricts to a D-dimensional submanifold. Different choice of solutions to this section condition
produce different T-duality frames. If one may pick a global choice for the solution to the section
condition, i.e. there is a global choice for the T-duality frame then one is ultimately left with
a normal supergravity theory and although this reformulation may be interesting we are only
rewriting the theory.

This section condition is intimately tied to the consistency of the theory, the algebra of gen-
eralised Lie derivatives depends on the section condition for its closure; the supersymmetric
formulations of the theory rely on the section conditions for supersymmetry to work; and various
geometric aspects such as tensorial properties appeared to depend directly on the obeying of the
section condition.

One of the most exciting aspects of double field theory is to examine to what extent one
may relax the section condition and remain a consistent theory. Remarkably, it is known that
the Scherk–Schwarz ansatz allows one to do exactly this [16–20]. That is we relax the section
condition and allow dependence on both the usual coordinates and their duals simultaneously.
However, the geometry is not unconstrained; the generalised metric must obey the so-called
Scherk–Schwarz factorisation (we will describe this subsequently). It has been shown how all
the consistency checks such as closure of the local algebra and the obeying of the Jacobi identity
are satisfied even though there is explicit dependence on all the extended coordinates [16–20].
The generalised Scherk–Schwarz reduced theory then produces a gauged supergravity theory.
The embedding tensor [21,22] which determines the gauging then becomes related to the twist
matrix of the Scherk–Schwarz anstaz. This result filled a lacuna in M-theory; now all known
supergravities theories (with appropriate amounts of supersymmetry) have lifts to a single theory
– although that theory necessarily has novel extended dimensions.

So far there have been different approaches to studying the geometry of these Scherk–Schwarz
reduced theories [33–35]. In this paper we wish to examine the Scherk–Schwarz reduced theories
in the context of the supersymmetric formulation of double field theory developed by [23–29]
where one has a semi-covariant formulation (the choices of formalism and their relevant various
properties is discussed in [33]). Using this semicovariant formulation we develop how supersym-
metry works in double field theory once we remove the section condition. As a by product we
will produce the BPS equations (i.e. Killing spinor equations) for double field theory in the ab-
sence of section condition. Solving these might have substantial applications for future directions
in exploring new and novel solutions to double field theory outside that of usual supergravity.

We begin by describing the geometry for gauged double field theory and then its supersym-
metric extension. The generalised Scherk–Schwarz ansatz is described and related to the gauged
double field theory in the supersymmetric formalism. Finally we write down the Scherk–Schwarz
reduced Killing spinor equations for double field theory. An extensive appendix gives the details
of the bosonic reduction that has appeared elsewhere in the literature (it is repeated here so as
to provide notation and a quick reference). In a second appendix the reduced spin connections
necessary for the construction of the reduced Dirac operators are given (this has not appeared
before).

In summary and for emphasis, the purpose of this paper is to extend gauged double field
theory and the related Scherk–Schwarz reduced double field theory to the supersymmetric case.
That is we explicitly construct supersymmetric actions including the Fermionic sector and the
associated supervariations. A key motivation, as stated above, is that in previous supersymmetric
constructions of double field theory, the strong constraint appeared as a necessary condition for
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supersymmetry to work. Here we show that the generalised Scherk–Schwarz case is also con-
sistent with supersymmetry. This in turn supports the idea that the additional coordinates are
physical, i.e. we can allow nontrivial coordinate dependence in these novel directions (although
restricted to be of Scherk–Schwarz type). The details of both the supersymmetric extension of the
Scherk–Schwarz reduced theory and the supersymmetrised double gauged supergravity have not
appeared previously beyond the bosonic sector. Supersymmetrising double field theory is suffi-
ciently nontrivial that the success of this should not be taken for granted, as such, it is instructive
to see how the details work.

2. Geometry for gauged double field theory

2.1. Gauged double field theory

As explained in the introduction, this paper is motivated by seeing how one can remain con-
sistent and yet relax the physical section condition. In previous work the section condition was
crucial for different aspects of the theory to work; this includes the local algebra of generalised
diffeomorphisms and importantly supersymmetry. In what follows we will review how imposing
the section condition can instead be replaced by the Scherk–Schwarz ansatz. This in turn was
then shown to be equivalent to gauging the theory.

And so we start by recalling the gauged double field theory [15,16]. Essentially, it is the
gauged double field theory (with its full supersymmetric extension) that we wish to compare
with the Scherk–Schwarz reduced double field theory. The reader is encouraged to read [15,16]
for the full story. What follows in this section is a brief summary of what appears in those papers
so as to define conventions and provide a starting point for introducing the Fermions later.

Let V M
N be an arbitrary rank-2 tensor for gauged DFT. M,N,P indices always denote

O(D,D) indices with lower case, m,n,p, etc., reserved for ordinary O(d) indices.
The gauge symmetry for gauged DFT is given by a twisted generalised Lie derivative which

is defined by

(L̂XV )MN = (
L̂0

XV
)M

N − f M
PQXP V Q

N − fNP
QXP V M

Q,

L̂Xd = L̂0
Xd. (2.1)

L̂0
X is the ordinary generalised Lie derivative defined in ungauged DFT by(

L̂0
XV

)M
N = XP ∂P V M

N + (
∂MXP − ∂P XM

)
V P

N + (
∂NXP − ∂P XN

)
V M

P ,

L̂0
Xd = XM∂Md − 1

2
∂MXM, (2.2)

where fMNP are the structure constants for Yang–Mills gauge group. The parameter XM consists
of ordinary generalised Lie derivative part and a Yang–Mills gauge symmetry part in an O(D,D)

covariant way. The adjoint representation for the gauge parameter XM
N by may introduced as

follows

XM
N = fMP

NXP , with XMN = −XNM. (2.3)

Then the previous generalised Lie derivatives may be written in the following suggestive form,

(L̂XV )MN = (
L̂0 V

)M
N − XM

P V P
N + V M

P XP
N = (

L̂0 V
)M

N + [V,X]M N. (2.4)
X X



372 D.S. Berman, K. Lee / Nuclear Physics B 881 (2014) 369–390
For consistency of the algebra (i.e. closure), arbitrary fields and gauge parameters are required
to obey the section condition as in the ordinary DFT. The section condition also known as the
strong constraint is given by:

∂M∂MΦ = 0, ∂MΦ1∂
MΦ2 = 0 (2.5)

The structure constants fMNP should then satisfy the Jacobi identity,

fM[NP f|P |QR] = 0. (2.6)

It is also convenient to impose an orthogonality condition on the structure constants fMNP

fMNP ∂MX = 0. (2.7)

This means the gauge symmetry will be orthogonal to the ordinary generalised Lie derivative.
Remarkably one may write the action for gauged double field theory in a very compact form

as follows:

LGDFT = e−2d
(
S0

MNHMN + V
)
. (2.8)

S0
MNHMN is the generalised Ricci scalar for ungauged DFT, and V is the potential for gauged

DFT as given in [17,18],

Vhalf-max = −1

2
HMPHNQf R

MN∂PHQR − 1

12
HMNHPQHRSfMPRfNQS

+ 1

4
HPQfMNP f MN

Q + 1

6
fMNP f MNP , (2.9a)

Vmax = −1

2
HMPHNQf R

MN∂PHQR − 1

12
HMNHPQHRSfMPRfNQS

+ 1

4
HPQfMNP f MN

Q. (2.9b)

In the following sections, we will construct the gauged double field theory action (2.8) in terms
of geometric quantities for gauged double field theory.

2.2. Connection

To construct a geometry we must make a choice of connection. There are various possibilities
depending on what properties one requires of the connection. In [33] a connection is produced
that is a full proper connection for the local generalised diffeomorphisms and has the necessary
properties of being O(D,D) compatible and also metric compatible. The price is that it is a flat
connection and is torsionful. Unfortunately, that connection does not have nice properties under
local O(D) × O(D) Lorentz transformations (even though the action is indeed invariant as it
must be). One of the main motivations of this paper is supersymmetry where the local Lorentz
transformations are crucial. Thus in what follows we will use the so-called semi-covariant for-
mulation. This has the price that, as the name suggests, the covariant derivative formed with this
connection is not fully covariant under generalised Lie derivatives. However after a projection
it becomes fully covariant and so the semi-covariant derivative in conjunction with a projection
operator can be used to construct the fully covariant theory.

And so, we follow exactly the construction given in [23,24] for non-gauged DFT but now in
this paper we will introduce a semi-covariant derivative for a twisted generalised Lie derivative



D.S. Berman, K. Lee / Nuclear Physics B 881 (2014) 369–390 373
(2.4) which will be appropriate for a gauged theory. The semi-covariant derivative acts on a
generic quantity carrying O(D,D) vector indices as follows

∇MTN1···Nn = ∂MTN1···Nn − ωΓ P
PMTN1···Nn +

n∑
m=1

ΓMNm

P TN1···Nm−1PNm+1···Nn. (2.10)

ω is a weight factor of each tensor TN1···Nn and ΓPMN is the connection piece. To determine the
connection we assume the following set of constraints exactly analogous with ungauged DFT:

First, we assume that the semi-covariant derivative preserves the O(D,D) metric JMN ,

∇MJNP = ΓMN
QJQP + ΓMP

QJNQ = ΓMNP + ΓMPN = 0, (2.11)

then it follows that the connection is anti-symmetric for last two indices

ΓPMN = ΓP [MN]. (2.12)

Second, we impose the compatibility condition for all NS–NS sector fields,

∇MPNP = 0, ∇MP̄NP = 0, ∇Md := ∂Md − 1

2
Γ N

NM = 0, (2.13)

where PMN and P̄MN are projections defined as

PMN = 1

2
(JMN +HMN), P̄MN = 1

2
(JMN −HMN), (2.14)

satisfying

PAB = PBA, P̄AB = P̄BA, PA
BP̄B

C = 0,

PA
BPB

C = PA
C, P̄A

BP̄B
C = P̄A

C, PA
B + P̄A

B = δA
B. (2.15)

Further, we require a generalised torsion free condition:

L̂∇
XT M − L̂∂

XT M = −XM
NT N. (2.16)

This is a crucial assumption. In the usual formulation there is no torsion, i.e. the right-hand side
is zero. Now we allow torsion but only of it is of the form given by (2.16). The right-hand side
of (2.16) is now a gauge transformation of T M . This means the torsion must also be a gauge
transformation. In ordinary DFT language, it means the geometry is torsion free up to gauge
transformations. The difference between L̂∇

XT M and L̂∂
XT M gives(

L̂∇
X − L̂∂

X

)
TM = (ΓMNP + ΓNPM + ΓPMN)XP T N, (2.17)

and from (2.16) and (2.17), the modified torsion-free condition implies

Γ[MNP ] = 1

3
fMNP . (2.18)

The origin of the contributions to Γ[MNP ] can be thus be seen from the additional gauge terms
appearing in (2.4) as compared to the terms with no gauging, L̂0

XV , which are chosen to give
vanishing contribution to the torsion. One can now construct the connection in terms of P , P̄ ,
d and the structure constants fMNP , which satisfy the compatibility conditions and modified
torsion free condition. This is our goal, we have a suitable connection from which we can now
construct the gauged theory. We write this explicitly in terms of the usual connection in the
non-gauged theory, Γ 0

PMN , and new terms:
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ΓPMN = Γ 0
PMN + (

δP
QPM

RPN
S + δP

QP̄M
RP̄N

S
)
fQRS

− 2

3
(P + P̄)PMN

QRSfQRS, (2.19)

where Γ 0
PMN is the connection for ordinary DFT given in [24],

Γ 0
PMN = 2(P ∂P P P̄ )[MN] + 2

(
P̄[MQP̄N ]R − P[MQPN ]R

)
∂QPRP

− 4

D − 1

(
P̄P [MP̄N ]Q + PP [MPN ]Q

)(
∂Qd + (

P∂RP P̄
)
[RQ]

)
, (2.20)

and P and P̄ are rank-six projection operators

PPMN
SQR := PP

SP[M [QPN ]R] + 2

D − 1
PP [MPN ][QP R]S,

P̄PMN
SQR := P̄P

SP̄[M [QP̄N ]R] + 2

D − 1
P̄P [MP̄N ][QP̄ R]S, (2.21)

which are symmetric and traceless,

PCABDEF =PDEFCAB =PC[AB]D[EF ], P̄CABDEF = P̄DEFCAB = P̄C[AB]D[EF ],
PA

ABDEF = 0, P ABPABCDEF = 0, P̄A
ABDEF = 0, P̄ AB P̄ABCDEF = 0.

(2.22)

Here the superscript ‘0’ indicates a quantity defined in the higher-dimensional parent DFT.
The connection transforms under the (2.4) as

(δX − L̂X)ΓPMN = −2∂P ∂[MXN ] + ∂P XMN + 2(P + P̄)PMN
QRS(∂Q∂[RXS]),

(δX − L̂X)∇P TM = 2(P + P̄)PMN
QRS(∂Q∂[RXS])T N . (2.23)

As in ungauged DFT, the derivative (2.10) combined with the projections can be used to form
generate various covariant quantities such as

PM
P P̄N1

Q1 P̄N2
Q2 · · · P̄Nn

Qn∇P TQ1Q2···Qn,

P̄M
P PN1

Q1PN2
Q2 · · ·PNn

Qn∇P TQ1Q2···Qn. (2.24)

This is the whole point of the so-called semi-covariant formalism. Some of the quantities are
not fully covariant but we can build actions by using the fully covariant projected quantities as
building blocks. We can now follow the non-gauged case and use the newly constructed semi-
covariant derivative in combination with projections to form the fully covariant theory.

2.3. Spin connections

In the previous section we have constructed the relevant connection for O(D,D) tensors in
the gauged theory. The spinors though will couple to the local Lorentz group and so we need an
appropriate spin connection that will allow us to construct covariant (or semi-covariant) Dirac
operators.

Again we will follow [24], but now we will have in mind the gauged extension of the theory.
Let us consider a local frame. As in the ungauged DFT, we introduce the double local Lorentz
group, Spin(1,D − 1) × Spin(D − 1,1) and corresponding double-vielbeins, VMm and V̄Mm̄.
These satisfy the following defining properties [24],



D.S. Berman, K. Lee / Nuclear Physics B 881 (2014) 369–390 375
VApV A
q = ηpq, V̄Ap̄V̄ A

q̄ = η̄p̄q̄ ,

VApV̄ A
q̄ = 0, VApVB

p + V̄Ap̄V̄B
p̄ = JAB. (2.25)

Here unbared indices, m,n,p,q · · · , represent Spin(1,D − 1) vectors and bared indices,
m̄, n̄, p̄, q̄ · · · , represent Spin(D − 1,1) vectors. Hence the double-vielbeins form a pair of rank-
two projections [23],

PAB := VA
pVBp, P̄AB := V̄A

p̄V̄Bp̄, (2.26)

and further meet

PA
BVBp = VAp, P̄A

BV̄Bp̄ = V̄Ap̄, P̄A
BVBp = 0, PA

BV̄Bp̄ = 0. (2.27)

We define the ‘master’ semi-covariant derivative DM acting on any arbitrary O(D,D),
Spin(1,D − 1) and Spin(D − 1,1) representations as follows

DM := ∂M + ΓM + ΦM + Φ̄M. (2.28)

ΦM and Φ̄M are spin connections for Spin(D − 1,1) and Spin(1,D − 1) respectively. Note that
the connection ΓM and the spin connections ΦM and Φ̄M contains Yang–Mills connection part
in manifestly O(D,D) covariant manner. Therefore the master derivative DM is semi-covariant
under the twisted generalised Lie derivative (2.4) for all representations.

We then impose the generalised vielbein compatibility condition for these double-vielbeins
VMm and V̄Mm̄,

DMVNm = 0, DMV̄Nm̄ = 0, (2.29)

and for the metric of Spin(1,D − 1) and Spin(D − 1,1), ηmn and η̄m̄n̄ respectively,

DMηmn = 0, DMη̄m̄n̄ = 0. (2.30)

From the compatibility of ηmn and η̄m̄n̄, we can deduce that the spin-connections are antisym-
metric,

ΦMmn = ΦM[mn], Φ̄Mm̄n̄ = Φ̄M[m̄n̄]. (2.31)

In addition, because of the double-vielbein compatibility condition (2.29), the spin-connections
may be determined in terms of the double-vielbeins as follows:

ΦMmn = V N
m∇MVNn, ΦMmn = V N

m∇MVNn, (2.32)

and using (2.23), these spin-connections are semi-covariant as well,

(δX − L̂X)ΦMmn = 2PMNP
QRS∂Q∂[RXS]V N

mV P
n,

(δX − L̂X)Φ̄Mm̄n̄ = 2P̄MNP
QRS∂Q∂[RXS]V̄ N

m̄V̄ P
n̄. (2.33)

Crucially, we can then form fully covariant quantities by contracting the semi-covariant quantities
with projection operators or double-vielbeins as shown below:

P̄M
NΦNpq, PM

NΦ̄Np̄q̄ , ΦM[pqV M
r],

Φ̄M[p̄q̄ V̄ M
r̄], ΦMpqV Mp, Φ̄Mp̄q̄ V̄ Mp̄. (2.34)

This will be a reoccurring trick that the formalism uses. One produces fully covariant objects by
contracting semicovariant objects with projection operators.
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2.4. Curvature

Again following [23,24], we may construct a rank-4 quantity RPQMN which is generated by
the commutator of the semi-covariant derivatives but now for the gauged theory,

[∇M,∇N ]VP = −Γ Q
MN∇QVP + RP

Q
MNVQ. (2.35)

The curvature, RPQMN is given by

RPQMN = ∂MΓNPQ − ∂NΓMPQ + ΓMP
RΓNRQ − ΓNP

RΓMRQ

+ 3Γ[RMN]Γ R
PQ. (2.36)

Note, that unlike ordinary DFT, an additional term is introduced in RPQMN . Note it also satisfies
the same properties as ungauged DFT, namely that,

RMNPQ = R[MN][PQ], PM
RP̄N

SRRSPQ = 0. (2.37)

We can then define the semi-covariant curvature, SMNPQ, by

SMNPQ = 1

2

(
RPQMN + RMNPQ − ΓRMNΓ R

PQ

)
. (2.38)

Just as for an ordinary Riemann curvature tensor, the semi-covariant curvature satisfies the fol-
lowing symmetry properties on its indices,

S[MN][PQ] = SMNPQ, SMNPQ = SPQMN. (2.39)

The Jacobi identity for the structure constants implies the Bianchi identities as well,

SM[NPQ] = 0. (2.40)

The variation of SMNPQ is given by

(δX − L̂X)SPQMN = 2∇[M
(
(P + P̄)N ]PQ

RST ∂R∂[SXT ]
)

+ 2∇[P
(
(P + P̄)Q]MN

RST ∂R∂[SXT ]
)
. (2.41)

Even though SMNPQ is not a fully covariant tensor, we can generate proper scalar objects by
contracting with projection operators as follows

P MP P NQSMNPQ, P̄ MP P̄ NQSMNPQ. (2.42)

Note that these scalars are not equivalent to each other. The scalar curvatures can then be rewrit-
ten in terms of PMN, P̄MN and SMNPQ. The two possible combination are:

P MP P NQSMNPQ = P MP P NQS0
MNPQ

(
Γ 0) + P MP P NQf R

MNΓ 0
RPQ

+ 1

6

(
PM

QPN
RPP

S + 3P̄M
QPN

RPP
S
)
fMNP fQRS,

P̄ MP P̄ NQSMNPQ = P̄ MP P̄ NQS0
MNPQ

(
Γ 0) + P̄ MP P̄ NQf R

MNΓ 0
RPQ

+ 1

6

(
P̄M

QP̄N
RP̄P

S + 3PM
QP̄N

RP̄P
S
)
fMNP fQRS. (2.43)

These two terms however are related, after some work one can show that

P MP P NQSMNPQ + P̄ MP P̄ NQSMNPQ = 1
fMNP f MNP . (2.44)
6
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Now, we have some choices about how we combine these two terms. In fact, different com-
binations of these two terms will then produce the actions for the half-maximal and maximal
gauged supergravity (2.9a) and (2.9b).

First, the half-maximal supersymmetric case, the NS–NS sector Lagrangian is given by

Lhalf-max = e−2d
(
2P MP P NQSMNPQ

)
= e−2d

[(
P MP P NQ − P̄ MP P̄ NQ

)
SMNPQ + 1

6
fMNP f MNP

]
. (2.45)

To see this write it in terms of the generalised metric HMN , (2.45) then becomes

Lhalf-max

= e−2d

(
2P MP P NQS0

MNPQ − 1

2
HMPHNQf R

MN∂PHQR

− 1

12
HMNHPQHRSfMPRfNQS + 1

4
HPQfMNP f MN

Q + 1

6
fMNP f MNP

)
. (2.46)

This is exactly same potential as (2.9a).
Second, for the maximal supersymmetric case, the NS–NS sector Lagrangian is given by

Lmax = e−2d
(
P MP P NQ − P̄ MP P̄ NQ

)
SMNPQ, (2.47)

which again can be rewritten as

Lmax = e−2d

(
2P MP P NQS0

MNPQ − 1

2
HMPHNQf R

MN∂PHQR

− 1

12
HMNHPQHRSfMPRfNQS + 1

4
HPQfMNP f MN

Q

)
. (2.48)

This is the potential of maximal sugra (2.9b).
Thus, we have produced two very simple expressions (2.47) and (2.45) for the action of the

bosonic sector in terms of the gauged double field theory curvature, connection and projection
operators.

3. Supersymmetric gauged double field theory

We are now ready to consider the full supersymmetric gauged double field theory with
half-maximal supercharges from 10D minimal superDFT [26,29]. The bosonic sector of the
supersymmetric gauged DFT consists of DFT-dilaton, d , and double-vielbeins, VMm, V̄Mm̄.

The fermionic degrees of freedom are given by the gravitino, ψα
p̄ and the dilatino, ρα , where

α,β, . . . represent Spin(1,9) indices. The Spin(1,9) Clifford algebra,(
γ m

)∗ = γ m, γ mγ n + γ nγ m = 2ηmn, (3.1)

and chirality operator γ (11) = γ 0γ 1 · · ·γ 9. The symmetric charge conjugation matrix, Cαβ =
Cβα , meets(

Cγ p1p2···pn
)
αβ

= (−1)n(n−1)/2(Cγ p1p2···pn
)
βα

, (3.2)

and define the charge-conjugated spinors,
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Table 1
Field contents.

• Bosons

– NS–NS sector

{
DFT-dilaton: d

Double-vielbeins: VAp, V̄Ap̄

• Fermions
– DFT-dilatino: ρα ,
– Gravitino: ψα

p̄
.

ψ̄p̄α = ψ
β
p̄ Cβα, ρ̄α = ρβCβα. (3.3)

The gravitino and dilatino are set to be Majorana–Weyl spinors of the fixed chirality,

γ (11)ψp̄ = ψp̄, γ (11)ρ = −ρ. (3.4)

Table 1 summarises the field content of the half-maximal supersymmetric gauged DFT.
The Dirac operators for Spin(1,9) spinors are denoted by [25]

γ mDmρ, Dm̄ρ, γ mDmψn̄. (3.5)

The explicit form for these is then given by

γ mDmρ = γ m∂mρ + 1

4
Φmnpγ mnpρ + 1

2
Φm

mpγ pρ,

Dm̄ρ = ∂m̄ρ + 1

4
Φm̄npγ npρ,

γ mDmψn̄ = γ m∂mψn̄ + 1

4
Φmnpγ mnpψn̄ + 1

2
Φm

mpγ pψn̄ + γ mΦ̄mn̄p̄ψp̄. (3.6)

Since the Dirac operators use the covariant spin-connections (2.34), these are all invariant un-
der the full gauged DFT symmetries. We will divide the Dirac operators as ungauged part plus
additional terms introduced by gauging, this shows the parts being introduced by the gauging
procedure in the DFT.

γ mDmρ = γ mD0
mρ + 1

12
fMNP V M

mV N
nV

P
pγ mnpρ,

Dm̄ρ =D0
m̄ρ + 1

4
fMNP V̄ M

m̄V N
nV

P
pγ npρ,

γ mDmψn̄ = γ mD0
mψn̄ + 1

12
fMNP V M

mV N
nV

P
pγ mnpψn̄

+ fMNP V M
mV̄ N

n̄V̄
P

p̄γ mψp̄, (3.7)

where D0
M is the master derivative for ungauged DFT.

We are now in a position to construct a supersymmetric action with half-maximal supersym-
metry as follows.

LSGDFT = e−2d
[
2P MP P NQSMNPQ + 4i

(
ρ̄γ mDmρ − 2ψ̄m̄Dm̄ρ − ψ̄m̄γ mDmψm̄

)]
.

(3.8)

Again to demonstrate what is new we can write this action in terms of the ungauged part plus
additional terms that come from gauging.
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LSGDFT = e−2d

[
2P MP P NQS0

MNPQ

(
Γ 0) − 1

2
HMPHNQf R

MN∂PHQR

− 1

12
HMNHPQHRSfMPRfNQS + 1

4
HPQfMNP f MN

Q + 1

6
fMNP f MNP

+ 4i
(
ρ̄γ mD0

mρ − 2ψ̄m̄D0
m̄ρ − ψ̄m̄γ mD0

mψm̄

)
+ i

1

3
fMNP V M

mV N
nV

P
pρ̄γ mnpρ + ifMNP V̄ M

m̄V N
nV

P
pψ̄m̄γ npρ

+ i
1

3
fMNP V M

mV N
nV

P
pψ̄n̄γ mnpψn̄

+ 4ifMNP V M
mV̄ N

n̄V̄
P

p̄ψ̄ n̄γ mψp̄

]
. (3.9)

The half-maximal supersymmetric gauged DFT (3.8) is invariant under the following SUSY
transformations up to leading order in fermions,

δd = −i
1

2
ε̄ρ,

δVMm = −iV̄M
q̄ ε̄γmψq̄,

δV̄Mm̄ = iV̄M
q ε̄γqψm̄,

δρ = −γ mDmε,

δψm̄ =Dm̄ε, (3.10)

where SUSY parameter ε is a Spin(1,9) spinor with positive chirality,

γ (11)ε = ε. (3.11)

The supersymmetry variation of the gauged DFT action (3.8) up to leading order in fermions is
given by

δLSGDFT = e−2d
[−4δdP MP P NQSMNPQ + 4δP MP P NQSMNPQ

+ 8iρ̄
(
γ mDmδρ +Dm̄δψm̄

) − 8iψ̄m̄
(
γ mDmδψm̄ +Dm̄δρ

)]
. (3.12)

We can then check the supersymmetry invariance of the action (3.8) by using the following
identities,

γ mγ nDmDnε +Dm̄Dm̄ε = −1

4
εP MNP PQSMQNP ,

γ n [Dm̄,Dn] ε = V̄ M
m̄ V N

nP
PQSMPNQγ nε. (3.13)

What is extraordinary is how simple the action (3.8) is in terms of these doubled gauged
geometric quantities.

4. Generalised Scherk–Schwarz reduced DFT as a gauged DFT

In this section we show how using this formalism, the gauged double field theory can be ob-
tained from the generalised Scherk–Schwarz reduction from the higher-dimensional ungauged
double field theory. Let hatted indices M̂, N̂, P̂ , . . . represent O(D,D) vector indices in par-
ent ungauged DFT and M,N,P, . . . represent O(D,D) vector indices in gauged double field

theory. We divide the 2D-dimensional doubled spacetime coordinates X̂M̂ into 2d-dimensional
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non-compact space coordinates X
M and 2n-dimensional compact space coordinates Y

I . If we
introduce a twist matrix U

M̂
M(Y), the Scherk–Schwarz reduction is realised as

V̂
M̂

(X,Y) = U
M̂

M(Y)VM(X),

d̂(X,Y) = d(X) + λ(Y) (4.1)

where V̂
M̂

is an O(D,D) vector that depends on the noncompact directions only and e−2d̂ is a
tensor density.

Once we have this, the generalised Scherk–Schwarz reduction of the parent DFT connection
(2.20) is realised from substitution of Scherk–Schwarz ansatz (4.1) into the definition of parent
DFT connection (2.20),

Γ̂
P̂ M̂N̂

(P̂ , ˆ̄P , d̂) = U
P̂

P U
M̂

MU
N̂

N Γ̂PMN(P, P̄ , d), (4.2)

where

Γ̂PMN = Γ 0
PMN + (

P[MQPN ]R + P̄[MQP̄N ]R
)
fPQR − (

U−1)
M

Q̂∂P U
Q̂N

− 2(P + P̄)PMN
QRS

(
U−1)

S
T̂ ∂RU

T̂ Q

− 2

D − 1

(
P̄P [MP̄N ]Q + PP [MPN ]Q

)
fQ. (4.3)

As before, Γ 0
PMN is the connection for ungauged DFT. Here fMNP and fM are defined by

fMNP = 3ηQ[M
(
U−1)

N
N̂

(
U−1)

P ]
M̂∂

N̂
U

M̂
Q,

fM = ∂
M̂

(
U−1)

M
M̂ − 2

(
U−1)

M
M̂∂

M̂
λ. (4.4)

The reader may ask whether (4.2) is covariant. As a connection it is of course not. We just follow
the generalised Scherk–Schwarz ansatz and from this connection the gauge connections will
also emerge. The fMNP can be identified with the structure constant in twisted generalised Lie
derivative (2.4) as shown in [16]. Also, for consistency, we need to set fA = 0 just as in [16].

It is important to compare the reduced connection with the gauged DFT connection in (2.19).
If we calculate the difference, then we have

(Γ̂ − Γ )MNP = −(
U−1)

N
Q̂∂MU

Q̂P

+ (P + P̄)MNP
QRS

(
2

3
fQRS − 2

(
U−1)

S
T̂ ∂RU

T̂ Q

)
. (4.5)

Note, U
Q̂P

does not obey strong section condition! On the right-hand side, the last term is
removed after contraction with a projection operator and so does not contribute to the fully

covariant quantities. The first term, −(U−1)N
Q̂∂MU

Q̂P
however does contribute. This is the

difference between reduced parent DFT connection Γ̂PMN in (4.3) and gauged DFT connection
ΓPMN in (2.19) and it shows the origin in terms of the reduced connection of the additional term
in the action that appeared in [16].

As discussed before, the gauged DFT action should be independent of YI or U
M̂

M(Y) so that,

SGDFT =
∫

d2d
XLGDFT[P, P̄ , d, f ]. (4.6)



D.S. Berman, K. Lee / Nuclear Physics B 881 (2014) 369–390 381
However, if we carry out a generalised Scherk–Schwarz reduction on the parent DFT action, the
reduced action is written in terms of Γ̂PMN having explicit twist matrix dependence, U

M̂
M(Y),

Sred =
∫

d2n
Y

∫
d2d

XLred
[
Γ̂ (P, P̄ , d, f,U)

]
. (4.7)

To get a U
M̂

M(Y) independent action, an additional term should be added which compensates
the U

M̂
M(Y) dependence of the reduced action (4.7). The additional term is given by

LGDFT −Lred = e−2d
(
P MNP PQU

M̂M
U

N̂N
∂R

(
U−1)

P
M̂∂R

(
U−1)

Q
N̂

)
,

= e−2d

(
1

2
∂M

(
U−1)NQ̂

∂MU
Q̂

PHNP

)
. (4.8)

This term exactly reproduces the additional term in (2.4) of [16],

1

2
∂
M̂

εa
P̂
∂M̂εb

Q̂
Sabη

P̂ Q̂ = 1

2
∂M

(
U−1)NQ̂

∂MU
Q̂

PHNP . (4.9)

It is worthwhile to compare how supersymmetry works. The difference of spin-connections is
given by

(Φ̂ − Φ)Mmn = V N
mV P

nPMNP
QRS

(
2

3
fQRS − 2

(
U−1)

S
T̂ ∂RU

T̂ Q

)
,

( ˆ̄Φ − Φ̄)Mm̄n̄ = V̄ N
m̄V̄ P

n̄P̄MNP
QRS

(
2

3
fQRS − 2

(
U−1)

S
T̂ ∂RU

T̂ Q

)
. (4.10)

When we then insert these into the supersymmetry transformations, then these differences vanish
for the semi-covariant derivatives. This shows that Killing spinor equations for gauged DFT
and generalised Scherk–Schwarz reduced DFT are exactly same. This is remarkable that the
supersymmetry remains identical between the gauged and Scherk–Schwarz reduced cases even
though there are differences in the connections that require correction terms in the action.

5. Killing spinor equations

In the context of ordinary supergravity, the Killing spinor equations have proven very useful
in finding solutions to the equations of motion that preserve some fraction of supersymmetry.
Essentially they reduce the supergravity equations to be first order in derivatives and often when
combined with a suitable ansatz for the metric and fields will lead to linear equations. Impor-
tantly, the Scherk–Schwarz factorisation ansatz for double field theory allows dependence on
both the usual coordinates and their duals simultaneously. Finding actual solutions that obey this
ansatz is much more difficult than finding solutions that obey the strong constraint. Obviously
from the connection to gauged field supergravity there is a clear interpretation of some of these
solutions. However, one might wish to just try and seek solutions in double field theory with a
Scherk–Schwarz ansatz and interpret this as a double field theory geometry. This then involves
solving the double field theory equations of motion. Obviously this is a hard problem since the
double field theory equations of motion are as hard to solve as Einstein’s equations.

The natural thing is to then use the Killing spinor equations with a Scherk–Schwarz factori-
sation ansatz (reduction). One can then seek solutions in the full double field theory preserving
different fractions of supersymmetry but that obey the Scherk–Schwarz ansatz. In what follows
we write down the Killing spinor equations with the Scherk–Schwarz anstaz.
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The Killing spinor equations for the higher-dimensional ungauged DFT were given already in
[26,29]

δρ̂(X,Y) = −γ m̂D̂m̂ε̂(X,Y) = 0,

δψ̂ ˆ̄m(X,Y) = D̂ ˆ̄mε̂(X,Y) = 0. (5.1)

Since the spinors are all O(D,D) scalars, the generalised Scherk–Schwarz ansatz for the spinors
is trivial,

ρ̂(X,Y) = ρ(X), ψ̂ ˆ̄m(X,Y) = ψ ˆ̄m(X), ε̂(X,Y) = ε(X). (5.2)

Although the spinors reduce trivially the spin connections do not and one must take care to reduce
them. We list the reduction of the relevant spin connections that are needed for the Killing spinor
equations in the appendix. Inserting these generalised Scherk–Schwarz reduced spin connections
into to the Killing spinor equations, produces:

−γ m̂D̂m̂ε̂ = −γ mDmε + 3

4
V M

mV N
nV

P
p

(
A[M∂NAP ] − 1

3
f ABCAMAANBAPC

)
γ npε

+ 1

4
(FMN)AV M

mV N
nV

A
aγ

mnaε − 1

4
V M

mV A
aDMVAbγ

mabε

− 1

4
V A

aV
B

bV
C

cfABCγ abcε = 0, (5.3)

for dilatino and

D̂m̄ε̂ =Dm̄ε − 3

4
V̄ M

m̄V N
nV

P
p

(
A[M∂NAP ] − 1

3
f ABCAMAANBAPC

)
γ npε

− 1

2
V̄ M

m̄V N
nV

A
a(FMN)Aγ naε + 1

4
V̄ M

m̄V A
aDMVAbγ

abε = 0,

D̂ā ε̂ = −1

4
V̄ A

āV
M

mV N
n(FMN)Aγ mnε − 1

2
V̄ A

āV
M

mV B
bDMPABγ mbε

+ 1

4
V̄ A

āV
B

bV
C

cfABCγ bcε = 0 (5.4)

for the gravitino.
A great deal of insight has been achieved through the analysis of the usual Killing spinor

equations. It would be very interesting to investigate these equations that come from double field
theory in detail. Hopefully one could obtain results along the lines as of the G-structure geometric
spinor approach [67]. We leave this for future work.
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Appendix A. Decomposition of compact and non-compact directions

In this section we describe the Scherk–Schwarz reduction in detail. This is all covered in [18]
but we have repeated it here to make conventions clear and provide a quick reference.

A.1. Reduction conventions

Now we consider explicit breaking of O(D,D) symmetry into O(n,n) subgroup. We de-
compose D-dimensional total spacetime into n-dimensional compact and d-dimensional non-
compact direction. All hatted indices represent quantities defined on total spacetime.

1. Total spacetime:
• M̂, N̂, . . . : O(D,D) vector indices,
• μ̂, ν̂, . . . : D-dimensional vector indices,
• m̂, n̂, . . . : Local Spin(1,D−1) vector indices,
• ˆ̄m, ˆ̄n, . . . : Local Spin(D−1,1) vector indices.

2. Non-compact direction:
• M,N, . . . : O(d, d) vector indices,
• μ,ν, . . . : d-dimensional vector indices,
• m,n, . . . : Local Spin(1, d−1) vector indices,
• m̄, n̄, . . . : Local Spin(d−1,1) vector indices.

3. Compact direction:
• I, J, . . . : O(n,n) vector indices,
• A,B, . . . : Gauge indices,
• α,β, . . . : n-dimensional vector indices,
• a, b, . . . : Local Spin(1, n−1) vector indices,
• ā, b̄, . . . : Local Spin(n−1,1) vector indices.

Therefore doubled spacetime coordinates X̂M̂ = {x̂μ̂, x̂ν̂} are decomposed into

X̂
M̂ = {

X
M,YI

}
, (A.1)

where X
M = {xμ, xν} is non-compact direction doubled coordinate and Y

I = {yα, yβ} is com-
pact direction doubled coordinate.

A.2. Reduction of ordinary supergravity

The ordinary Scherk–Schwarz reduction of two copies of the D-dimensional vielbein is given
by

êμ̂
m̂ =

(
eμ

m Aμ
αΦα

a

0 Φα
a

)
,

(
ê−1)

m̂
μ̂ =

(
(e−1)m

μ −(e−1)m
μAμ

α

0 (Φ−1)a
α

)
, (A.2)

and

ˆ̄eμ̂
ˆ̄m =

(
ēμ

m̄ Aμ
αΦ̄α

ā

0 Φ̄α
ā

)
,

( ˆ̄e−1)
ˆ̄m
μ̂ =

(
(ē−1)m̄

μ −(ē−1)m̄
μAμ

α

0 (Φ̄−1)ā
α

)
, (A.3)

where
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eμ
meνm = −ēμ

m̄ēνm̄ = gμν,

Φα
aΦβa = −Φ̄α

āΦ̄βā = gαβ. (A.4)

The reduction of Kalb–Ramond field is then:

B̂μ̂ν̂ =
(

B̂μν B̂μβ

B̂αν B̂αβ

)

:=
(

Bμν + 1
2 (Aμ

αBαν − Aν
αBαμ) + Aμ

αAν
βBαβ Bμβ + Aμ

αBαβ

Bαν + BαβAν
β Bαβ

)
. (A.5)

A.3. Scherk–Schwarz reduction of double field theory

The double vielbein of the total space is parametrised by

V̂
M̂

m̂ = 1√
2

(
(ê−1)m̂μ̂

(B̂ + ê)μ̂
m̂

)
, ˆ̄V M

ˆ̄m = 1√
2

(
(ē−1)

ˆ̄mμ̂

( ˆ̄B + ē)μ
ˆ̄m

)
(A.6)

where B̂μ
m̂ = B̂μ̂ν̂ (ê

−1)m̂ν̂ and ˆ̄Bμ̂
ˆ̄m = B̂μ̂ν̂ ( ˆ̄e−1

)
ˆ̄mν̂ .

Let us now consider the Scherk–Schwarz reduction ansatz for the double vielbein, V̂
M̂

m̂ and
ˆ̄V

M̂

ˆ̄m

V̂
M̂

m̂(X,Y) −→
(

V̂M
m(X) V̂M

a(X)

UI
A(Y)V̂A

m(X) UI
A(Y)V̂A

a(X)

)
, (A.7)

and

ˆ̄V
M̂

ˆ̄m(X,Y) −→
( ˆ̄V M

m̄(X) ˆ̄V M
ā(X)

UI
A(Y) ˆ̄V A

m̄(X) UI
A(Y) ˆ̄V A

ā(X)

)
, (A.8)

where UI
A(Y) is a generalised twist matrix. Finally, the Scherk–Schwarz ansatz of dilaton is

given by

d̂(X,Y) = d(X) + λ(Y). (A.9)

Importantly, when using the double vielbein, it is not possible to choose a upper triangular form
as (A.2) and (A.3), since the local Lorentz group is not sufficient. For example, unbared double
vielbein V̂

M̂
m̂ has only Spin(1,D−1) local Lorentz symmetry instead of Spin(D,D).

Each component of reduced double vielbeins in Eq. (A.7) and (A.8) can be written as follows:

V̂M
m = VM

m − 1

2
AM

AAN
AVN

m, V̂M
a = −AM

AVA
a,

V̂A
m =AM

AV̂M
m =AM

AVM
m, V̂A

a = VA
a, (A.10)

and

ˆ̄V M
m̄ = V̄M

m̄ − 1

2
AM

AAN
AV̄N

m̄, ˆ̄V M
ā = −AM

AV̄A
ā,

ˆ̄V A
m̄ =AM

A
ˆ̄V M

m̄ =AM
AV̄M

m̄, ˆ̄V A
ā = V̄A

ā, (A.11)

where AM
A is an unified gauge field,
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Aμ
A =

( −Aμ
α

−B̂αβAμ
β + B̂αμ

)
:=

(−Aμ
α

Bαμ

)
, AμA = 0. (A.12)

Here, VM
m, V̄M

m̄ are d-dimensional double vielbeins parametrised as

VM
m = 1√

2

(
(e−1)mμ

(B + e)μ
m

)
, V̄M

m̄ = 1√
2

(
(ē−1)m̄μ

(B̄ + ē)μ
m̄

)
, (A.13)

and VA
a , V̄A

ā are n-dimensional double vielbeins parametrised as

VA
a = 1√

2

(
(e−1)aα

(B + e)α
a

)
, V̄A

ā = 1√
2

(
(ē−1)āα

(B̄ + ē)α
ā

)
. (A.14)

One can find the transformation laws for various fields by substituting the reduced vielbeins de-
fined in Eq. (A.10) and (A.11) into double-gauge transformation (or generalised Lie derivative),

L̂
X̂
V̂

M̂
m̂ = X̂N̂ ∂

N̂
V̂

M̂
m̂ + (

∂̂
M̂

X̂N̂ − ∂̂ N̂ X̂
M̂

)
V̂

N̂
m̂. (A.15)

To examine the symmetry transformations of the reduced fields, we should decompose the double

gauge parameter X̂M̂ as before,

X̂M̂ (X,Y) =
(

XM(X)

(U−1)A
I (Y)YA(X)

)
. (A.16)

We then interpret XM as a generalised Lie derivative parameter and YA as a gauge symmetry
parameter.

The symmetry transformation of each of the reduced fields is given by

δVMm = L̂XVMm −A[MA∂N ]YAV Nm, δVAa = L̂XVAa − fAB
CYBVCa,

δV̄Mm̄ = L̂XV̄Mm̄ −A[MA∂N ]YAV̄ Nm̄, δV̄Aā = L̂XV̄Aā − fAB
CYBV̄Cā,

δe−2d = L̂Xe−2d + fAYAe−2d ,

δAM
A = L̂XAM

A − ∂MYA + f A
BCAM

BYC, (A.17)

where

fABC = 3ηD[A
(
U−1)

C
I ∂B]UI

D, fA = UI
B∂B

(
U−1)

A
I − 2∂Aλ. (A.18)

Since projection operators can be written in terms of double vielbein,

V̂
M̂

m̂V̂
N̂m̂

= P̂
M̂N̂

, ˆ̄V
M̂

ˆ̄m ˆ̄V
N̂ ˆ̄m = ˆ̄P

M̂N̂
, (A.19)

the Scherk–Schwarz reduction of the projection operators may be easily obtained using the re-
duction of the double vielbeins from (A.10) and (A.11), which yields

P̂
M̂N̂

(X,Y) =
(

P̂MN(X) UJ
B(Y)P̂MB(X)

UI
A(Y)P̂AN(X) UI

A(Y)UJ
B(Y)P̂AB(X)

)
, (A.20)

and

ˆ̄P
M̂N̂

(X,Y) =
( ˆ̄P MN(X) UJ

B(Y) ˆ̄P MB(X)

UI
A(Y) ˆ̄P AN(X) UI

A(Y)UJ
B(Y) ˆ̄P AB(X)

)
. (A.21)

Each component of P̂ ˆ ˆ is

MN
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P̂MN = PMN −A(M
AAP |APP |N) + 1

4
AM

AAP
AAN

BAQ
BPPQ +AM

AAN
BPAB,

P̂MA = P̂AM = (
JMP − 1

2
AM

BAPB

)
P PNANA −AM

BPAB,

P̂AB = PAB +AM
AAN

BPMN, (A.22)

where

PMN = VM
mVNm, PAB = VA

aVBa. (A.23)

Similarly, each component of ˆ̄P
M̂N̂

is given by

ˆ̄P MN = P̄MN −A(M
AAP |AP̄P |N) + 1

4
AM

AAP
AAN

BAQ
BP̄PQ +AM

AAN
BP̄AB,

ˆ̄P MA = ˆ̄P AM = (
JMP − 1

2
AM

BAPB

)
P̄ PNANA −AM

BP̄AB,

ˆ̄P AB = P̄AB +AM
AAN

BP̄MN, (A.24)

where

P̄MN = V̄M
m̄V̄Nm̄, P̄AB = V̄A

āV̄Bā. (A.25)

If we apply these reduction conventions, the bosonic part of the half-maximal supersymmetric
gauged double field theory action (3.8) is reduced to

LSGDFT = e−2d

(
2P MP P NQS0

MNPQ + 1

2
HMNHPQωMPR∂NHQP

− 1

12
HMNHPQHRSωMPRωNQS + 1

8
HMNDMHABDNHAB

− 1

4
HMNHPQHAB(FMP )A(FNQ)B − 1

12
HMNHPQHRSfMPRfNQS

+ 1

4
HPQfMNP f MN

Q + 1

6
fMNP f MNP

)
, (A.26)

where ωMNP is Chern–Simons 3-form,

ωMNP := 3A[MA∂NAP ]A −AM
AAN

BAP
CfABC, (A.27)

and covariant derivative, DM , for the gauge transformation generated by YA and field strength,
FMN , for the unified gauge field, AM

A, are defined as

DMVA := ∂MVA − fABCAM
BV C,

(FMN)A := ∂MAN
A − ∂NAM

A − f A
BCAM

BAN
C. (A.28)

One has thus shown that the reduced action (A.26) is exactly same as the half-maximal gauged
supergravity action in [18].
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Appendix B. Reduction of spin-connections

Though the spin connections, Φ̂
M̂m̂n̂

and ˆ̄Φ
M̂ ˆ̄m ˆ̄n, are not covariant under the double-gauge

transformation, the following terms are covariant,

Φ̂[m̂n̂p̂], Φ̂m̂
m̂p̂, Φ̂ ˆ̄pm̂n̂

,

ˆ̄Φ[ ˆ̄m ˆ̄n ˆ̄p],
ˆ̄Φ ˆ̄m ˆ̄m ˆ̄p, ˆ̄Φ

p̂ ˆ̄m ˆ̄n, (B.1)

where Φ̂m̂n̂p̂ := V̂ M̂
m̂Φ̂

M̂n̂p̂
and Φ̂ ˆ̄mn̂p̂

:= ˆ̄V M̂ ˆ̄mΦ̂
M̂n̂p̂

, etc.

Reduction of the covariant combinations of Φ̂
M̂m̂n̂

yields:

Φ̂[mnp] = Φ[mnp] − 3V M
mV N

nV
P

p

(
A[P A∂MAN ]A − 1

3
f ABCAPAAMBANC

)
,

Φ̂[mna] = −V M
mV N

nV
A

a(FMN)A,

Φ̂[mab] = V M
mV A

aDMVAb,

Φ̂[abc] = V A
aV

B
bV

C
cfABC,

Φ̂n̂
n̂m = Φn

nm + V M
mAM

AfA,

Φ̂n̂
n̂a = V A

afA,

Φ̂p̄mn = Φp̄mn − 3V̄ P
p̄V M

mV N
n

(
A[P A∂MAN ]A − 1

3
f ABCAPAAMBANC

)
,

Φ̂āmn = −V̄ A
āV

M
mV N

n(FMN)A,

Φ̂p̄ma = −V̄ M
p̄V N

mV A
a(FMN)A,

Φ̂p̄ab = V̄ M
p̄V A

aDMVAb,

Φ̂āma = −V̄ A
āV

M
mV B

aDMPAB,

Φ̂āab = V̄ A
āV

B
aV

C
bfABC, (B.2)

and ˆ̄Φ
M̂ ˆ̄m ˆ̄n part:

ˆ̄Φ[m̄n̄p̄] = Φ̄[m̄n̄p̄] − 3V̄ M
m̄V̄ N

n̄V̄
P

p̄

(
A[P A∂MAN ]A − 1

3
f ABCAPAAMBANC

)
,

ˆ̄Φ[m̄n̄ā] = −V̄ M
m̄V̄ N

n̄V̄
A

ā(FMN)A,

ˆ̄Φ[m̄āb̄] = V̄ M
m̄V̄ A

āDMV̄Ab̄,

ˆ̄Φ[āb̄c̄] = V̄ A
āV̄

B
b̄V̄

C
c̄fABC,

ˆ̄Φ ˆ̄n ˆ̄nm̄
= Φ̄n̄

n̄m̄ + V̄ M
m̄AM

AfA,

ˆ̄Φ ˆ̄n ˆ̄nā
= V̄ A

āfA,

ˆ̄Φpm̄n̄ = Φ̄pm̄n̄ − 3V P
pV̄ M

m̄V̄ N
n̄

(
A[P A∂MAN ]A − 1

3
f ABCAPAAMBANC

)
,

ˆ̄Φam̄n̄ = −V A
aV̄

M
m̄V̄ N

n̄(FMN)A,

ˆ̄Φpm̄ā = −V M
pV̄ N

m̄V̄ A
ā(FMN)A,
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ˆ̄Φpāb̄ = V M
pV̄ A

āDMV̄Ab̄,

ˆ̄Φam̄ā = −V A
aV̄

M
m̄V̄ B

āDMPAB,

ˆ̄Φaāb̄ = V A
aV̄

B
āV̄

C
b̄fABC. (B.3)
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