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Present investigation is devoted to examine the mixed convective flow of Maxwell nanofluid with Soret
and Dufour effects through a porous medium. Effects of variable temperature and concentration over a
linearly permeable stretched surface are also taken into account. An optimal solution is obtained for
the highly nonlinear set of differential equations using BVPh 2.0 Mathematica package. Graphs of differ-
ent emerging pertinent parameters against velocity, temperature and concentration distributions are
plotted and discussed accordingly. Numerically tabulated values of local Nusselt and Sherwood numbers
are also part of this investigation. It is witnessed that concentration field is decreasing and increasing
function of Brownian motion and thermophoretic parameters respectively. Further, opposite behavior
of Soret number on temperature and concentration distributions is seen.
� 2016 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
Introduction

The topic of heat transfer via porous media has been a hot sub-
ject due to its technological and engineering applications. Exam-
ples may include packed sphere beds, electro chemical processes,
grain storage, insulation for buildings and lining of nuclear reac-
tors, regeneration of heat exchangers, chemical catalytic reactors,
and solar power collectors. Flagged investigations in this core area
include numerous studies like Shehzad et al. [1] who examined 3D
flow of Casson fluid through porous media. They carried out anal-
ysis in the presence of heat generation/absorption. Sheikholeslami
et al. [2] debated flow of viscous nanofluid through a porous med-
ium with four different nano materials and water as base fluid.
Hayat et al. [3] explored influence of convective boundary condi-
tions on magnetohydrodynamic (MHD) nanofluid flow through a
porous medium over an exponentially stretching sheet using series
solution technique. Makinde et al. [4] studied effects of unsteady
magnetohydrodynamic, thermal radiation, chemical reaction, and
thermophoresis on a vertical porous plate. They employed sixth
order RK-technique accompanied by Nachtsheim and Swigert’s
shooting method. It was noticed that skin friction coefficient
decreases and local Nusselt number increases against gradual
growing values of unsteady viscosity parameter. Extensive litera-
ture is also available pertaining flows through porous medium
with most recent investigations referred at [5–7].

Recent studies have given a significant attention to non-
Newtonian fluid flows which are produced by stretched surfaces.
The non-Newtonian flows have wide range applications in engi-
neering including aerodynamic emission of plastic films, thinning
and annealing of copper wires and liquid film condensation pro-
cess etc. [8]. Unlike viscous fluids, an obvious hurdle in mathemat-
ical modelling of these fluids is that a single constitutive equation
cannot exhibit all characteristics of these fluid structures. That is
why several non-Newtonian fluids models have been suggested
by researchers in the literature. Maxwell fluid which is a class of
viscoelastic fluid, can be quoted to represent the characteristics
of fluid relaxation time. Here, shear-dependent viscosity’s compli-
cated effects are excluded and allows one to focus on the influence
of elasticity of fluid on boundary layer characteristics. A pioneering
work by Harris [9] arguing 2D flow of upper-convected Maxwell
fluid encouraged follower researchers to investigate more avenues
in this direction. Sadeghy et al. [10] proposed local similarity solu-
tions by four dissimilar approaches with the findings that velocity
decreases with an increase in local Deborah number. They consid-
ered Maxwell fluid flow over a moving flat plate known as Sakiadis
flow. Kumari and Nath [11] discussed numerical solution of mixed
convection stagnation point Maxwell fluid flow using finite differ-
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Nomenclature

a ,b; c dimensional constants
C concentration of fluid
cp specific heat
Cs concentration susceptibility
Cw concentration on wall
C1 ambient concentration
DB Brownian motion coefficient
De mass diffusivity
Df dufour number
DT thermophoretic diffusion coeff.
f 0 dimensionless velocity
g gravitational acceleration
Grx Grashof number
jw mass flux
j thermal conductivity
KT thermal diffusion ratio
K permeability constant
Le Lewis number
N Buoyancy ratio parameter
Nb Brownian motion parameter
Nt thermophoresis parameter
Nux Nusselt number
Pr Prandtl number
qw surface heat flux
Rex Reynolds number
S Suction parameter

Shx Sherwood number
Sr Soret number
T temperature of fluid
Tm mean fluid temperature
Tw wall temperature
T1 Ambient temperature
ðu;vÞ velocity components
uwðxÞ stretching velocity alongx -axis
V0 stretching velocity alongy -axis
x; yð Þ coordinate axis
am thermal diffusivity
bT coefficient of thermal expansion
bC coefficient of concentration expansion
b Deborah number
c porosity parameter
q density of fluid
k mixed convection parameter
k1 fluid relaxation time
m kinematic viscosity
w stream function
h dimensionless temperature
g similarity variable
/ dimensionless concentration
s ratio of effective heat capacity of nanoparticle and base

fluid
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ence method. Hayat et al. [12] found series solution of stagnation
point magnetohydrodynamic over a stretching surface of an
upper-convected Maxwell fluid. Motivated from above works,
researchers have investigated two and three dimensional Maxwell
fluid flows in numerous scenarios (see Shafique et al. [13] Awais
et al. [14], Nadeem et al. [15], Qayyum et al.[16], and Abbasi
et al. [17]).

Nanofluids are suspended ultra fine particles in base fluids (like
water and organic liquids) with a size less than 100 nm. These
nanoparticles consist of metals and their oxides, therefore, they
have significantly higher thermal conductivity than base fluid.
Recently, carbon nanomaterials with more diverse nature indus-
trial applications including nanotubes [18,19], carbon nanoparti-
cles [20,21], nanofibres [22], nanowires [23] and carbon
nanorods [24] have been found in various nanostructures. A novel
idea of ”nanofluid” in heat transfer processes presented by Choi
[25] has revolutionized the modern engineering and technological
world. Nanofluids have numerous applications in metallurgical and
chemical sectors, transportation, production of micro-sized prod-
ucts, thermal therapy to cure cancer, ventilation, and air-
conditioning [26]. Following this coined work, Buongiorno [27]
presented a more detailed study of nanofluids highlighting salient
features of thermophoresis and Brownian motion. Using proposed
model of Buongiorno, Kuznetsov and Nield [28] discussed nano-
fluid flow past a vertical plate with convective boundary layer.
Khan and Pop [29] conducted a comprehensive analysis of nano-
fluid flow over a stretched surface and discussed effects of ther-
mophoresis and Brownian motion heat transfer using Keller-box
numerical technique. Turkyilmazoglu [30] considering different
nanoparticles like Ag;Cu; TiO2 and Al2O3 examined flow of hydro-
magnetic viscous fluid accompanied slip condition. Makinde et al.
[31] discussed numerically magneto nanofluid neighboring stagna-
tion point in the presence of buoyancy force and convective bound-
ary conditions using RK–method of fourth order of shooting
technique. Rashidi et al. [32] debated flow of MHD nanofluid over
a permeable rotating disk with discussion of entropy generation
and explored that such study is really beneficial in energy conver-
sion for mechanical systems of space vehicles with nuclear propul-
sion and energy generators. Mustafa et al. [33] studied nanofluid
flow near a stagnation point over an exponentially stretched sur-
face. They found the solution of the problem using Homotopy Anal-
ysis method (HAM) and MATLAB’s built in bvp4c software to
calculate numerical solution and found that thermophoretic
impact strengthens with growth in nanoparticle volume fraction.
Sheikholeslami and Ganji [34] examined Cu-water nanofluid flow
between parallel plates. They used Maxwell–Garnetts and Brink-
man models were to find effects of viscosity and thermal conduc-
tivity. Kuznetsov and Nield [35] reviewed flow of nanofluid
through a vertical plate with convective boundary conditions and
disclosed that control of nano particle fraction is passive rather
than active. Afterwards, researchers have extensively investigated
about two and three dimensional nanofluid structures [36–45].

To address the aforesaid subjects, need was felt to model a
mathematical problem that encircle all issues and solve them with
an appropriate method. Due to obvious restrictions in numerical
methods [46], analytical techniques are considered as a replace-
ment by the researchers. Amongst these, perturbation technique
is most common and extensively practiced method to address a
variety of engineering and science problems [47]. This tool is
highly dependent on small/large parameters which is considered
as a major disadvantage of this method and restricts it to handle
highly nonlinear problems. To elude this constraint, non-
perturbation methods like Adomian decomposition method [48]
and variational iteration technique [49] were introduced. But these
methods cannot guarantee series solutions’ convergence. However,
Liao’s proposed homotopy analysis method (HAM) [50] has
answered this question. This technique gives solution to highly
nonlinear equations with an ample freedom to guarantee conver-
gence of the problem. Additionally, unlike numerical methods,
HAM can be applied to the problems having boundary conditions
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with far field characteristics. Further to HAM, Liao’s newly pro-
posed Optimal HAM [51] is a strong tool that guarantee the conver-
gence of series solution. His idea of averaged squared residual error
has led to an optimal convergence which triggered the conver-
gence of series solution.

We here discussed the effects of Soret/Dufour and mixed con-
vection on the flow of Maxwell nanofluid in the presence of vari-
able temperature and concentration conditions. The proposed
highly nonlinear problem is solved by using BVPh 2.0 Mathematica
package [52,53] to find an optimal solution. Numerous graphs are
drawn to highlight the impact of various emerging parameters
against involved distributions. Numerically calculated values of
local Nusselt and Sherwood numbers are shown in the form of
table and are well deliberated.

Problem formulation

We assume two dimensional Maxwell nanofluid flow past a
vertical stretched surface (with velocity uwðxÞÞ with variable tem-
perature TwðxÞ, variable concentration Cw xð Þ, uniform ambient
temperature T1, and uniform ambient concentration C1 in a por-
ous medium. We also consider amalgamated effects of Soret and
Dufour with mixed convection. The buoyancy effects and density
variation are also considered. Boussinesq approximation is taken
for both temperature and concentration profiles (see Fig. 1). The
governing equations representing the proposed model are [54]:
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with appropriate boundary conditions

u ¼ uwðxÞ ¼ ax; v ¼ �V0; T ¼ TwðxÞ ¼ T1 þ bx;

C ¼ CwðxÞ ¼ C1 þ cx at y ¼ 0; ð5Þ
Fig. 1. Schematic flow problem.
u ! 0;
@u
@y

! 0; T ! T1; C ! C1 as y ! 1: ð6Þ

Here, velocity components u and v are along x and y-axes
respectively. Also, DB; T , C; g;DT ;am; bT ; k1, and s ¼ ðqdÞp=ðqdÞf
are the Brownian motion coefficient, fluid temperature, nano par-
ticle concentration, gravitational acceleration, thermophoretic dif-
fusion coefficient, thermal diffusivity, coefficient of thermal
expansion, relaxation time, and the ratio of effective heat capacity
of the nanoparticle to the fluid respectively. Further, ða > 0Þ and
ðc > 0Þ are positive constants. However, b > 0 denotes heated plate
ðTw > T1Þ and for a cooled surface ðTw < T1Þ respective constant is
b < 0. Using the following transformations [54]

w ¼ x
ffiffiffiffiffiffi
at

p
f ðgÞ; hðgÞ ¼ T � T1

Tw � T1
; /ðgÞ ¼ C � C1

Cw � C1
; g ¼

ffiffiffi
a
m

r
y: ð7Þ

Satisfaction of Eq. (1) is obvious and Eqs. (2)–(6) come to the
form

f 000 þ ff 00 � f 02 þ bð2ff 0f 00 � f 2f 000Þ � cf 0 þ kðhþ N/Þ ¼ 0; ð8Þ

1
Pr

h00 þ fh0 � hf 0 þ Df/
00 þ Nbh0/0 þ Nth02 ¼ 0; ð9Þ

/00 þ PrLeðf/0 � /f 0Þ þ SrLeh00 þ Nt
Nb

h00 ¼ 0; ð10Þ

f ð0Þ ¼ S; f 0ð0Þ ¼ 1; hð0Þ ¼ 1; /ð0Þ ¼ 1; ð11Þ

f 0ð1Þ ! 0; f 00ð1Þ ! 0; hð1Þ ! 0; /ð1Þ ! 0; ð12Þ
with Nt; Le ¼ am=DB; Nb;Df ; Pr ¼ t=am, k;bðP 0Þ; N; c, and Sr are
thermophoresis parameter, Lewis number, Brownian motion
parameter, Dufour number, Prandtl number, dimensionless mixed
convection parameter, Deborah number, dimensionless concentra-
tion buoyancy parameter, dimensionless porosity parameter, and
Soret number respectively. Defining these parameters

k ¼ gbT b
a2 ¼ gbT ðTw�T1Þx3=t2

u2wx
2=t2 ¼ Grx

Re2x
; N ¼ bC ðCw�C1Þ

bT ðTw�T1Þ ;

c ¼ t
aK ; b ¼ ak1; Df ¼ DeKT ðCw�C1Þ

CsCpðTw�T1Þt ;

Sr ¼ DeKT ðTw�T1Þ
TmamðCw�C1Þ ; Nb ¼ ðqdÞpDBðCw�C1Þ

ðqdÞf t ; Nt ¼ ðqdÞpDT ðTw�T1Þ
ðqdÞf T1t :

ð13Þ

Here, Rex ¼ uwx=v ; Grx ¼ gbTðTw � T1Þx3=t2 are the local Rey-
nolds and Grashof numbers. Moreover, k > 0; k < 0, and k ¼ 0
depict supporting flow (heated plate), opposing flow (cooled plate)
and forced convection flow. Moreover, Ncan take positive values
ðN > 0Þ and negative values ðN < 0Þ with N ¼ 0 (in the absence
of mass transfer). The local Nusselt and Sherwood numbers are
symbolized by:

Nux ¼ xqw

kðTw � T1Þ ; Shx ¼ xjw
DBðCw � C1Þ ; ð14Þ

where qw and jw are represented by

qw ¼ �k
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@C
@y
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: ð15Þ

In non-dimensional, local Nusselt, and Sherwood numbers are
presented as

Re�1=2
x Nux ¼ �h0ð0Þ; Re�1=2

x Shx ¼ �/0ð0Þ: ð16Þ
Series solution development

Here, we intend to interpret the convergence of the series solu-
tions by renowned Optimal Homotopy analysis method (OHAM)



Table 1
Averaged squared residual errors for varied order of approximations.

m � f
m �hm �/m

2 5:79� 10�4 1:48� 10�4 7:14� 10�4

6 1:42� 10�4 4:05� 10�6 7:05� 10�6

10 2:10� 10�5 8:18� 10�7 3:70� 10�6

16 1:41� 10�5 6:30� 10�8 3:09� 10�6

20 1:07� 10�5 1:42� 10�12 2:82� 10�6

26 1:06� 10�5 5:26� 10�14 2:66� 10�6

30 1:01� 10�5 1:24� 10�16 1:33� 10�6

Fig. 2. Minimum averaged squared residual errors for 2nd, 4th, and 6th order of
approximations.

Fig. 3. Effect of S on f 0ðgÞ.
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[50,52]. The initial estimates and the respective operators are
required for the homotopic solutions. For the present flow, these
are depicted as follows:

f 0ðgÞ ¼ Sþ 1� expð�gÞ; h0 gð Þ ¼ expð�gÞ; /0 gð Þ ¼ expð�gÞ;
ð17Þ

and

Lf ¼ d3f
dg3 �

df
dg

; Lh ¼ d2h
dg2 � h; L/ ¼ d2/

dg2 � /: ð18Þ

Following the foot steps given in [50]. The general solutions of
Eqs. (8)–(10) are given by

f mðgÞ ¼ f �mðgÞ þ C1 þ C2expðgÞ þ C3expð�gÞ; ð19Þ

hmðgÞ ¼ h�mðgÞ þ C4expðgÞ þ C5expð�gÞ; ð20Þ

/mðgÞ ¼ /�
mðgÞ þ C6expðgÞ þ C7expð�gÞ; ð21Þ

where f �mðgÞ; h�mðgÞ and /�
mðgÞ represent the special solutions and

C2 ¼ C4 ¼ C6 ¼ 0; C1 ¼ �C3 � f �mð0Þ;

C3 ¼ @f �mðgÞ
@g

����
g¼0

; C5 ¼ �h�mð0Þ; C7 ¼ �/�
mð0Þ; ð22Þ

with Ci ði ¼ 1� 7Þ are the arbitrary constants.

Optimal solution

As suggested by Liao [51], averaged squared residual errors that
can result in excellent approximations of optimal convergence
control parameters are assumed to be:
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where k is an integer. The overall squared residual error �tm is given
by

�tm ¼ � f
m þ �hm þ �/m; ð26Þ

with dg ¼ 0:5, and k ¼ 20. Mathematica BVPh 2.0 package is used to

minimize these errors. At 3rd order of approximation, the values of
optimal convergent control parameters are �hf ¼ �0:75293;
�hh ¼ �0:90738 and �h/ ¼ �0:933951 with total averaged squared

error �tm ¼ 0:000141212. At 3rd order of approximation with
S ¼ 0:5; c ¼ k ¼ Pr ¼ Le ¼ N ¼ 1; Sr ¼ 0:2; Nt ¼ Df ¼ b ¼ 0:1, and
Nb ¼ 0:8, the values of averaged squared residual errors are given
in Table 1. It can be observed that increasing values of higher order
of approximations results in decrease in averaged squared residual
errors. Fig. 2 is portrays the propensity of average squared residual
error Co ¼ ð�hf ¼ �hh ¼ �h/Þ versus an optimal value of all three auxil-

iary control parameters �hf ; �hh and �h/ at 2nd; 4th and 6th iterations
using Mathematica package BVPh 2.0. It can be perceived that
increasing values of order of iterations give rise to optimal conver-
gence control parameters to a �0:67 converging value.
Results and discussion

The purpose of this section is to deliberate the significant char-
acteristics of promising parameters on velocity, temperature, and
nanoparticle concentration profiles. Fig. 3 portrays the impact of
suction parameter S on the velocity profile. It is witnessed that
velocity field is diminishing function of S. Impact of Deborah num-
ber b on the velocity distribution is given in Fig. 4. It is noticed that
velocity profile is a waning function of Deborah number. The effect
of porosity parameter c on velocity field is depicted in Fig. 5. It is
witnessed that velocity distribution is dwindling function of poros-
ity parameter. Physically, an increase in resistance against the fluid
flow is observed by increasing thickness of porous medium which
results in decrease in fluid velocity. Fig. 6 shows the assisting flow
ðk > 0Þ which speed up the fluid’s flow for positive gravitational



Fig. 4. Effect of b on f 0ðgÞ.

Fig. 5. Effect of c on f 0ðgÞ.

Fig. 6. Effect of k > 0 on f 0ðgÞ.

Fig. 7. Effect of k < 0 on f 0 ðgÞ.

Fig. 8. Influence of Pr on hðgÞ.

Fig. 9. Influence of Pr on /ðgÞ.
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force and hence results in an increase in fluid’s velocity. On the
other hand, Fig. 7 depicts the opposing flow ðk < 0Þ which resists
the fluid’s flow. In Figs. 8 and 9, we observe the effect of Pr on tem-
perature profile hðgÞ and nanoparticle concentration profile /ðgÞ.
Increasing values of Prandtl number cause an attenuation in both
temperature and nanoparticle concentration distributions. This is
because of the fact that a feebler thermal diffusivity is witnessed
for higher Prandtl number. Figs. 10 and 11 exhibit the effect of
the Dufour number Df on hðgÞ and /ðgÞ. It is found that tempera-
ture and concentration profiles increase and decrease respectively
versus increasing values of Dufour number. Higher values of
Dufour number lower temperature and ultimately larger tempera-
ture distribution is observed. On the contrary, an opposite behavior
is witnessed in case of concentration field. Figs. 12 and 13 illustrate
that the Soret number Sr decreases temperature profile while there
is an increase in concentration profile and boundary layer thick-
ness. Higher temperature difference and a lower concentration dif-
ference are observed because of increasing values of the Soret
number. This variation in the temperature and concentration dif-
ferences is liable for the decrease in the temperature and an



Fig. 10. Influence of Df on hðgÞ.

Fig. 11. Influence of Df on /ðgÞ.

Fig. 12. Influence of Sr on hðgÞ.

Fig. 13. Influence of Sr on /ðgÞ.

Fig. 14. Influence of Nb on hðgÞ.

Fig. 15. Influence of Nb on /ðgÞ.
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increase in the concentration. It is also noticed that the Dufour and
Soret numbers have fairly contrary effects for temperature and
nanoparticle concentration fields. The consequences of Brownian
motion parameter Nb on temperature and concentration distribu-
tion are depicted in Figs. 14 and 15. It is examined that tempera-
ture profile is larger for higher values of Brownian motion
parameter. An increase in Brownian motion parameter Nb amplify
the randommotion of the fluid particles which produces more heat
and reduces the concentration of the fluid. Figs. 16 and 17 demon-
strate the influence of thermophoresis parameter Nt on tempera-
ture and nanoparticle concentration fields. It is perceived that
with an increase in thermophoresis parameter both the tempera-
ture profile and thermal boundary layer thickness also increase.
It is also shown that this enhancement in thermophoresis param-
eter pushes the nanoparticles away from the hot surface which
results in an increase in volume fraction distribution.

A comparison in the limiting case is presented in Table 2, where
a very good agreement is observed for the Nusselt number when
different values of suction/injection parameter and Prandtl number
are considered.

Table 3(a) and 3(b) show the values of the local Nusselt number

NuxRe
�1=2
x and the local Sherwood number ShRe�1=2

x . The magnitude
of the local Nusselt number increases for S; k; N; Pr and Sr. How-
ever, it decreases for values of Nb; b; Df ; c; Le, and Nt. The magni-



Fig. 16. Influence of Nt on hðgÞ.

Fig. 17. Influence of Nt on /ðgÞ.

Table 2
Comparison of �h0ð0Þ for some values of Pr and S when
b ¼ c ¼ k ¼ Df ¼ Nb ¼ Nt ¼ / ¼ 0.

S Pr Ishak et al. [55] Hayat et al. [56] Present

�1.5 0.72 0.4570 0.4570273 0.4570271
1 0.5000 0.5000000 0.5000000
10 0.6542 0.6451648 0.6451645

0 0.72 0.8086 0.8086314 0.8086313
1 1.0000 1.0000000 1.0000000
3 1.9237 1.92359132 1.9359130
1.0 3.7207 3.7215968 3.7215958

1.5 0.72 1.4944 1.4943687 1.4943680
1 2.0000 2.0000621 2.0000620
10 16.0842 16.096248 16.096232

Table 3(a)
Local Nusselt number NuxRe

�1=2
x and the local Sherwood number ShRe�1=2

x against
values of c; k; N; S; b and Pr when Df ¼ 0:1; Le ¼ 1; Sr ¼ 0:2; Nb ¼ 0:8 and Nt ¼ 0:1
are fixed.

S b c k N Pr �h0ð0Þ �/0ð0Þ
0.0 0.1 2.0 1.0 1.0 1.0 0.71104 0.89301
0.3 0.79696 1.01679
0.5 0.85983 1.10661
0.9 0.99873 1.30359
0.5 0.0 0.86690 1.11816

0.2 0.85263 1.09559
0.4 0.83795 1.07326
0.1 0.5 0.91493 1.19556

1.0 0.89498 1.16286
1.5 0.87680 1.13337
2.0 0.5 0.81772 1.03883

0.8 0.84445 1.08202
1.2 0.87379 1.12906
1.0 �0.2 0.80842 1.02316

�0.1 0.81357 1.03149
0.5 0.84071 1.07596
1.0 0.7 0.77431 0.84566

1.2 0.88622 1.27852
1.5 0.89045 1.53416

Table 3(b)
Local Nusselt number NuxRe

�1=2
x and the local Sherwood number ShRe�1=2

x against
values of Sr; Nb; Df ; Le, and Nt when S ¼ 0:5; b ¼ 0:1; c ¼ 2:0; k ¼ N ¼ Pr ¼ 1:0 are
fixed.

Df Le Sr Nb Nt �h0ð0Þ �/0ð0Þ
0.0 1.0 0.2 0.8 0.1 0.92430 1.08556
0.2 0.79244 1.12890
0.4 0.64798 1.17570
0.1 0.7 0.93603 0.82755

1.2 0.81957 1.28184
1.5 0.76852 1.53285
1.0 0.0 0.82745 1.21843

0.1 0.84341 1.16386
0.4 0.89416 0.98468
0.2 0.95038 0.77806

0.3 1.07399 0.89003
0.5 0.97908 1.02149
1.0 0.78921 1.14098
0.8 0.0 0.87116 1.17100

0.3 0.83699 0.98765
0.5 0.81388 0.88051
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tude of local Sherwood number decreases for increasing values of
b; c; Sr and Nt whereas it increases for large values of
Df ; S; N; Pr; k; Nb, and Le.

Conclusions

It is of great interest in this exploration to examine effects of
mixed convection, Soret and Dufour past a permeable medium of
Maxwell nanofluid flow. Effects of variable temperature and con-
centration over a linearly porous stretched surface are also taken
into account. An optimal solution is obtained for the highly nonlin-
ear set of differential equations using BVPh 2.0 Mathematica pack-
age. Consideration of the problem along with its proposed solution
is unique and has been not discussed in the literature before. The
significant findings of the present study are listed below:

� Nanoparticle concentration distribution is a decreasing and
increasing function of Nb and Nt.

� Velocity distribution reduces with an increase in values of S.
� h and / decrease with growing values of Pr.
� The impact of Df on h and / are opposite.
� Local Nusselt and Sherwood numbers are larger for increasing
values of S and k.
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