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1. Introduction

   Fungi survive in a wide ranging of habitats, such as 
in water, in land/soil, in air, and also in/on animals and 
plants, simply including both terrestrial and marine 
environments[1,2]. However, majority of them are terrestrial, 
living in/on soil or surviving on dead bodies of the multi-

cellular organisms including both plants and animals, and 
are contributing to the natural recycling of the dead bodies 
into organic compounds. Besides, many of the terrestrial 
fungi are pathogenic to animals and plants, and potentially 
cause difficulty to cure fungal diseases[1-3].
   The chemistry of fungi are a little more complex because 
they are structurally different from plants and animals but 
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Fungi is somewhere in between the micro and macro organisms which is a good source of 
producing biologically active secondary metabolites. Fungi have been used as tool for producing 
different types of secondary metabolites by providing different nutrients at different laboratory 
conditions. The fungi have been engineered for the desired secondary metabolites by using 
different laboratory techniques, for example, homologous and heterologous expressions. This 
review reported how the fungi are used as chemical industry for the production of secondary 
metabolites and how they are engineered in laboratory for the production of desirable metabolites; 
also the biosynthetic pathways of the bio-organic-molecules were reported.
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they have some patterns similar to plants and animals. For 
example, they decompose their foods using extra-cellular 
digestion, and then absorb the nutrients; whereas, they 
follow the same biosynthetic pathways for the synthesis of 
secondary metabolites like terpenes and polyketides using 
similar starting units[1,4].
   By knowing that the fungi possess the same biosynthetic 
pathways like plants, the fungi became important to the 
scientists. They are also widely used as experimental 
model because they can be grown easily in the laboratory 
conditions i.e., yeast[5,6].

2. Fungi as a source of natural products

   Natural products are the organic compounds which have 
been produced as secondary metabolites by the living 
organisms. Almost all of the secondary metabolites possess 
biological importance. The secondary metabolites show 
different varieties of the structurally and functionally 
diverse group of natural products. The diversity has led 
them biologically active against various chronic diseases, 
rendering them important and valuable for the human 
being[7].
   Natural products are the main source of drugs. According 
to one survey, about 61% (535 out of 877) naturally isolated 
chemical compounds have been developed into drugs in 
the entire world in 22 years (from 1981 to 2002). Seventy 
eight percent of antibacterial and seventy four percent of 
anticancer compounds are natural products[8]. Thus natural 
products offers a remarkable platforms for the development 
of front-line medicines[9].
   Significant improvement and variation in the microbial 
natural products discovery is confined to the management 
of nutrient and environmental factors which encourage 
the biosynthesis of secondary metabolite. While the small 
changes in nutrient and/or environment have the ability to 
affect the quantity, quality and diversity of the secondary 
metabolites as fermentation products[10].
   The natural products from any source have been classified 
as alkaloids, isoprenoids, non-ribosomal peptides and 
polyketides. All the groups differ from one another in their 
structures, functions and even in biosynthetic pathways.

2.1. Alkaloids

   Alkaloids are the natural organic compounds mainly 
of plants origin. They have at least one basic nitrogen 
heterocyclic ring, possessing remarkable physiological 
activities in human. Alkaloids are divers in their function, 
because some stimulate central nerves system in human, 

some relieve pain, while some are toxic and others cause 
paralysis. Most of the alkaloids are colourless crystalline 
solids and a few are liquids. The solid alkaloids are 
soluble in lipids while the liquid ones are aqueous soluble. 
Coniine[11], graminutee[12], papaverine and quinine are some 
of the common alkaloids[13,14].

2.2. Isoprenoids

   Isoprenoids (also called terpenes or terpenoids) are 
natural products that give proper odour or flavour to plants. 
Isoprenoids are the oils from plants that consist of a mixture 
of hydrocarbons (polyene) and their oxygenated derivatives. 
Isoprenoids is one of the largest group of natural products 
with approximately 25 000 known compounds[15,16].
   Otto Wallach has received Noble Prize in 1910 for working 
with isoprenoids and assigning so called isoprene-rule 
that molecules of all isoprenoids are synthesized from two 
or more of the isoprene units joining into head-to-tail 
fashion[17]. Some of the common and well known isoprenoids 
from plants are camphor[18], isoprene[17], limonene[19], 
myrcene and vitaminute-A[20,21]; whereas, microorganisms 
may also synthesized some important isoprenoids such as 
aristolochene and gibberellin-GA4[22,23].

2.3. Non-ribosomal peptides

   Non-ribosomal peptides are the natural products, which 
is an important class of secondary metabolites, mainly 
produced by microorganisms including actinomycetes, 
bacteria and fungi. Non-ribosomal peptides are produced 
by multi-domain and multi-modular enzyme called non-
ribosomal peptides synthetase (NPRS)[24]. These secondary 
metabolites are bio-synthesized in the cytoplasm by 
cytosolic protein outside the ribosome[25,26]. Some common 
NRPS are bleomycin[27], cyclosporin-A and penicillin-G[28,29].
   Non-ribosomal peptides are large multi-domain protein 
consisting of several modules (a group of domain or segments 
of the NRPS’s polypeptide chain) which has the potential to 
join the building blocks (amino acid) together, forming a 
long peptide chain. The mechanism, which are involved in 
the bio-synthesis of polypeptide chain, are the selection of 
amino acid activation, and finally the condensation of amino 
acids. As the module is a group of domains, the chemistry 
of domain is very essential for the function of the module. 
The major domains that tie up the amino acids together are 
the adenylation domains (A-domains) serving as catalyst 
for the activation of substrate. The peptide carrier protein 
(PCP)-domain or thiolation domain, is an important domain 
because it is always activated by 4-phosphopantetheinyl-
transferases to start its function. This domain is a bonding 
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domain which links the substrate through covalent bond. 
The condensation domain (C-domain) is responsible for the 
peptide bond (Figure 1)[24].

Figure 1. Gene is differentiated into modules which can be further 
subdivided into domains. 
Domains are the enzymatic units that tie up the amino acids together 
to form polypeptide chain.
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   The NRPSs are simultaneously used as template and 
biosynthetic equipment, because the module will select the 
amino acids and also tie up all the catalytic functions. This 
is often a quality of the fungi that can synthesize a complete 
metabolite from a single NRPS.

2.3.1. A-domain
   The A-domain consists of approximately 550 amino acids. 
The main function of this domain is to select the amino acid 
for making the protein and also control the primary sequence 
of protein. A-domains are responsible for the activation of 
amino or carboxylic acid substrate as amino acyl adenylate, 

whereas, adenosine triphosphates is consumed during the 
process[30,31]. 
   So far, two crystalline structures of A-domains have been 
properly studied after their isolation. The crystal structure of 
the phenylalanine activating the A-domain of the gramicidin 
S-synthetase A isolated from Bacillus brevis explains the 
role of those amino acid residues which are involved in the 
coordination of the substrate[24,32]. 

2.3.2. C-domain
   The C-domain consists of approximately 450 amino 
acids. C-domains are the essential unit of non-ribosomal 
peptide synthesis; their main function is to connect amino 
acyl substrates with PCPs of the adjoining modules through 
peptide bond[24,33]. 

2.3.3. PCP-domain
   The PCP-domain comprises approximately 80-100 amino 
acids, which is a small domain. This domain is selective 
and stands for the transfer of the unit responsible for the 
acceptance of the activated amino acid. The PCP-domain 
is covalently bounded to its 4PP-cofactor as thioester. 
The 4PP-cofactor is then transferred to a conserved serine 
residue of the carrier protein which acts like a flexible arm 
and hence permits the travel of bounded amino acyl and 
peptidyl substrate between different catalytic centres[24,34].

2.4. Polyketides

   Polyketides are the natural products that have been 
considered as the most valuable class of secondary 

Figure 2. Different steps of enzyme catalysis in the biosynthesis of fatty acid and polyketides.
Bold bonds indicate the pattern of incorporation of the labeled acetate units.
AT: acyltransferase; KAS: β-ketoacylsynthase; SAM: S-adenosylmethionine; KR: β-ketoreductase; CMeT: C-methyltransferase; DH: dehydratase; 
ER: enoyl reduction; KS: β-ketosynthase; SKS: β-ketosynthase attahced to sulfur atom; SCoA: Co-enzyme A attahced to sulfur atom; SACP: acyl carrier protein 
attahced to sulfur atom.
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metabolites. They are produced by bacteria, fungi, marine 
organisms as well as plants[2]. Polyketides are structurally 
and functionally diverse class of natural products that 
exhibit a variety of biological activities. Among the 
polyketides, aromatic polyketides have more biological 
potential against the microorganisms and cancer, for 
example, aspergiolide A, a novel anticancer compound 
produced as secondary metabolite by fungus[35]. 
   Some of the important biologically active polyketides are 
actinorhodin, aflatoxin B1, lovastatin and 6-methylsalicylic 
acid[36,37]. However structurally and functionally different 
polyketides have the same pattern of their assembly by the 
decarboxylative Claisen condensations between an acyl 
thioester and malonyl thioester (Figure 2)[2].
   Basically enzymes are involved to catalyse the 
condensations between the starter and extender units. 
They are called as polyketide synthases (PKSs) based on the 
enzymes involved in the biosynthesis of fatty acids. Because  
the mechanism of polyketide biosynthesis are similar to 
the fatty acid biosynthesis, PKSs have been classified and 
characterized using the pattern of nomenclature for fatty 
acid synthases with little modifications[37-39].
   The major catalytic domains like AT, β-ketoacylsynthase 
or β-ketosynthase (KAS or KS) and acyl carrier protein (ACP) 
are found in all fatty acid synthase (FAS) and in PKS[29,40,41]. 
They also have KR, DH and ER domains; whereas, PKS has an 
additional important domain i.e. CMeT which is responsible 
for the methylation of polyketides (Figure 3) has a very 
simple elucidation of both the biosynthetic pathways[36,42].
   In round 1, the CMeT is functional, therefore it results in 
the formation of polyketides while its silencing in round 2 
results in the formation of fatty acid by using the same raw 

material malonate.
   ACP is used by the fatty acid synthase that carries the 
malonyl thiolester or malonate unit and rapidly attached 
with the acyl chain. This feature has a very clear homology 
to PKS.
   Most FAS and PKS proteins also require an AT enzyme 
to transfer acyl groups from coenzyme A onto the KS and 
ACP components. During the biosynthesis of fatty acid, the 
newly formed β-ketothiolester is further proceeded for 
chemical reactions while it is attached to the terminal thiol 
of the ACP phosphopantetheine; first of all it is reduced to 
secondary alcohols by a KR. It then undergoes dehydration 
reaction catalyzed by DH for the formation of an unsaturated 
thiolester, and finally the ER results in the formation of 
a fully saturated thiolester. Fungal PKS has the ability to 
deploy all these chemical reactions; furthermore whenever 
the chain will be methylated, the methyl group will be 
provided from SAM. This probably occurs after KAS, giving a 
methyl β-ketothiolester.

2.4.1. History of polyketides biosynthesis
   In 1893 James Collie at London University, obtained a 
product orcinol, ever first polyketides, by the chemical 
reaction of dehydroacetic acid with barium hydroxide. 
This simple aromatic compound became challenging for 
the scientists because the mechanism was based on the 
key polyketone intermediate (Figure 4)[43]. By knowing 
the chemistry and resolving the mystery of polyketone 
intermediate after the pioneer work of Collie, which 
hypothesized that acetate is the precursor of almost all 
polyketides, the field of polyketides were developed. Latter 
on the bacteria and fungi were engineered by cloning their 

Figure 3. All the domain in the module are the same, while only the CMeT domain is silent in round 2, results in the production of fatty acid. It 
shows that CMeT is the only domain which can differentiate the polyketide pathways from fatty acid pathways.
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enzymes to accomplish the task of the hidden pathways of 
polyketides[44,43]. 
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Note = Methyl group
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(OH)2

H2C-H

Figure 4. Collie’s un-predictive synthesis of orcinol from dehydro-acetic 
acid[42].

2.4.2. Radioactive isotopic (14C) in polyketides biosynthesis
   The major interest in the field of polyketides came from 
impetus of Arthur Birch in 1950. He spent much of his time 
in Robinson’s laboratory at Oxford, which was a famous 
laboratory for the research in bio-organic chemistry. Birch’s 
contribution to the field of polyketides was important for two 
reasons. First, he suggested that polyketones (polyketides) 
could be produced by the repeated condensation reactions 
of acetate units (staring units); and second, he tested his 
suggestions by feeding the isotopically labelled acetate units 
to an organism for the production of suitable polyketides[43]. 
Birch selected 6-methylsalicylicacid (6-MSA), an aromatic 
polyketide for the confirmation of his idea, which is involved 
in the biosynthetic pathways of the toxin patulin and also 
has some biological importance (Figure 5)[46].
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Figure 5. Sequence of reactions in the biosynthesis of 6-MSA and patulin.

   Four acetate units are linking/bounding to each other 
by head-to-tail manner and produce a triketo acid. Then 
one of the keto groups in triketo acid is reduced to hydroxy 
group. Then different mechanistic reactions including the 
formation of carbanion at the β-keto residue in (35) would 
then allow an aldol condensation to form a six-membered 
carbocyle. Finally, reasonable reactions like dehydration 
and enolisation reactions will lead to the formation of 
aromatic natural products (6–MSA and toxin patulin)[45].
   Birch further tested the ideas by feeding acetate labelled 
with [1-14C] to Penicillium patulum the producer of 6-MSA 

(Figure 6)[43], because that was the only available technique. 
However, for the confirmation of the idea, it was necessary 
to understand the pattern of labelling in the compound. The 

incorporated sites in the compound 6-MSA were predicted 
by the degradation methods. Then the fragments were 
correlated with specific sites in the natural product. The 
three products were isolated by degradation and then these 
products were subjected to radioactivity measurement for 
the determination of their relative molar activity. The results 
were remained the same as predicted by Birch[43].

Figure 6. Birch’s verifications that 6-MSA is assembled from four acetate 
units[42].
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   Although radiolabels are useful tracers in the incorporation 
studies, they are time consuming, tedious and difficult to 
handle. Therefore radiolabels have no longer been used in 
microbial systems for labelling studies.
 
2.4.3. Stable isotopic (13C) in polyketides biosynthesis
   The development of nuclear magnetic resonance (NMR) 
spectrophotometer resulted in the growth of the field of 
feeding isotopically labelled precursors. Till 1960, the natural 
product chemist depended on the degradation phenomenon 
to produce recognisable fragments for the structure 
elucidations. They used to bring all those fragments 
together on paper and to create an idea for the structure 
of compounds. That was really a very tiring job but yet the 
scientists developed some standard and well-tried methods 
of degradation and structural determination[47,48]. However, 
the NMR solved all these challenges at once or almost 
overnight. Because the stable isotopic labels (13C) were open 
to direct detection by NMR spectroscopy. It was significant to 
use the isotope C, because it has a suitable nuclear spin for 
NMR observation like 1H[36]. Therefore, the chemists turned to 
stable isotope (13C) instead of the radioactive isotope (14C). 
   Isotopically labelled precursors usually [1-13C] acetate 
is administered in the standard way after the time 
course production for the desire metabolites and then 
the metabolites will be re-isolated[49]. It is then a tricky 
job to establish the sites of isotopic enrichment by the 
measurement of 13C from NMR spectrum. In successful 
experiment, the incorporated isotope will give even an 
increase of 1% over the natural abundance, however for 



Abid Ali Khan et al./Asian Pac J Trop Biomed 2014; 4(11): 859-870864

the reliable results it is better to look for higher increase 
in the signal size. Luckily, maximum of the polyketides 
are produced by the micro-organisms especially fungi; 
therefore, they often takes up labelled substrates[36].
   In perfect situation, each pair of coupled 13C nuclei 
will have a unique coupling constant which helps in the 
confirmation of 13C NMR spectrum. Labelled 13C nuclei 
have replaced their original carbon; the signal will appear 
as an enriched singlet. It is essential for interpreting this 
easy pattern of signals to dilute the labelled precursor 
by unlabelled acetate; otherwise, more than one doubly-
labelled isotopic precursor (acetate) will incorporate into 
a single molecule and this will result in a complicated 
spectrum by inter-unit 13C-13C couplings. 
   Additional estimation of the mechanisms of biosynthetic 
pathways can be obtained by studying the probability 
of hydrogen atoms in intermediate molecules. Different 
experiments have been developed to study the effect of 
2H or 3H, either by the direct observation of 2H or 3H by 
NMR spectroscopy or indirect detection of 2H or 3H isotope 
attached on the adjacent neighbour 13C labelled in the 
precursor. The α shift is sufficient to demonstrate extra 
information regarding the path of hydrogen atoms involved 
in the biosynthetic pathways. 
   For this technology, the hydrogen atoms are replaced by 
deuterium or tritium and the carbons are replaced with 13C to 
which they are attached. Then the chemistry is very simple 
because one deuterium in molecules lead to the shifting of 
13C signal to upfield by about 0.3 ppm and it appears as a 
1:1:1 triplet with J=20 Hz due to the coupling 2H-13C. Now 
for each additional deuterium with 13C, there will be further 
upfield shift of the carbon and a corresponding increase in 
the multiplicity of the signal (Figure 7)[48].

Figure 7. Imaginary 13C NMR spectrum demonstrating the α-effect. 
D stands for deuterium. Each additional deuterium shifts the signal of 
carbon to upfield by 0.3 ppm along with the increases its multiplicity.
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   With a high field NMR spectrometer, therefore, it is 
obvious to determine the extent of deuterium labelling in 
considerable detail. It will be sufficient to say that, with 
the developments of various elegant scientific methods, the 

bio-organic chemists published a lot of data, upon which 
they have built a detailed story of the types of biosynthetic 
processes employed in polyketides pathways.

3. Fungi and biotechnology

   Fungi have been used as folk medicines, i.e. a very 
common fungi Agaricus campestris Linn (field mashroom) 
will serve as tonic when used 3 to 6 g for 2 to 3 times a day 
and is used against inflammation, sinusitis and tuberculosis. 
Besides, Laricifomes officinalis is used against diarrhoea, 
night sweating. Inonotus obliquus is used for chronic 
gastritis, early tumours and ulcer. Daedaleopsis flavida cures 
jaundice dramatically by reducing the level of bilirubin and 
biliviridin; whereas Ficus religiosa Linn is used for all kind 
of kidney disorders[49].
   It is now clear that fungi are the significant source for 
new and/or biologically active secondary metabolites. 
During the period of 1981 to 2002, 40% of the total drugs 
and 14% of the antifungal drugs launched were of natural 
products or biologically modified natural products[8]. 
However in agriculture, it is estimated that only about 10%   
of the natural products are available in the market for the 
protection of crops[50]. Therefore, for the development of new 
drug, it is necessary to test their adverse effects on humans, 
but during critical conditions like high fungal infections 
some extent of toxicity could be accepted for example the 
use of standard antifungal drugs like amphotericin–B, 
although that may cause some severe kidney infections[51].
   Although investigation of new microorganism from the un-
investigated areas will lead to many new biologically active 
secondary metabolites, only a small fraction (0.1%-1%) of 
all microorganisms have been exploited under laboratory 
conditions[52]. Because it is a challenging job to understand 
the huge genetic diversity, we can simply approach our 
target towards metabolites by the modifications in growth 
conditions or by genetic engineering to make a transformant 
organism by inserting the biosynthesis genes of uncultivable 
microorganisms[53-55].
   Genetic approaches could be helpful techniques for 
estimating the biosynthetic potential of microorganisms. 
That can be evaluated for known biosynthesis genes and 
then possible suggestions that which strain can produce 
which kind of compounds are made. This approach has 
been remained successfully for the gene(s) involved in the 
synthesis of polyketides[56,57]. 
   Nevertheless, it is not necessary that in-depth search for 
microorganisms will result in novel bioactive components, 
but sometimes a very easily accessible microorganism may 
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produce broad spectrum of diverse metabolites depending 
on the culturing conditions and also some additives, or 
chemical modifiers. Single strain may lead to an increase in 
metabolites and even generation of a new compounds, this 
approach is called one strain many compounds[58,59].
   Natural products have been used by man for a long time 
and the plants are the most important source of medicine[60]. 
Due to their abundant variety and structural diversity, 
natural products are of great significance in biotechnology 
and pharmacology. They can also be used as a model 
for synthesis by knowing their characteristics[61,62]. The 
best known examples of natural metabolites available 
commercially are antibiotics, such as penicillin discovered 
by Alexander Fleming in 1928 and available in the market by 
Chainand Florey in 1940[63].
    Natural resources, especially fungi, are a best known 
factory for their metabolic capacity to produce a broad 
diversity of bioactive metabolites. These can be extremely 
toxic, e.g., mycotoxins, or be rather useful because they can 
be used as drugs for various diseases[64]. Fungi produce a 
vast range of secondary metabolites. Some of the metabolites 
are high-value products with pharmaceutical applications 
such as penicillins, a group of structurally related β-lactam 
antibiotics isolated from Penicillium chrysogenum. Several 
non-β-lactam antibiotics are also produced by fungi such 
as griseofulvin. Griseofulvin isolated from Penicillium 
griseofulvum has been used for several years to treat 
dermatophyte infections of the skin, nails and hair of 
humans. Some common secondary metabolites of fungal 
origin are listed in Table 1[45].

Table 1
Some common secondary metabolites produced commercially from 
fungi.
Metabolites Fungal source Application
Cephalosporins Acremonium chrysogenum Antibacterial
Ciclosporins Tolypocladium spp. Immunosuppressants
Fusidin Fusidium coccineum Antibacterial
Gibberellins Gibberella fujikuroi Plant hormone
Griseofulvin Penicillium griseofulvum Antifungal
Penicillins Penicillium chrysogenum Antibacterial
Zearalenone Gibberella zeae Cattle growth promoter

   In recent years, marine fungi have been explored more 
deeply to obtain novel and biologically active compounds, 
because they are still less explored. Nevertheless, 
successful stories in marine fungi are quite significant. 
Cephalosporin-C which was originally isolated the first time 
from Cephalosporium acremonium isolated from a sewage 
outlet off the Sardinian coast have played a key role in the 
reduction of infectious diseases and suffering of people 

throughout the world since last three decades[65]. However, 
it was about incidental discovery and it took another 30 
years until marine-derived fungi were investigated more 
systematically[66].

4. Genetic engineering in fungi

   Genetic engineering is defined as any change in the 
natural genetic code of an organism for a specific function. 
It may be a single base pair change or a complete synthesis 
of a genome of an organism[40]. This work was started in 
early 1920 to 1940 by Muller et al.; it was only a modification 
of gene by radiations and chemicals[41,67]. However, it was 
developed by Jackson et al. in 1972 with the achievement 
of first recombinant DNA[68]. Latter on genetic engineering 
reached to its high level of success by achieving genetically 
engineered human insulin through cloning and expression 
of the gene in Escherichia coli by genetic engineering 
technology in 1978[69], this was an ever first successful 
targeted achievement.
   Transformation is a core method for attaining the genetic 
modification in fungi[70,71]. One of the most useful and 
important method for transporting the genetic mattering 
into fungi is the protoplast mediated transformation (PMT)

[71,72]. In this method the cell wall is removed with the help 
of enzyme from young mycelia while leaving the protoplast 
covered by cell membrane. Whereas the use of calcium 
ion (Ca2+

) enhance the penetration of DNA into the cell 
membrane. However sometimes some of the fungal strains 
do not develop their cell wall around their cell membrane[70]. 
Therefore, other methods like Agrobacterium mediated 
transformation (AMT) as well as biolistic, electroporation and 
lithium acetate mediated transformation methods were also 
developed in last decades for the solution of the problems 
happened due to PMT[70,71]. AMT depends on using a carrier 
organism Agrobacterium tumefasciens to transport the 
genetic material into the host[73].
   Naturally, it is the bacterium that infects the whole fungal 
or plant’s cell and then starts the genetic alteration by 
means of integrating a part of certain plasmid, so called 
Ti, into their genome. By knowing this phenomenon, the 
gene of interest is usually incorporated on the Ti plasmid 
after some modification in it. Finally, the recombined 
plasmid is transferred into bacterium and the result of this 
transformation is generally a single integration on the fungal 
genome[73,74].
   There are two types of methods or mechanisms for the 
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integration to transfer the genetic materials onto the receiver 
fungal genome[75,76]. The first method is homologous 
recombination[76]. This leads to the integration of the 
familiarized DNA sequence onto a homologous targeting on 
genomic locus, which is catalysed by the RAD52 epistasis 
proteins group. The second method is called non-
homologous end joining[76]. This results in the ligation of 
the transformed DNA sequence to the recipient genome 
without homology. This leads to ectopic integration of 
several copies on variable genomic sites. Approaches 
for the genetic engineering of fungi and other micro-
organisms were developed during last decades including 
gene knock-out, gene silencing and gene overexpression 
to confirm their link with metabolites.

4.1. Gene knock out approach

   Gene knockout approach is a technique of genetic 
engineering, in which one desired gene of an organism 
is made inoperative. AMT was successfully used to 
disorder the genes hypothesised to be linked to radicicol 
biosynthesis from Chaetomium chiversii. It was also 
noted that the use of AMT has achieved better homologous 
recombination in Aspergillus awamori [75]. It is not 
necessary that all the fungi will obey the procedure of AMT, 
because some fungal species like Sclerotinia sclerotiorum 
and Aspergillus niger are disobedient to AMT[75]. In addition, 
it was found that some genetic loci and some fungal 
species are resistant to homologous recombination[77]. This 
could be greatly enhanced through knocking out genes 
expressing system. On the other hand PMT usually results 
in numerous ectopic integrations which make it beneficial 
for both heterologous and homologous overexpression[78]. 
Hence, from the mentioned study, it can be concluded that 
there is no single method for transformation that could deal 
with all the genetic modification approaches.

4.2. Gene silencing approach

   Recently the gene silencing techniques have been 
introduced and the scientists are increasingly using it for 
confirming gene involved in the production of metabolites. 
They depend on down-regulation of gene expression. 
These techniques do not influence gene transcriptional 
process. However it shows its effect by decreasing the level 
of expressed RNA[79]. As a result the corresponding protein 
level turns down and silencing of gene function succeeded. 
However in some cases complete blockage of expression 
has been achieved[80]. Gene silencing techniques are 

proven to be more proficient than gene knock out[81], 
because of the fact that these techniques did not need 
homologous recombination which could be inappropriate 
to some of the fungi[82]. 
   Among gene silencing techniques two types of methods 
are the most famous. The first is the antisense RNA 
technique  which depends on the incorporation and 
expression of a DNA sequence in the antisense direction 
to the target gene. Therefore, both the native mRNA and 
the antisense RNA overlap with each other, leading to the 
translation blockage[83].
   The second method used is RNA interference[81]. Its 
function is the expression of short homologous double 
stranded RNA that starts up the mechanism for degrading 
the native RNA. It is a set of proteins called dicer proteins, 
RNA-dependent RNA polymerase, and the RNA induced 
silencing complex mediate RNA interference responsible for 
the gene silencing, but these are absent in some fungi[84].

4.3. Overexpression of gene

   The gene(s) overexpression is a term that mainly depends 
on upgrading the level of gene(s) expression. When it is 
done in its original organism, it is called homologous 
overexpression; while when it is done in other organism, 
it is called heterologous overexpression. The basic theme 
of gene(s) overexpression is achieved by the discoveries of 
novel and biologically active secondary metabolites from 
fungi, and these discoveries are the achievements of the 
applied biotechnology[85,86].

4.3.1. Homologous overexpression
   In the process of homologous overexpression, the gene 
is cloned and overexpressed in the native organisms 
under the control of native or non-native promoter and 
terminator; the promoter may either be constitutive or 
inducible. This process is different from the process of 
homologous recombination that generally occurs during 
gene knock out experiments[87]. While in gene knock 
out experiments, it is proposed that the gene or parts of 
the gene are cloned to recombine with the targeted gene 
in the chromosome to disrupt its expression. However, 
homologous overexpression is mainly accomplished by 
ectopic integration on different location(s) within the 
chromosome from its native copy[88,89].

4.3.2. Heterologous overexpression
   In the process of heterologous overexpression, the gene 
is cloned and overexpressed in the non-native organisms 
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under the control of suitable promoter and terminator; the 
promoter may either be constitutive or inducible. This 
process is performed to provide the proposed or desired 
protein in suitable quantities which will be able for 
detection and application[90,91]. Heterologous expression 
can be performed in wide range, starting from simple 
bacteria like Escherichia coli to complex eukaryotic 
organisms like animals and plants[92,93]. While the choice 
of the host depends on the extent of the knowledge about 
the capacity of the host to express the foreign gene 
effectively and also the availability of suitable substrate 
molecules[93-95].

5. Conclusion

   It is clear from the whole scenario that fungi can be 
used as micro-chemical industries for the production 
of biologically active secondary metabolites, which is a 
diverse group and can be isolated from any ecosystem 
of the universe. We have summarised various aspects of 
the study that fungi could be used as source of producing 
biologically active secondary metabolites naturally, 
or either it could be genetically engineered for the 
production of important class of secondary metabolites, 
by knowing the biosynthetic pathways of the registered 
metabolites. It is obvious that the fungi revealed diversity 
and hence are capable for producing the diverse class 
of metabolites. Thus to obtain a very clear and complete 
picture of the fungi used in chemical industries, we will 
apply the traditional cultivation methods for both its 
natural metabolites and/or for genetically engineered 
metabolites. This will help in either case because it can 
reproduce the production of metabolites in quite few days 
because of its short span of life.
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Comments 

Background
   The fungi are as diverse as animals and plants and their 
diversity is reflected in the variety of their secondary 
metabolites. The biosynthetic pathways for the secondary 
metabolites are also diverse. Because these compounds 
have biological activity either harmful or beneficial such 
as antibiotics, it is quite challenging to discover novel 
secondary metabolites.
  
Research frontiers
   This review paper have been written in detail which 
emphasizes in the field of biosynthesis and molecular 
genetics of fungal secondary metabolites. This provides a 
cutting-edge viewpoint on fungal secondary metabolism 
and fundamentals of molecular biology. Therefore, it is 
a valuable resource for researchers in the field of fungal 
secondary metabolites/ biology.

Related reports
   This is a review paper, therefore it has been explain 
in detail that how the research is going on with fungal 
secondary metabolites with reference to the reports of 
other researchers. This review article also explains how 
the other researcher have conducted their research in the 
area of fungal secondary metabolites. Therefore, it will be 
a beneficial source for the researchers in this field.

Innovations and breakthroughs
   The review has described all the aspects of fungal 
secondary metabolites, while in the present report the 
authors have demonstrated that the fungi should be used 
for the exploitation of secondary metabolites, because of 
their diversity in secondary metabolites.

Applications
   From the literature survey it has been found that the 
secondary metabolites of different fungi with current 
information on their biosynthesis and molecular genetics 
reveal the possible application of molecular biology to 
directed strain improvement in great detail. 

Peer review
   This is a really a valuable contribution for the new 
research in the field of fungal secondary metabolites 
because the authors have compiled all the information in 
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a very consistent manner. The authors have established 
a fine link that fungi is living organism but is used as 
chemical industries for the production of secondary 
metabolites. It is the real scientific contribution by naming 
fungi as chemical industries, that no one have ever used 
this term before for fungi.
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