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Abstract Cell adhesion is required for many cellular processes.
In fungi, cell–cell contact during mating, flocculation or virulence
is mediated by adhesins, which typically are glycosyl phosphati-
dyl inositol (GPI)-modified cell wall glycoproteins. Proteins with
internal repeats (PIR) are surface proteins involved in the re-
sponse to stress. In Schizosaccharomyces pombe no adhesins
or PIR proteins have been described. Here we study the
S. pombe Map4p, which defines a new class of surface protein
that is not GPI-modified and has a serine/threonine rich domain
and internal repeats that differ from those present in PIR pro-
teins. Map4p is a mating type-specific adhesin required for mat-
ing in h+ cells and enhances cell adhesion when overexpressed.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Fungal adhesins, which include sexual agglutinins, virulence

factors, and flocculins, are surface proteins that mediate cell–

cell and cell–environment interactions. The best characterised

adhesins belong to Saccharomyces cerevisiae or Candida

[4,6,7,10]. They are relatively large proteins rich in serine and

threonine residues; are extensively glycosylated; present some

repeated domains, and are maintained on the cell surface

through a plasma membrane- or a cell wall-linked glycosyl

phosphatidyl inositol (GPI) anchor [10]. In S. cerevisiae,

Aga1p-Aga2p and Aga1p agglutinins (a- and a-specific, respec-

tively) are required for agglutination during mating [10]. Aga1p

has two highly similar domains separated by a serine/threonine-

rich heptapeptide repeat and Aga2p is a 69-amino acid poly-

peptide that binds to Aga1p through a pair of disulfide bridges

[8]. Aga1p is a glycoprotein with a N-terminal domain that

shows similarity to the immunoglobulin fold sequences found

in some mammalian adhesion proteins [20]. Agglutinin-like

and Epa proteins from Candida albicans and C. glabrata (coded

by the ALS and EPA genes, respectively) are large proteins

involved in cell adhesion to host surfaces [6,7]. Als proteins

show a conserved N-terminal domain, a central region with
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variable numbers of tandemly repeated copies of a 36-amino-

acid motif, and a serine/threonine rich C-terminal domain

(Pfam database: http://www.sanger.ac.uk/Software/Pfam/, and

[7]). Epa1p exhibits an N-terminal ligand-binding domain and

a serine/threonine-rich region [6].

A less abundant and less characterised group of cell wall

proteins are the protein with internal repeats (PIR) proteins,

which are not GPI-modified. They present a signal peptide, a

domain with tandem repeats of amino acids that include sev-

eral glutamines, and a conserved carboxyl end that exhibits 4

cysteine residues following a pattern of c-x(66)-c-x(16)-c-

x(12)-c [4]. In some cases, they have been shown to be pro-

cessed at the amino terminal end by the Kex2 protease [3].

In C. albicans the putative PIR proteins do not have proper

Kex2 sites [4].

In fission yeast only one GPI-anchored protein has been

characterized biochemically [15] and no PIR proteins have

been found. Therefore, the characterization of particular cell

wall proteins from Schizosaccharomyces pombe is interesting

in terms of analysis of the data annotated in the genome pro-

ject, but also in terms of comparative studies with cell surface

proteins from other organisms.

In S. pombe, the mechanisms leading to agglutination and

cell fusion during mating are almost unknown. Yamamoto

et al. proposed that the map4+ gene coded for a putative P-spe-

cific agglutinin [21] but that gene was never characterised. A

systematic analysis directed to the study of gene expression

during sexual differentiation was carried out [11], and the genes

were grouped according to their time of expression. The

SPBC21D10.06c open reading frame (ORF) belongs to the

group of genes involved in the first steps of mating. The corre-

sponding protein was described as a surface glycoprotein. We

cloned this gene in order to investigate whether it played a role

in mating. During the development of this work we knew that

the SPBC21D10.06c ORF corresponded to the map4+ gene

(http://www.sanger.ac.uk/Projects/S_pombe/). map4+ codes

for a PIR that lacks a potential GPI anchor. Map4p has un-

ique structural properties that differentiate it from other cell

wall proteins. Here we show that Map4p is an adhesin required

for mating in h+ cells, and that a high expression of map4+

enhances cell–cell contact.
2. Materials and methods

2.1. Strains and growth conditions
The strains used were HVP281 (h90 leu1-32 ura4D18 ade6), HVP30

(h� leu1-32 ura4D18 ade6 his3D1), HVP117 (h+ leu1-32 ura4D18
ade6 his3D1) and HVP289 (h� cyr1::ura4+ sxa2::ura4+ leu1-32 ade6).
These strains were grown on YES medium or EMM with supplements
blished by Elsevier B.V. All rights reserved.
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and mated on SPA plates [14]. Quantitative mating experiments were
carried out as described [1]. All general techniques have already been
described [14,18].
2.2. Agglutination analysis
Agglutination in the mutant strains was estimated as follows. 108

cells from each parental strain, growing exponentially in EMM with
supplements, were mixed, washed three times with water, and inocu-
lated in 10 ml of EMM-N. EMM-N was EMM without ammonium
chloride [14]. Cultures were incubated at 25 �C with gentle shaking
overnight. At the end of this mating time, a 1 ml-sample from each
cross was fixed with formaldehyde for 1 h at room temperature. After
fixation, OD at 600 nm from upper part of the samples was estimated.
All samples were studied in triplicate. The agglutination index (AI) was
calculated as AI ¼ 1� ðODProblem crosses

600 =1:1�ODWT crosses
600 Þ.

In order to analyse agglutination in cells carrying overexpression
plasmids, h+ cells growing exponentially in EMM with supplements
and thiamine (15 lM) were washed extensively with water and inocu-
lated in the same medium without thiamine. After 22 h of derepression,
5 · 107 cells were mixed with an equal number of h� cyr1::ura4+

sxa2::ura4+ cells that had been treated with P factor for 3 h according
to [19]. Cells were incubated with shaking at 25 �C. Samples were col-
lected at the desired time points and treated as above.
2.3. Molecular and genetic manipulations
A PmlI/SalI DNA fragment containing the SPBC21D10.06c ORF

together with upstream and downstream sequences was cloned from
the SPBC21D10 cosmid into the SmaI/SalI sites of a modified KS vec-
tor that lacked the NotI site (KS-Not). In parallel, the Gap Repair tech-
nique [16] was used to obtain the same DNA fragment from the
genome. In order to express the map4+ gene from the strong nmt1+ pro-
moter – repressible by thiamine [12]– an ApaI site was created before the
ATG by site-directed mutagenesis using the 21DApaATG oligonucleo-
tide (5 0-cattaatattaatattaataattgggcccatgaattcatacgcaattttattg-30). The
ORF and 3 0 non-coding region were cloned as an ApaI/NcoI fragment
into the pJR-L1 plasmid [13]. To construct a Map4-GFP fusion pro-
tein, a NotI site was created before the stop codon by site-directed
mutagenesis using the 21DNotSTOP oligonucleotide (5 0-gttgttctta-
gagctttggaatatggcggccgctaggctttatttctactgaaaagttgcagg-3 0). Then, a
NotI/NotI DNA fragment, containing the green fluorescent protein
(GFP) preceded by a hinge of 8 alanine residues, was cloned into the
NotI site. This fusion protein was cloned into the integrative vector
pJK148. The functionality of this protein was assessed by complemen-
tation of the mutant phenotype. A 21D::ura4+ deletion cassette was
generated by creating a KS+map4+ (ApaATG NotISTOP) plasmid
lacking the ApaI site in the polylinker and replacing the ORF by the
ura4+ gene as an ApaI/NotI DNA fragment. Polymerase chain reaction
(PCR), using different sets of oligonucleotides that were external and/or
internal to the cassette, was used to assess the replacement of the
SPBC21D10 ORF by ura4+. The Crn1-GFP protein was recovered
by gap repair from the RP001 strain [17] and cloned into pJK148.

DNA sequencing was performed using the Universal (5 0-gtaaaac-
gacggccagtgaat-3 0), Reverse (5 0-ggaaacagctatgaccatgattac-3 0), BsawF
(5 0-ccggtagtagttcagctttatct-3 0), MnlF (5 0-gtgacggaaacgacgacttc-3 0)
and AluR (5 0-gatgtacccactcctacagc-30) oligonucleotides. Nucleotide se-
quences were analysed using DNASTAR and Clonemap programs.
2.4. Microscopy
A Leica DM RXA microscope equipped with a Photometrics Sensys

CCD camera using the Qfish 2.3 program was used to perform micros-
copy analyses.
2.5. Protein analysis
Cells growing in EMM were washed with water and transferred to

EMM-N and incubated for 5 h at 25 �C with gentle shaking. Cells were
collected, washed with Buffer A (50 mM Tris–HCl, pH 7.5; 50 mM
EDTA; 1 mM PMSF; 1 lg/ml Aprotinin, Leupeptin and Pepstatin)
and broken in the same buffer in a FastPrep (Savant). Cell walls were
recovered by centrifugation (5 min at 3000 rpm) and washed 6 times
with buffer A. Then, they were boiled in the presence of sample buffer
(50 mM Tris–HCl, pH 6.8; 1% SDS; 143 mM b-mercaptoethanol; 10%
glycerol). The samples were loaded on 4–20% gradient gels, transferred
to Immobilon-P membranes in Tris–glycine buffer and decorated
with monoclonal anti-GFP (JL8, Nucliber; 1:1000) antibody. ECL
Advanced (Amersham) was used to develop the blots.
3. Results

3.1. Characteristics of the Map4 protein

According to the S. pombe Genome Database (http://

www.genedb.org/genedb/pombe/index.jsp), the SPBC21D10.

06c ORF has 2847 nucleotides and is predicted to have two

KpnI and two BamHI restriction sites. However, when we

cloned this ORF and the non-coding regions from the cosmid

we found that the size of some restriction fragments was larger

than expected and that there were more sites for those en-

zymes. The same result was obtained from a genomic DNA

fragment cloned by gap repair. We found that the disagree-

ment between the sequence in the database and that of the

cloned fragments was restricted to a DNA region flanked by

sites for SacI and EcoRV. We sequenced this region and found

that it was 432 bp larger than expected and that it had four

BamHI and five KpnI sites, which suggested the presence of

internal repeats. To confirm that the sequence we got corre-

sponded to the cloned DNA fragment, we PCR-amplified this

part of the gene using the BsawF and AluR oligonucleotides

(see Section 2). As shown in Fig. 1B, this fragment was larger

than expected from the reported sequence (1.1 kb instead of

0.6 kb). The PCR product was digested using XhoI, BamHI

or KpnI. The number and size of the bands resulting from

the digestions corresponded to that predicted by the corrected

sequence and showed that in the DNA fragment there were

more than two KpnI and more than two BamHI sites (Fig. 1B).

The protein encoded by the SPBC21D10.06c ORF has 1092

amino acids and, according to computer-assisted predictions,

shows the following features (Fig. 1A): a signal peptide with

cleavage site between residues 23 and 24, a serine/threonine-

rich region (amino acids 24 and 616), a region with nine repe-

titions of the 36-aminoacid sequence S(W/Y)VTET(V/

T)TSGSV(G/E)FTTTI(A/T)TP(V/I)G(S/T)TAGTV(L/V)(V/I)

D(V/I)PTP (residues 617–940), and a carboxy-terminal region

(amino acids 941–1092) that includes four cysteine residues

and a DIPSY domain, present in some cell wall proteins from

S. pombe (according to Pfam). The protein has multiple poten-

tial sites for phosphorylation and O-glycosylation, and 12 po-

tential sites for N-glycosylation. These features suggest that it

is a cell surface glycoprotein. Except for the amino terminal

end, the protein is hydrophilic.
3.2. map4+ is required for mating in h+ cells

In order to study whether the map4+ gene is required for

mating, we constructed a null mutant in a homothallic h90

strain, which produces h+ and h� cells that are able to mate

with each other. We observed that after a 36-h incubation per-

iod at 28 �C the h90 control strain had mated and sporulated

efficiently (Fig. 2). In contrast, in the mating mixtures from

the h90 map4::ura4+ mutant mating was significantly reduced.

It is noteworthy that the few zygotes that we could observe

had sporulated, showing that Map4p is not required for cell fu-

sion. The most striking observation was that in the mutant

strain there was an accumulation of shmoos with long tips

(Figs. 2A and 3). Next, we wished to investigate whether dele-
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Fig. 1. Domain organization of Map4 protein. (A) Diagram of domain distribution in Map4p. The black box indicates the signal peptide, the
hatched box indicates the serine/threonine-rich region, the stripped box corresponds to the internal repeats and the grey box indicates the DIPSY
domain. Arrowheads indicate the position of the potential Kex2 sites. Arrows indicate the sites for hybridization of the BsawF (1) and AluR (2)
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(C) Amino acidic sequence of the internal repeats in Map4p.
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tion of the map4+ gene had the same effect in both mating

types. Accordingly, we constructed h+ and h� deletants and

performed quantitative mating assays. Mating efficiency – zy-

gotes (white bars in Fig. 2B) with respect to total cell number

– was similar for the wild-type (WT) h+ · WT h� and WT

h+ · map4Dh� crosses, while for the map4Dh+ · WT h� and

map4Dh+ · map4Dh� crosses it was reduced to 1.0% with re-

spect to the WT h+ · WT h� cross. Additionally, shmoos

(black bars in Fig. 2B) only accumulated in the crosses involv-

ing the map4Dh+ strain. This result shows that Map4p is

required for mating in h+, but not in h� cells.

3.3. Map4p is an adhesin

The facts that in the mating mixtures involving a map4Dh+

parental mating was defective, but that a significant number

of shmoos were observed, could be explained in different ways:

(1) map4Dh+ cells are not able to transmit the signal in re-

sponse to pheromones and/or nitrogen starvation or to differ-

entiate into shmoos, and (2) map4Dh+ cells are defective in

pheromone production. In the first case, the shmoos in the

mating mixtures would correspond to the h� parental strain,

while in the later the shmoos would be mostly formed in the

h+ strain. In order to gain information about which the specific

defect in the map4Dh+ strain was, we introduced the actin-

binding protein Crn1p, fused to GFP, into this mutant. In this

way, the mutant cells could be tracked because of the fluores-

cence. When this strain was mated to a WT h� strain, we ob-

served a similar number of fluorescent and non-fluorescent

shmoos (Fig. 3). This result shows that the map4Dh+ cells are

able to produce and respond to pheromone, and indicates that

the map4Dh+ shmoos are not able to mate because they do not

establish cell–cell contact with the h� shmoos.

To analyse cell adhesion, we performed mating assays in li-

quid medium (see Section 2). We observed that in the WT

h+ · WT h� and WT h+ · map4Dh� crosses the cells were able
to agglutinate, producing clumps of cells, while in the

map4Dh+ · WT h� and map4Dh+ · map4Dh� crosses the cells

did not form clumps (Fig. 4A). In order to quantify this defect,

we estimated the agglutination index in the mating mixtures

(see Section 2). After 20 h under mating conditions, the agglu-

tination index was reduced to 30% in the crosses that involved

the map4Dh+ cells with respect to the WT h+ · WT h�

(Fig. 4A). This result confirmed that map4D h+ cells are defec-

tive in cell adhesion.

We then analysed whether a high expression of the map4+

gene could increase cell adhesion. To do so, we expressed this

gene, from its own promoter in a high-copy number plasmid

(pAL+map4+) or from the strong nmt1+ promoter (pRE-

P3X+map4+), in h+ cells. These cells were mated to h� cells

that had been previously treated with the pheromone P factor

in order to stimulate production of their specific mating adhe-

sin. We estimated agglutination after 3 h of mating and ob-

served that at this time cell adhesion had increased twofold

in cells carrying the pAL+map4+ plasmid with respect to the

control. In the cells expressing the gene from the nmt1+ pro-

moter the increase in agglutination was ninefold and large

clumps of cells were observed in the culture (see the large pre-

cipitate in the corresponding tube in Fig. 4B). Finally, we per-

formed time-course experiments to estimate the agglutination

index over time in crosses involving h+ cells that overexpressed

the map4+ gene. As shown in Fig. 4C, under these conditions

cell adhesion was significant after only 15 min of incubation,

while in the control cross agglutination was only observed

after long mating times. These results show that Map4p pro-

motes cell adhesion.

3.4. Map4p localizes at the cell wall of h+ cells

A Map4-GFP protein was constructed to study Map4p

localization. According to its ability to complement the mating

defect of the map4Dh+ mutant, this fusion protein was
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functional. An h90 strain carrying Map4-GFP was induced to

mate in liquid EMM-N. Observation under a fluorescence

microscope allowed us to observe that the fluorescence was

localized at the tip of the shmoos. When the mating partner

got in touch the fluorescence concentrated at the projection
of the shmoo in only one of the mating partners. Finally, when

the cells fused the fluorescence could be observed at the conju-

gation bridge, but it still was asymmetrically distributed in the

zygote (Fig. 5A). When the cell walls were isolated after cell

breakage, Map4-GFP fluorescence could still be observed in

the debris (Fig. 5B) even after incubation for 14 h at 25 �C

in the presence of SDS and b-mercaptoethanol (not shown).

The pattern of fluorescence in the zygotes suggested that

Map4p was only present in one of the mating partners. To gain

information about this issue, we mated an h+ map4::ura4+

strain, carrying the integrated pJK148+map4+-GFP plasmid

(which confers leucine prototrophy), with an h� map4::ura4+

strain. We selected h+ and h� leu+ ura+ clones from the off-

spring. Map4-GFP was observed in the mating mixtures

involving h+ map4::ura4+ leu1:map4+::GFP cells but not in

those involving h� map4::ura4+ leu1:map4+::GFP (not shown).

This result strongly suggested that Map4p is only produced in

h+ cells. This result was confirmed by Western blot. As shown

in Fig. 5C, two protein bands were detected in the lanes corre-

sponding to the purified cell walls from mating mixtures

involving h90 or h+ cells which carry the Map4-GFP fusion

protein, but not in those involving h� cells with Map4-GFP

or untagged cells. The detected bands were larger than the ex-

pected size (147 kDa), indicating that Map4p is a modified

protein.
4. Discussion

Cell surface glycoproteins are involved in cell–cell adhesion

in many cellular processes. The fission yeast map4+ is a sexu-

ally induced gene that is dispensable for sexual differentiation

but is required for mating in h+ cells. Additionally, overexpres-

sion of this gene increases cell agglutination in h+ (Fig. 4) but

not in h� (not shown) cells. Fluorescence microscopy and Wes-

tern blot analyses confirmed that this protein is only present in

the cell wall of h+ cells. Map4-GFP can be observed at the tip

of the shmoos and in the conjugation bridge of the zygotes.

However, the fact that cells bearing the pREP3X+map4+ plas-

mid were able to form clumps of cells in a nitrogen-rich med-

ium (a condition that does not induce the mating

differentiation program) shows that polarization of the protein

to the tip of the shmoo is not required for cell–cell contact.

Probably, polarization guarantees a better mating efficiency.

Map4p is a protein with internal repeats that exhibits a do-

main distribution that differs from that of budding yeasts

GPI or PIR proteins. It has a signal peptide followed by a long

serine/threonine-rich region (which does not show internal re-

peats, according to Dotlet: http://www.isrec.isb-sib.ch/java/

dotlet/Dotlet.html) and a domain with nine repeats of an amino

acidic sequence that lacks glutamine residues (an amino acid

present in the internal repeats of the S. cerevisiae PIR proteins

that is required for linkage to b-1,3-glucan [5]). The carboxyl

end exhibits a DIPSY domain and has four cysteine residues

with a c-x(3)c-x(53)-c-c distribution, which differs substantially

from that of PIR proteins [4]. In Map4p, the potential sites for

digestion by Kex2 protease are not located at the amino termi-

nal end of the protein, but at positions 414 (between the serine/

threonine-rich domain and the internal repeats) and 1004 (88

residues before the last aminoacid). The DIPSY domain has

only been found in four predicted S. pombe cell wall glycopro-

teins, but nothing is known about its function. While two of

http://www.isrec.isb-sib.ch/java/dotlet/Dotlet.html
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Fig. 4. Map4p is an adhesin. (A) Photograph (left panel) and quantification (right panel) of agglutination in crosses between the indicated h+ and h�

strains. (B) Photograph and quantification of agglutination in crosses between h+ strains, carrying the indicated plasmids, and an h� strain treated
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them are small proteins (SPBC359.04c, SPAC186.01), the other

two (map4+ and SPBC947.04, upregulated by osmotic stress)

are much larger. Notably, the latter protein carries 17 repeats

of 35 amino acids, which are matching to the P-agglutinin re-

peats at 19 positions (53%). The short proteins each carry a sin-

gle unit (33 or 35 amino acids), matching the Map4p repeats at

44% or 47%, respectively. Furthermore, the repeat unit se-

quence of the P-agglutinin is able to retrieve numerous other

predicted cell wall-associated glycoproteins, when analysed by

BLAST at the Sanger Center web site. The closest paralog

match in the S. pombe genome is P11E10.02c (coding for the

M-specific agglutinin), which carries 10–11 repeats of almost

perfect match to the P-agglutinin, but no DIPSY domain is

contained in this protein. Repeats of lesser similarity are pres-

ent in various other predicted glycoproteins. In all these cases,

internal similarity among the repeats of the same protein is

much higher than between different proteins, indicating that

the generation of repeats proceeded independently in different

precursor genes, which initially were without repeated arrays.
Since Map4p is required for cell–cell contact it is expected to

be exposed to the cell surface. It is possible that the long serine/

threonine-rich domain, with multiple potential O-glycosylation

sites, giving a ‘‘stiff rod’’ structure to the proteins [9], could be

located at the internal side of the cell wall and helps the repeats

and/or the DIPSY domain to be exposed to the cell surface,

where the protein would interact with the cell wall from h�

cells. It is also possible that the cysteines in the DIPSY domain

might strengthen the cell wall association by the formation of

disulfide bridges. This raises the possibility that both the ser-

ine/threonine-rich domain and the cysteine residues participate

in anchoring the terminal domains inside the wall, so that only

the inner part of Map4p, including the repeat array, is sticking

out as a fold-back loop.

The presence and distribution of domains make Map4p a

novel surface protein, which suggests that new kinds of adhe-

sion proteins might be involved in differentiation processes in

other organisms. Because of the presence of internal repeats

and its function in cell adhesion, S. pombe Map4p might be



Fig. 5. Map4-GFP protein localizes at the cell wall of h+ cells. (A)
Fluorescence micrographs of shmoos and zygotes. (B) Bright field (left
panel) and fluorescence (right panel) micrographs of purified cell walls
from the h90map4::ura4+ strain carrying the Map4-GFP fusion
protein. (C) h+ or h� cells carrying the Map4-GFP fusion protein
and untagged cells were mated to untagged cells from the opposite
mating type. The cell walls were purified, treated as indicated in
Section 2 and analysed by Western blot analysis. A h90 strain carrying
Map4-GFP was included as a control.
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considered to be functionally related to human extracellular

glycoproteins, such as fibronectin and neural cell adhesion

molecules (NCAM), which participate in cell adhesion pro-

cesses and have several tandems of amino acidic modules [2].

A detailed structure–function analysis of Map4p could provide

useful information about the function of these proteins.
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