SYMPOSIUM: MRI-GUIDANCE IN RADIOTHERAPY

SP-0649
Sequences and methods for MRI-based treatment planning
T. Nyholm
1Umeå University, Department of Radiation Sciences, Umeå, Sweden

Integration of magnetic resonance (MR) imaging into the radiotherapy workflow is becoming more and more common. In the situation where the target volume is primarily defined on the MR images, the CT will only play technical role in the workflow, i.e. as basis for the dose calculation and positioning reference. One could therefore question if the CT study is really necessary for any diagnoses and patient groups. Exclusion of CT could actually be an improvement when avoiding the registration uncertainty between CT and MR in the planning phase of the treatment.

Treatment planning based on MR data is, however, not straightforward. The lack of electron density information needs to be mitigated and appropriate sequences need to be chosen to avoid geometrical distortions and enable visualisation of fiducial markers, if present. The information from the MR study will have to fulfill the demands for all the steps of the workflow, target definition, treatment planning, dose calculation and as a reference for patient positioning at treatment.

The presentation will provide an overview of the current status of fully MR based radiotherapy and outline the potential benefits and remaining problems.

SP-0650
Sequences for MRI guided external beam RT
S.P.M. Crijns
1Utrecht University, Department of Radiology Sciences, Utrecht, The Netherlands

In the current radiotherapy clinic, MRI is used to support tumour and organ at risk delineation as well as tumour characterisation because of its superior soft tissue contrast. Moreover, MRI can visualise soft-tissue structures in real-time. Integrated MRI radiotherapy systems promise to visualise soft-tissue structures in real-time. Moreover, MRI can visualise soft-tissue structures in real-time. Furthermore, there is upcoming interest in MRI in prostate brachytherapy, since multiparametric MRI is increasingly being recognized as an accurate diagnostic imaging modality for prostate cancer. Functional imaging such as DCE-MRI and DWI is being investigated for increased sensitivity and specificity of tumour identification and characterization in both cervix and prostate brachytherapy.

MRI images in brachytherapy serves the primary purpose of tumour contouring. Secondly, MRI is used for OAR contouring. The third role of the images is to visualise the brachytherapy applicator. This information is needed for reconstruction of the applicator which is visualisation of the source path and source dwell positions. These different purposes of imaging may be accomplished by one or several image sequences. For contouring, the T2-weighted imaging is used with orientation according to the applicator: para-transversal, paracoronal and sagittal. Other sequences may be applied in addition to provide visualisation of the applicator. In MRI guided EBRT, the lack of electron density information on MRI images is a challenge. In brachytherapy, dose calculation in the pelvic region does not require heterogeneity corrections, and dose planning and calculation can be performed directly on MRI.

Applicators have to be MRI-compatible in order to avoid image distortion, heating and mechanical tissue injuries. Non-metallic (e.g. plastic) and titanium applicators are commercially available. Non-metallic applicators appear as black voids in the images. Although titanium applicators are MRI-compatible, they do induce susceptibility artifacts - particularly in regions of considerable material thickness which is at the end of the tandem, needle, ovoid, and ring channels. In particular with 3 T MRI, titanium applicators may compromise the image quality due to susceptibility artifacts. The titanium artifacts depend on image sequence and may extend beyond 5-10 mm on 3 T T2-weighted sequences whereas they may be less than 3-5mm on 3 T T1-weighted MRI.

Diffusion Weighted MRI (DW-MRI) has shown great potential in diagnostic cancer imaging and may have value for monitoring tumor response during radiotherapy. An important obstacle to be overcome is the pronounced sensitivity of EPI based DW-MRI to B0 inhomogeneity, leading to geometrical distortions which are further amplified due to the intravaginal applicator. Voxel displacements of 2-5 mm are common in the region of the applicator, and registration between DWI and e.g. T2W images requires a correction for the distortions. B0 correction is a promising tool for improved geometric accuracy of DWI.

MRI is an important image modality for brachytherapy. Certain geometric QA related to the imaging sequences used is needed, however, for most potential combinations of scanners, sequences and BT equipment it is feasible to develop dedicated imaging protocols in order to obtain geometric stabilities which are acceptable for BT dose planning.

SYMPOSIUM: EDUCATION OF RTTS - NEW CHALLENGES IN LIGHT OF THE NEW CORE CURRICULUM

SP-0652
Core curriculum - a new approach
L. Mullany
1Trinity College Dublin, Discipline of Radiation Therapy, Dublin 8, Ireland
L. McKeown
2Aarhus University Hospital, Dept of Oncology, Aarhus, Denmark

MRI-guided brachytherapy has during the last decade gained much interest, in particular for brachytherapy in cervical cancer. Promising mono-institutional outcome data as well as favourable dosimetric comparisons has promoted this new technique into many institutions. The new technique requires optimal quality from the MR images, and GEC ESTRO recommendations have been published on MR imaging for cervix cancer brachytherapy (Dimopoulos et al., RO 2012). Furthermore, there is upcoming interest in MRI in prostate brachytherapy, since multi-parametric MRI is increasingly being recognized as an accurate diagnostic imaging modality for prostate cancer. Functional imaging such as DCE-MRI and DWI is being investigated for increased sensitivity and specificity of tumour identification and characterization in both cervix and prostate brachytherapy.

MRI images in brachytherapy serves the primary purpose of tumour contouring. Secondly, MRI is used for OAR contouring. The third role of the images is to visualise the brachytherapy applicator. This information is needed for reconstruction of the applicator which is visualization of the source path and source dwell positions. These different purposes of imaging may be accomplished by one or several image sequences. For contouring, the T2-weighted imaging is used with orientation according to the applicator: para-transversal, paracoronal and sagittal. Other sequences may be applied in addition to provide visualisation of the applicator. In MRI guided EBRT, the lack of electron density information on MRI images is a challenge. In brachytherapy, dose calculation in the pelvic region does not require heterogeneity corrections, and dose planning and calculation can be performed directly on MRI.

Applicators have to be MRI-compatible in order to avoid image distortion, heating and mechanical tissue injuries. Non-metallic (e.g. plastic) and titanium applicators are commercially available. Non-metallic applicators appear as black voids in the images. Although titanium applicators are MRI-compatible, they do induce susceptibility artifacts - particularly in regions of considerable material thickness which is at the end of the tandem, needle, ovoid, and ring channels. In particular with 3 T MRI, titanium applicators may compromise the image quality due to susceptibility artifacts. The titanium artifacts depend on image sequence and may extend beyond 5-10 mm on 3 T T2-weighted sequences whereas they may be less than 3-5mm on 3 T T1-weighted MRI.

Diffusion Weighted MRI (DW-MRI) has shown great potential in diagnostic cancer imaging and may have value for monitoring tumor response during radiotherapy. An important obstacle to be overcome is the pronounced sensitivity of EPI based DW-MRI to B0 inhomogeneity, leading to geometrical distortions which are further amplified due to the intravaginal applicator. Voxel displacements of 2-5 mm are common in the region of the applicator, and registration between DWI and e.g. T2W images requires a correction for the distortions. B0 correction is a promising tool for improved geometric accuracy of DWI.

MRI is an important image modality for brachytherapy. Certain geometric QA related to the imaging sequences used is needed, however, for most potential combinations of scanners, sequences and BT equipment it is feasible to develop dedicated imaging protocols in order to obtain geometric stabilities which are acceptable for BT dose planning.

Health education has evolved and is now commonly based on core competences defined through learning outcomes. The recent third
revision of the RTT core curriculum defines the core competences for newly qualified RTTs. A competence can be described as a quality, ability, capacity or skill that is developed by and belongs to the learner. In the context of this document, a competence shows a capability on the part of an RTT and demonstrates an ability to integrate knowledge, skills and attitudes to meet specific needs in a range of situations. The core curriculum defines the competences a new qualified RTT should have attained. The core competences were based on a comprehensive survey of the basic scope of practice in 26 European countries. Some of these competences have elements that are generic to a wide range of healthcare disciplines where others are RTT specific. The competences are divided into clinical competences and the academic competences necessary to develop the competences for practice.

To facilitate this approach the third revision of the core curriculum for RTTs focuses on competences linked to learning outcomes and the essential knowledge and skills necessary to underpin practice. This approach reflects the changing practice and professional status of RTTs and is based on the competences required to practice as an RTT. One of the aims of the curriculum is to provide a guide to educators developing or amending RTT educational programmes. At a basic level, this current revision outlines the required curriculum topics necessary to underpin the basic core competences expected of RTTs in the clinical setting and at a higher level it reflects the necessary content for RTTs undertaking significantly greater responsibility over a wider range of tasks. This revision for the initial optimal education requires RTTs are able to integrate knowledge, skills, attitude and judgment in order to be able to perform a professional activity adequately in a given clinical situation.

However, this new competency-based approach requires that educational programmes are broadened to include the defined competency areas with emphasis on quality training in a practical environment, competency-based supervision and evaluation during training. There are many challenges associated with this change. Teaching, learning and assessment must be focused to assure graduates attain the qualities and attributes desired in a competent RTT practicing in an evolving clinical environment and that the programme equips RTTs with those attributes needed to competently perform those tasks now and into the future.

The new curriculum outlines appropriate teaching, assessment and evaluation methods for a competency-based curriculum but it is up to the educational institute and/or the national society to suggest which methods should be used and how they should be implemented in their national context.

SP-0653 Use of virtual reality in an educational environment

A. Boejen¹, A. Vestergaard², K. Seiersen², C. Grau¹

¹Aarhus University Hospital, Department of Oncology, Aarhus C, Denmark

²Aarhus University Hospital, Department of Medical Physics, Department of Oncology, Aarhus C, Denmark

Although still in its infancy, virtual reality (VR) tools have become available for radiotherapy training, enabling all groups of staff to simulate and practice clinical situations, adhering with the clinical workflow, and without the risk of making errors. Immersive tools like a 3D linear accelerator, 3D display of dose distributions and IT-laboratories with clinical software have been integrated in training. A new learning practice in connection with both theory and clinical training has been developed. In this “third context” the students have the possibility to acquire new skills before implementation in the clinic. The gap between theory and clinical work are broken down and learning activities are integrated in a mutual process. VR tools are very useful for all groups of students. At basic level training with the pendant, positioning of patients, understanding in spatial processes, education in IGRT with bone match and IMRT dose planning are some of the possibilities. Implementation of novel clinical treatments calls for education and training of experienced staff. An educational environment with VR tools, as part of the bridge building, is essential; e.g. implementation of adaptive strategies (ART) with plan of the day selection in bladder cancer. For this a lesson plan with lecture, e-learning, hands-on training, follow up meetings and tests were scheduled. Depending on clinical function some groups were offered only one or two of the sessions, while the radiation therapists (RTT’s) received the three learning sessions with a combination of lecture, e-learning and hands-on training. Follow up meetings were organized ongoing. The hands-on training was organized with interaction between 3D accelerator (demonstrating anatomy at pelvic and normal tissue that might be spared and treated) and plan selection in the simulation RTT-laboratory. Finally all participants completed a test with selections of plan of the day. The selected plans were afterwards compared to a gold standard, selected plans were afterwards compared to a gold standard, selected plans were afterwards compared to a gold standard.

SP-0654 A post registration training programme for RTTs to support the implementation of advanced IGRT in the UK

A. Baker¹, C. Baker², A. Reilly², S. Armstrong², H. McNair³

¹The Clatterbridge Cancer Centre, Radiotherapy, Merseyside, United Kingdom

²The Clatterbridge Cancer Centre, Medical Physics, Merseyside, United Kingdom

³The Royal Marsden Hospital, Radiotherapy, London, United Kingdom

Purpose. The NRAG report set the UK national strategy for radiotherapy and has been the template for development of services. The expectation in the NRAG report was that 4D adaptive radiotherapy (4D-ART) would become the standard of care. The UK National Cancer Action Plan stated that “The fact that the standard of care for radiotherapy patients requires that they are managed closer towards 4D ART being standard for appropriate patients. RTTs will all require training in image guidance techniques which they will be using for the majority of patients.”

Role of Clinical Trials in IGRT and QA issues. A number of national clinical trials involving IGRT are recruiting patients. The UK Radiotherapy Trials Quality Assurance (RTTQA) group undertakes a programme of activities in relation to individual trials to ensure protocol adherence. For IGRT related trials, there is a need to verify competence of IGRT processes, both registration and subsequent treatment. The RTTQA group have been investigating methods for this to be assessed which may enable a programme to be developed which will assess practical aspects of image guidance for image registration and be able to be undertaken in more departments.

Development of Post-graduate MSc Modules. There are 2 UK Universities currently offering specific image guidance MSc modules which have been developed to support UK RTTs. These modules have been written by members of clinical departments to incorporate technical and clinical issues. Academic collaboration and accreditation provides quality assurance in terms of module structure and assessment. Both modules contain similar content and assessment methods and aim to:-(i) develop in-depth knowledge of advanced medical imaging techniques and protocols applied to radiotherapy planning and patient management (ii) develop critical awareness of the issues surrounding treatment verification and its importance in achieving accurate treatment (iii) facilitate an advanced understanding of the principles and practice of a variety of relevant IGRT equipment (iv) to develop the ability to critically evaluate clinical imaging protocols (v) promote role development and inter-professional working for oncology practitioners.

There is also a requirement to assess the practical ability to perform effective clinical interpretation and evaluation of images utilised in the radiotherapy process. A module to assess this has also being developed.

Module Content and Assessment Methods. The modules are taught using an interactive style using examples of where theory links to practice. They utilise a combination of lectures on key concepts, tutorials and self study appropriate to an essentially problem solving approach designed for post graduate students.

Example of content includes:-(i) types of equipment which can be used for IGRT (ii) geometric errors of radiotherapy techniques (iii) dose considerations associated with IGRT (iv) stereotactic principles and techniques (v) interaction between IGRT and radiobiological modelling

Module assessment is either utilising a structured portfolio of case studies or a review of a specific IGRT technique. The module designed to assess practical aspects of IGRT incorporates a combination of lectures with directed practical image registration/analysis. The practical aspects module is assessed using a computer based image analysis exam plus a presentation.