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a b s t r a c t 

A new short-term mine production scheduling formulation is developed herein based on stochastic in- 

teger programming. Unlike past approaches, the formulation simultaneously optimizes fleet and mining 

considerations, production extraction sequence and production constraints, while accounting for uncer- 

tainty in both orebody metal quantity and quality along with fleet parameters and equipment availabil- 

ity, all leading to a well-informed sequence of mining that is expected to have realistic as well as high 

performance during a mine’s operation. To assess the latter performance and implementation intricacies 

of the proposed formulation, the formulation is applied at a multi-element iron mine and the resulting 

monthly schedules are assessed and compared to the conventional mine scheduling approach showing: 

lower cost, minable patterns, efficient fleet allocation ensuring higher and less variable utilization of the 

fleet. 
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. Introduction 

Short-term mine production scheduling generates a sequence

f extraction within an annual production plan. The production

chedule is seen as the operational guide to meet the mine’s

ong-term objectives developed under current operating conditions

nd constraints. It outlines extraction stages in terms of months,

eeks or days. The optimization of short-term production schedul-

ng is guided by the life-of-mine or long-term mine scheduling

 Hustrulid & Kuchta, 1995 ) and it is typically optimized in two

eparate steps. The first step optimizes the physical sequence of

xtraction of materials. The second step optimizes the assignment

f the mining equipment fleet based on equipment capacity, avail-

bility and hauling time. There are three limitations to the above

entioned separate optimization steps, which lead to non-optimal

hort-term production schedules, even if results are experimentally

dopted to generate a combined final schedule. 

First, the scheduling elements, material sequence of extrac-

ion and equipment utilization, are artificially separated when

ptimized so that they do not benefit from their simultaneous

ptimization. Second, neither of the optimization steps involved

onsiders uncertainty in input parameters, nor do they account for
∗ Corresponding author. Tel.: + 1 5143984986. 
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he local variability of the characteristics of the materials being

cheduled for extraction. Lastly, the optimization of the extraction

equence of material ignores operational considerations and fleet

anagement, and thus can be unrealistic and become hostage to

quipment availability. These limitations can have adverse effects

n the performance of the production scheduling and this may

ead to: (a) increased operating costs stemming from erroneous

aterials blending and decisions on material processing destina-

ions; (b) uncertainty in equipment performance and sub-optimal

quipment use; (c) inability to deliver expected material targets;

nd (d) infeasible mining patterns. This paper addresses these

imitations 

Several papers related to short-term production scheduling and

eet allocation are available in the technical literature; a first group

utlines general concepts of short-term production scheduling op-

imization, while a second group of papers considers real-time

eet allocation. Early effort s in optimizing short-term mine pro-

uction schedules focus on developing concepts and related for-

ulations for deciding sequences of depletion based on mathemat-

cal programming ( Fytas and Calder, 1986; Gershon, 1982; Kahle

 Scheafter, 1979; Schleifer, 1996; Wilke & Reimer, 1977; Wilke

 Woehrle, 1979 ). Accordingly, the outline of production progres-

ions (extraction sequence) on a daily, weekly or monthly basis

ollows production targets set by the long-term mine production

chedule. The optimization process considers the allocation of re-

ources that match the available fleet capacity, the mine’s layout
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

https://core.ac.uk/display/81965067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ejor.2016.05.050
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.05.050&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Roussos.Dimitrakopoulos@mcgill.ca
http://dx.doi.org/10.1016/j.ejor.2016.05.050
http://creativecommons.org/licenses/by-nc-nd/4.0/


912 M.E.V. Matamoros, R. Dimitrakopoulos / European Journal of Operational Research 255 (2016) 911–921 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

T  

l  

R  

2  

i  

u  

1  

f

 

p  

i  

p  

p  

a

2

 

s  

v  

w  

p  

i  

fi  

t  

u  

t  

t  

t

i

k

l

ε  

δ  

s

α  

r  

 

a  

a

h

ι  

Q

ω  

 

a  

 

c  

 

c  

 

Q

and operational issues, such as mining direction. While accounting

for the above, the objective function of related formulations is typ-

ically set to minimize production deviations from the yearly pro-

duction plan targets; if these targets are met, then the expected

long-term targets and overall mine valuation will likely be met.

Key physical constraints are considered and include the mobility

of mining equipment and mineable extraction patterns, as well as

quality constraints leading to blending of materials to extract so as

to match quality feed targets for various ore processing streams.

More recent work stays within the same context; for example,

Vargas, Morales, Rubio, and Mora (2008) present a mathemati-

cal programming formulation accounting for quality and geometric

constraints, mill and mine capacity. Similarly, Eivazy and Askari-

Nasab (2012) account for multi-destinations, blending stockpiles

and decisions on ramps while their objective function minimizes

mining cost, processing cost, waste rehabilitation cost, re-handling

cost and hauling cost. The latter two approaches have drawbacks,

such as the use of aggregation of mining blocks prior to optimizing,

leading to suboptimal solutions, as aggregation of materials ignores

the practical selectivity of preferred ore types and cannot deal with

the actual hauling process during the optimization process. 

As noted earlier, all the above work does not integrate a key

aspect of short-term planning, namely, the management and dis-

patching of mining equipment/fleet. The real-time fleet alloca-

tion for short-term production planning is presented in Alarie

and Gamache (2002) , and Souza, Coelho, Ribas, Santos, and Mer-

schmann (2010) . A fleet dispatching system considers different al-

location strategies given that transportation may represent more

than 50% of operating costs ( Alarie & Gamache, 2002 ). The solution

strategies used in truck dispatching systems aim to improve pro-

ductivity and reduce operating costs, however, the extraction pat-

terns to be mined are assumed to be available. A shortcoming of

these algorithms is that the whole tonnage of every pit are seen as

a single macro block where the short-scale variability of the grade

is lost and the one hour production and dynamic allocation of the

fleet is only related to the dispatch system. L’Heureux, Gamache, &

Soumis (2013) present a deterministic mixed integer programming

model for short-term planning in open-pit mines. The sequence

of mining of this model considers operational activities, such as

drilling, blasting, transportation, ore processing capacity, the avail-

ability and the locations of shovels and drills. Drawback of this

formulation is that the mined blocks by day are aggregated reg-

ular blocks. The definition of sectors to mine is usually linked to

irregular patterns because of the local scale grade variability of the

orebody and quality requirements. 

More recent work considers minimizing operating costs of

trucks since they represent the largest portion of the fleet in open

pit mines ( Topal & Ramazan, 2010 ), and is formulated as an integer

program. Maintenance costs not only are a significant proportion

but also change non-linearly depending on the road conditions,

truck age and truck types. The stochastic extension ( Topal &

Ramazan, 2012 ) of this model considers the uncertainty in truck

maintenance costs for the available fleet when matching annual

production targets. The approach provides a maintenance cost

distribution of the optimized equipment schedule minimizing the

cost. However, similarly to other aspects of short-term planning

discussed above, this last work is done assuming a sequence of

extraction. 

The work herein presents a new, integrated approach to short-

term mine production scheduling based on stochastic integer

programming (SIP), aiming to contribute towards generating well-

informed production sequences and improved performance during

a mine‘s operation. The proposed SIP formulation simultaneously

optimizes both fleet and production schedule, accounts for opera-

tional considerations, such as mining width and mining directions,

and considers the possible fluctuation and uncertainty of the
etal grade and ore quality, fleet parameters and availability.

he approach formulated is based on previous developments in

ong-term mine planning ( Boland, Dumitrescu, & Froyland, 2008;

amazan & Dimitrakopoulos, 2013; Lamghari & Dimitrakopoulos,

012 ). Note that grade and ore quality uncertainty and variability

s modelled herein through the generation of stochastically sim-

lated scenarios of the mineral deposit being mined ( Goovaerts,

997 ), based on minimum and maximum autocorrelation factors

or multivariate ore bodies ( Desbarats & Dimitrakopoulos, 20 0 0 ). 

In the following sections, the proposed stochastic mathematical

rogramming formulation for short-term mine production schedul-

ng is described first. Then, an application at an iron ore mine

resents the pertinent aspects and related intricacies of the pro-

osed method while assessing its performance. Finally, conclusions

nd recommendations are provided. 

. Formulation 

Short-term mine production scheduling is formulated as a

tochastic integer programming model with recourse ( Birge & Lou-

eaux, 1997 ) and aims to minimize the total mining cost along

ith deviations from production targets, considers operational as-

ects such as mining direction and minimum width, and max-

mizes fleet utilization. In the formulation presented herein, the

rst-stage decisions are made before the uncertainty is revealed,

hen the second-stage decisions or recourse actions are made after

ncertainty is considered. The notation used to formulate short-

erm scheduling follows. Note that indexes relate to the set of

rucks, shovels, sectors, blocks, periods and realizations of uncer-

ain parameters. 

j: a sector or bench, where j = 1, … , J 

 : an shovel, where i = 1, … , I 

 : a block at sector j , where k = 1, … , K ( j ) 

: a truck model, where l = 1,…, L 

p: a period of a production schedule, where p = 1,…, P 

: an element grade of k block that have economical value,

where ε = 1 , . . . , E

: a deleterious element grade of k block, where δ =
1 , . . . , D 

 : simulated grade realization or scenario, where s = 1, … , S 

: realization of shovel mechanical availability given histor-

ical data, where α = 1 , . . . , A 

: truck cycle time and mechanical availability realization,

where r = 1,…, R 

The parameters used at the fleet allocation, cost and penalties

t objective function, production target and multi-element quality

nd tonnage are explained as follows: 

 f leet : fleet operation hours by period p 

: maximum number of shovels al-

lowed by sector 

 

sh 
i 

: hourly production of shovel i. 

 i ( μi , σi ) : mean and standard deviation of

historical mechanical availability

by shovel i 

 

p−1 

i j ′ : binary parameter, if shovel i is or

not allocated to sector j ′ at previ-

ous period p-1 

 

ExcM 

j ′ j : cost of moving shovel from p-1 al-

location sector j ′ to new allocation

sector j 

 

prodExc−: penalty cost for tonnage not pro-

duced regarding to the expected

productivity 

 

trk 
l 

: capacity of truck l 
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jl ( μ jl , σ jl ) : mean and standard deviation of 

cycle time by truck l at sector j 

 l ( μl , σl ) : mean and standard deviation of 

historical mechanical availability 

by truck l 

 

φ: time cycle cost per φ units 

 

m −, c m + : penalty cost for shortage and sur-

plus total mining tonnage respect 

to the targets 

 

o−, c o+ : penalty cost for shortage and sur-

plus ore mining tonnage respect to

the targets 

 

ε−, c ε+ , c δ+ , c δ−: penalty cost for deviation from 

main elements and contaminants 

limits 

 

min , M 

max : minimum and maximum mining 

tonnage target 

 

min , O 

max : minimum and maximum ore ton- 

nage target 

 

ε−, G 

ε+ , G 

δ−, G 

δ+ : quality or grade requirements for 

ore tonnage produced 

 T o l o−, % T o l o+ , % T o l m −, % T o l m + , allowed percentage of tonnage and 

grade deviation from targets. 

 T o l ε−, % T o l ε+ , % T o l δ−, % T o l δ+ : 
 jk : block tonnage k at sector j 

h, d d h : Ore control data and exploration 

data at mined sector A 

H, DDH: Ore control data and exploration 

data at not mined sector B 

 

m : mining cost by B jk unit 

 

ε 
jks 

, g δ
jks 

: grade block k of main elements

and deleterious in scenario s at

sector j 

 jks : binary parameter flagging the 

block k at j sector for scenario s

that has the minimum quality to

be used at the blending process;

otherwise, the block is flagged as

waste. 

jlr : truck cycle time r of truck l at sec-

tor j given cycle time distribution 

jlr : maximum number of trips of truck 

l at sector j for cycle hauling real-

ization r and mechanical availabil- 

ity realization r. 

jlr = 

ψ lr × h f leet 

φ jlr 

, ∀ r = 1 , . . . , R, ∀ j = 1 , . . . , J, ∀ l = 1 , . . . , L 

 

sh 
iα

: maximum production rate of shovel i per mechanic avail-

ability realization α and each realization ω iα is drawn

from the available mechanical availability distribution,

and it is 

 

sh 
iα = ω iα × h f leet × Q 

sh 
i , ∀ α= 1 , . . . , A, ∀ i = 1 , . . . , I (2.1)

The decision variables used are as follows: 

 

p 

jk 
: binary variable, if block k at sector j is mined or not at

period p 

 

p 
ji 

: binary variable, if shovel i is or not allocated to sector j

at period p 

 

p 

jilr 
: number of trips of truck l to sector j, shovel i at period

p for cycle time realization and mechanical availability

realization r 
f 
p 
jiα

: deviation of shovel i at sector j from expected shovel

production Q 

sh 
iα

 

p 

jk 
: number of blocks that were not scheduled at period p

to mine block k at sector j to match mining width re-

quirements. 

 

m −
p , d m + 

p : shortage tonnage to match lower production limit and

surplus tonnage to match upper production limit at pe-

riod p 

 

o−
sp , d 

o+ 
sp : shortage of ore mining to match lower bound and the

surplus to match upper bound at period p accounting

for grade scenario s 

 

ε−
sp , d 

ε+ 
sp : deviation from ε grade targets at period p for grade

scenario s 

 

δ−
sp , d 

δ+ 
sp : deviation from δ deleterious grade targets at period p

for grade scenario s 

.1. Objective function 

Decision variables x 
p 

jk 
, y 

p 

jk 
and e 

p 
ji 

are related with the first-stage

nd remaining decision variables are related with the second-stage.

he first-stage decisions include minimizing the costs of extraction

f materials, movement of shovels, production shortage, and lack-

ng matching mining width. In the second-stage, these costs are

inimized over a range of possibilities of a recourse cost associ-

ted with deviations from ore production and quality targets, haul-

ng cost, and lack of mining with maximum shovel productivity.

he objective function of the proposed mathematical model is: 

inimize = 

1 st ︷ ︸︸ ︷ 
P ∑ 

p=1 

J ∑ 

j=1 

K( j) ∑ 

k =1 

c m B jk x 
p 

jk 

 

2 nd ︷ ︸︸ ︷ 
1 

R 

P ∑ 

p=1 

J ∑ 

j=1 

I ∑ 

i =1 

L ∑ 

l=1 

R ∑ 

r=1 

φ jlr c 
φn p 

jilr 

 

3 rd ︷ ︸︸ ︷ 
P ∑ 

p=1 

J ∑ 

j ′ =1 

J ∑ 

j=1 

I ∑ 

i =1 

(
c ExcM 

j ′ j e p 
ji 
a p−1 

j ′ i 
)
+ 

4 th ︷ ︸︸ ︷ 
1 

A 

P ∑ 

p=1 

J ∑ 

j=1 

I ∑ 

i =1 

A ∑ 

α=1 

(
c prodExc− f p 

jiα

)

 

5 th ︷ ︸︸ ︷ 
P ∑ 

p=1 

J ∑ 

j=1 

K( j) ∑ 

k =1 

(
c smoth −y p 

jk 

)

 

6 th ︷ ︸︸ ︷ 
1 

S 

{ 

S ∑ 

s =1 

P ∑ 

p=1 

E ∑ 

ε=1 

(
c ε−d ε−

sp + c ε+ d ε+ 
sp 

)
+ 

S ∑ 

s =1 

P ∑ 

p=1 

D ∑ 

δ=1 

(
c δ+ d δ+ 

sp + c δ−d δ−
sp 

)} 

 

7 th ︷ ︸︸ ︷ 
1 

S 

S ∑ 

s =1 

P ∑ 

p=1 

(
c o+ d o+ 

sp + c o−d o−
sp 

)
+ 

8 th ︷ ︸︸ ︷ 
P ∑ 

p=1 

(
c m −d m −

p + c m + d m + 
p 

)
(1) 

The first component of the objective function is associated

ith the cost of extracting material from the mine. The second

omponent corresponds to minimizing the hauling cost given the

ncertainty in the trucks’ hauling time and mechanical availability

o as to ensure both optimal allocation and maximum truck

tilization. The third component is the minimization of cost of

he shovel movements among sectors. The fourth component

inimizes the lack of production per shovel given uncertainty in

ts mechanical availability, so as to maximize shovel utilization.

he fifth term ensures that the operational considerations are

espected by penalizing the lack of mining blocks that match the
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required mining width. The sixth, seventh and eighth components

deal with the minimization of geological risk with respect to the

quality and the quantity of ore production, and penalize deviations

from production targets, respectively. Each component is linked to

its respective cost and all of them must have the same units to

minimize overall cost. Note that the first, second, fourth, sixth and

seventh components are stochastic and contain decision variables

that change, given the corresponding realizations of the fleet

parameters or element quality. 

The decision variables are present in the objective function and

there are several constraints linking the fleet allocation decision

variables with mined block decision variables. This ensures that

the formulation herein delivers a short-term production schedule

that account for both fleet allocation and production targets. 

2.1.1. Constraints for production and fleet allocation 

The constraints below link the fleet allocation decision variables

with mined block decision variables, to guarantee that the short-

term production schedule accounts for fleet allocations and pro-

duction targets. 

P ∑ 

p=1 

x p 
jk 

≤ 1 , ∀ j = 1 , . . . , J, ∀ k = 1 , . . . , K( j) (2)

Constraint ( 2 ) ensures that a block of material may be mined

once at any period. The block is a selective mining unit that may

be mined in one period assuming that the time period may be

from weeks to months. 

I ∑ 

i =1 

e p 
ji 

≤ ι, ∀ p = 1 , . . . , P, ∀ j = 1 , . . . , J (3)

J ∑ 

j=1 

e p 
ji 

≤ 1 , ∀ p = 1 , . . . , P, ∀ i = 1 , . . . , I (4)

x p 
jk 

−
I ∑ 

i =1 

e p 
ji 

≤ 0 , ∀ p = 1 , . . . , P, ∀ j = 1 , . . . , J, ∀ k = 1 , . . . , K( j) 

(5)

J ∑ 

j=1 

I ∑ 

i =1 

φ jlr × n 

p 

jilr 
≤ h f leet × ψ lr , ∀ p = 1 , . . . , P, 

∀ l = 1 , . . . , L, ∀ r = 1 , . . . , R (6)

n 

p 

jilr 
− θ jlr e 

p 
ji 

≤ 0 , ∀ p = 1 , . . . , P, ∀ j = 1 , . . . , J, ∀ i = 1 , . . . , I, 

∀ l = 1 , . . . , L, ∀ r = 1 , . . . , R (7)

L ∑ 

l=1 

(
Q 

truck 
l × n 

p 

jilr 

)
− Q 

sh 
iα × e p 

ji 
+ f p 

jiα
= 0 ∀ p = 1 , . . . , P, 

∀ j = 1 , . . . , J, ∀ i = 1 , . . . , I, ∀ α = 1 , . . . , A, ∀ r = 1 , . . . , R (8)

I ∑ 

i =1 

L ∑ 

l=1 

(
Q 

truck 
l × n 

p 

jilr 

)
−

K( j) ∑ 

k =1 

(
B jk × x p 

jk 

)
= 0 , ∀ p = 1 , . . . , P, 

∀ j = 1 , . . . , J, ∀ r = 1 , . . . , R (9)

The mining equipment can be placed in a given number of loca-

tions. A possible path of the locations of each piece of equipment is

provided as part of short-term plan. Shovels are allocated to avail-

able sectors or remain in the current sector previously allocated. A

sector must be mined at some period and a shovel must be allo-

cated to the sector that has a lower cost of hauling and provides

the material to match quality requirements. Constraints ( 3 ) ensure

that each sector is allocated with less equal than ι shovels at sec-

tor j per period p . The parameter ι is the maximum number of
hovels that can be allocated in each sector. Constraint ( 4 ) ensures

hat each shovel i may be assigned to one sector while the cost

f movement is minimized in the objective function to prevent ex-

essive shovel movement among sectors. Inequality constraints are

sed for the fleet allocation because not all the available shovels

r trucks are allocated in scenarios where there are more equip-

ent than the production requires in accounting for hauling dis-

ance. Constraint ( 5 ) guarantees that a mining block in sector j is

ined only if a shovel is allocated to sector j . 

Variable n 
p 

jilr 
decides the optimal number of trips for truck l to

ector j and shovel i per period p, thus accounting for fluctuations

f truck cycle time and mechanical availability. The number of trips

ecision variable n 
p 

jilr 
also supports in the allocation of each truck

 to shovel i to sector j for mechanical availability and hauling re-

lization r per period p . The formulation considers that a truck can

e allocated to more than one shovel at the same sector j or dif-

erent sectors. Constraint ( 6 ) limits the number of trips of a truck

o its scheduled time per period as the operation progresses by

xtracting minerals and continuously extending the access. Indeed,

he roads change dynamically. This implies uncertainty in the haul-

ng time. The trip cycle time φ jlr of truck l to sector j is drawn from

istribution R times. 

The decision variable n 
p 

jilr 
is also subject to the maximum num-

er of trips that a truck l can haul from each sector j . The maxi-

um number of trips θ
jlr 

per truck l is a preprocessed parameter

ecause its components are not decision variables. Then, the num-

er of total trips to each sector is restricted to a maximum number

f trips times the e 
p 
ji 

binary decision variable. The decision variable

 

p 
ji 

is relevant in the constraints ( 7 ) because not all the sectors will

e allocated with a shovel and a sector without a shovel cannot

ave number of trips. Decision variables n 
p 

jilr 
and e 

p 
ji 

are linked. The

nequality constraint ( 7 ) also ensures that only an allocated sector

ith a shovel is assigned with trucks, and not all trucks are allo-

ated at some scenarios. The link of truck l , shovel i and sectors

 in the constraints ensure that all assignment possibilities for the

rucks, shovel and sectors are taken into account. 

There are capacity limits for each truck Q 

trk 
l 

and shovel Q 

sh 
i 

.

he available fleet and their respective capacity are included in the

ormulation. The production of each shovel assigned to sector j is

onstrained to the maximum production of each shovel Q 

sh 
iα

. The

 

p 
ji 

binary decision variable helps to formulate the shovel capacity

onstraints ( 8 ) because not all of the shovels may be allocated. The

ack of expected production by each shovel is stored by the deci-

ion variable f 
p 
jiα

, which is minimized at the objective function. 

There are J sectors and each sector has K ( j ) blocks to be evalu-

ted. The tonnage of block k is B jk and each block may be hauled

rom an in-situ location to a blending area or waste dump taking

nto account the fleet capacity constraints. Note that the model as-

umes the blending area and the location of the waste dump are

earby and considers that a truck cycle time distribution is used

or each sector and truck, and can be extended to multiple blend-

ng and waste dumps as well as complex waste management at

ny location. The decision variables at operational and production

onstraints are linked to fleet allocation constraints. Indeed, con-

traint ( 9 ) links number of trips n 
p 

jilr 
of truck l from sector j and

hovel i given mechanic availability and hauling time realization r

ith the mined block decision variable x 
p 

jk 
. The hauling tonnage

y the trucks from sector j for mechanical availability and hauling

ime realization r must be equal to scheduled blocks tonnage at

ector j . 

J 
 

j=1 

I ∑ 

i =1 

L ∑ 

l=1 

Q 

trk 
l × n 

p 

jilr 
≥ M 

min ∀ p = 1 , . . . , P, ∀ r = 1 , . . . , R (10)
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 ≤ d m −
p ≤ % T o l m − × M 

min ∀ p = 1 , . . . , P (11) 

J 
 

j=1 

I ∑ 

i =1 

L ∑ 

l=1 

Q 

trk 
l × n 

p 

jilr 
− d m + 

p ≤ M 

max ∀ p = 1 , . . . , P, 

∀ r = 1 , . . . , R (12) 

 ≤ d m + 
p ≤ % T o l m + × M 

max ∀ p = 1 , . . . , P (13) 

J 
 

j=1 

K( j) ∑ 

k =1 

(
O jks × B jk × x p 

jk 

)
+ d o−

sp ≥ O 

min ∀ p = 1 , . . . , P, 

∀ s = 1 , . . . , S (14) 

J 
 

j=1 

K( j) ∑ 

k =1 

(
O jks × B jk × x p 

jk 

)
− d o+ 

sp ≤ O 

max ∀ p = 1 , . . . , P, 

∀ s = 1 , . . . , S (15) 

 ≤ d o−
sp ≤ % T o l o− × O 

min ∀ p = 1 , . . . , P, ∀ s = 1 , . . . , S (16) 

 ≤ d o+ 
sp ≤ % T o l o+ × O 

max ∀ p = 1 , . . . , P, ∀ s = 1 , . . . , S (17) 

J 
 

j=1 

K( j) ∑ 

k =1 

(
B jk ×

(
g ε 

jks 
− G 

ε−)
× O jks × x p 

jk 

)
+ d ε−

ps ≥ 0 ∀ p = 1 , . . . , P, 

∀ ε = 1 , . . . , E, ∀ s = 1 , . . . , S (18) 

J 
 

j=1 

K( j) ∑ 

k =1 

(
B jk ×

(
g ε 

jks 
− G 

ε+ ) × O jks × x p 
jk 

)
− d ε+ 

ps ≤ 0 ∀ p = 1 , . . . , P, 

∀ ε = 1 , . . . , E, ∀ s = 1 , . . . , S (19) 

 ≤ d ε−
sp ≤ % T o l ε− × O 

min × G 

ε− ∀ p = 1 , . . . , P, ∀ ε = 1 , . . . , E, 

∀ s = 1 , . . . , S (20) 

 ≤ d ε+ 
sp ≤ % T o l ε+ × O 

max × G 

ε+ ∀ p = 1 , . . . , P, ∀ ε = 1 , . . . , E, 

∀ s = 1 , . . . , S (21) 

J 
 

j=1 

K( j) ∑ 

k =1 

(
B jk ×

(
g δjks − G 

δ+ ) × O jks × x p 
jk 

)
− d δ+ 

sp ≤ 0 ∀ p = 1 , . . . , P, 

∀ δ= 1 , . . . , D, ∀ s = 1 , . . . , S (22) 

J 
 

j=1 

K( j) ∑ 

k =1 

(
B jk ×

(
g δjks − G 

δ−)
× O jks × x p 

jk 

)
+ d δ−

sp ≥ 0 ∀ p = 1 , . . . , P, 

∀ δ= 1 , . . . , D, ∀ s = 1 , . . . , S (23) 

 ≤ d δ+ 
sp ≤ % T o l δ+ × O 

max × G 

δ+ ∀ p = 1 , . . . , P , ∀ δ= 1 , . . . , D, 

∀ s = 1 , . . . , S (24) 

 ≤ d δ−
sp ≤ % T o l δ− × O 

min × G 

δ− ∀ p = 1 , . . . , P , ∀ δ= 1 , . . . , D, 

∀ s = 1 , . . . , S (25) 

Production per time period p is constrained to the produc-

ion targets ( 10 ). The production includes ore tones plus the waste

ones. The ore tonnage is the material that has positive economic

alue meanwhile the waste tonnage is the material without pos-

tive economic value that needs to be extracted to allow access

o ore and ensure continuity of ore production in the following

eriods. The number of trip decision variables and truck capaci-

ies are used to calculate the total tonnage extracted per period.

he proposed model considers strict constraints for early periods

nd can be relaxed for the latest periods. To relax the production
onstraints, the shortage d m −
p with respect to the target planned is

onsidered, along with their respective tolerance of deviation ( 11 ).

raditionally, an upper bound is not used in production formula-

ion because the cost of mining will limit overproduction; however,

t the current formulation the production must be limited because

he capacity shovel constraints maximize the production by sec-

or to increase the utilization of the shovel ( 12 ). The upper bound

imits this maximization to keep close to the production targets.

he deviation d m + 
p with respect to the upper bound total produc-

ion is penalized in the objective function and their tolerance is

onsidered ( 13 ). 

As a production constraint, the ore tonnage should match the

arget ore production given by long-term production schedules

14, 15). The shortage d o−
sp respects to the target planned and the

urplus d o+ 
sp , respects the upper bound ore processing and are

enalized in the objective function. The deviations are limited by

 percentage of ore production % T ol (16, 17). The upper bound is

irectly related to the ore tonnage scheduled plus the maximum

apacity pile of ore next to the delivering location. The exceeding

aterial from the upper bound may be considered as material that

o to stockpile, and its tonnage are penalized by the corresponding

e-handled cost. 

Ore production must match certain quality constraints, that

s, the expected grades or quality of the material at the end of

he week or month must fit into specific ranges and this range

epends on long-term production schedule specifications. To meet

his demand, a block x 
p 

jk 
is mined only if their grade helps to

atisfy the required quality given the available fleet. Assuming

hat the study case has E elements that have economic value and

 elements as deleterious elements, 2( E + D) quality constraints

re needed to meet quality conditions. The grade of the main

ommodity for ore tonnage should satisfy the constraints (18,

9) and the quality deviations have tolerance (20, 21) to ensure a

roduction schedule with low variable average quality. Ore produc-

ion cannot have more than the required limits of contaminants

ecause this contains D deleterious elements. These deleterious

lements influence the physical and chemical properties of the ore

roduct, thus the performance of the process that the ore product

ill be used for. The constraints (22, 23) ensure that the ore

elivered by period given S scenarios of the grades have average

rades less than G 

δ+ and more than G 

δ− for deleterious element

= 1 , . . . , D . The quality deviations related with contaminants

re also constrained to tolerance (24, 25) to ensure production

chedule with low variable average quality. 

Blending of ore from sectors is carried out based on cutoffs that

efine the minimum quality that a block k must have to be in-

luded in the blending process. If a block k has the chance of being

sed for blending O jks = 1 ; otherwise, the block k is allocated to

he waste dump directly O jks = 0 . The quality constraints are satis-

ed when the total ore production meets the required quality con-

itions set as targets. 

.1.2. Constraints for operational considerations 

Operational considerations relate to the size of the equipment

nd accessibility restrictions that may require feasible, in a mining

ense, production schedule patterns that allow the available equip-

ent to work efficiently and streamline movements for safety rea-

ons. The first operation consideration is the mining direction that

acilitates access to the sectors to be mined and it is: 

 

p 

jk 
−

p ∑ 

τ=1 

x τjk ′ ≤ 0 , ∀ p = 1 , . . . , P, ∀ j = 1 , . . . , J, 

∀ k = 1 , . . . , K( j) , k ′ ∈ �k ′ (26) 

here �k ′ is the set of indexes representing blocks that are hori-

ontal predecessors which must be mined before block k to match
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 Mining
Direction

1
2

3

4

5

6

7

8

Fig. 1. Eight mining directions considered by the formulation. 
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Fig. 3. Stochastic long-term mine production schedule, 5 periods located at three 

benches (upper middle and lower), modified from ( Benndorf, 2005 ). 
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the mining direction. A sector could be mined following eight di-

rections, as shown in Fig. 1. 

The second operational consideration is the mining width

and relates to the minimum width the patterns of a short-term

schedule period has that permits fleet access to the orebody and

materials that need be extracted. Production schedules without

accounting for mining width may deliver schedule patterns with

singular blocks of early periods surrounded by blocks from later

period, as shown in Fig. 2 . This production scheduling cannot be

implemented as the blocks scheduled for period 1, (blue squares)

cannot be mined before some blocks belonging to period 2 (orange

squares) are extracted. 

The following mining width constraints account for feasible ex-

traction patterns and may force the mining of some blocks before

a given block k as shown in Fig. 2. 

−2 × x p 
jk ′ − x p 

jk ′′ + ( 2 × v + υ) × x p 
jk 

− y p 
jk 

≤ 0 , ∀ p = 1 , . . . , P, 

∀ j = 1 , . . . , J, ∀ k = 1 , . . . , K( j) k ′ ∈ �k ′ , k 
′′ ∈ �k ′′ (27)

The mining width is discretized into υ blocks where �k ′′ is

its set of indexes. To mine a block k, υ blocks may be mined at

the same period or have been mined at previous periods. �k ′ is

the set of indexes representing the adjacent blocks and priority of

mining adjacent blocks ν is considered to avoid single blocks from

some periods being surrounded by blocks from different periods.

Indeed, the blocks ν that surround block k must be mined with

twice the priority than the second term at constraints ( 27 ) to

avoid infeasible mining patterns. The adjacent ν blocks belong to

the inner window and the υ blocks belong to the outer window

in smooth constraints ( Dimitrakopoulos & Ramazan, 2004 ). These

smooth mining constraints are linked to mining width to provide

feasible mining sequences that the fleet requires to operate effi-

ciently. It is important to remark that υ number of blocks that

match mining width are variable through the sector. The blocks

that are located close to the border will require less υ blocks to

be moved because some blocks were already mined or are ‘air’

(non-physically existing) blocks. 
Fig. 2. Production scheduling witho
The mining width constraints are relaxed because at some lo-

ations feasible solutions will require to mine only some υ blocks.

he discrete decision variable y 
p 

jk 
will store the lack of mining

locks that match the mining width considerations. This decision

ariable is penalized and minimized at the objective function. 

. Application in an iron ore mine 

The proposed stochastic short-term production schedule

SSTPS) formulation is applied at an iron deposit. Iron ore deposits

re typical examples of a multi-element environment, where

he main production objective is to satisfy the customer quality

equirement at a lower cost by optimally blending the different

ectors of a mine. More specifically, when the iron content is

valuated and must be within customer specified limits there are

lso specific restrictions on the content of the so-called deleterious

lements, such as phosphorous (P), silica (SiO 2 ), alumina (Al 2 O 3 )

nd the water and organic content measured as “loss on ignition”

LOI). These deleterious elements influence the physical and chem-

cal properties of the iron ore product, significantly varies from

ustomer to customer and contractual agreement to be met, and

he performance of the process it will be used for. For instance,

hosphorous affects steel quality (added cost), high silica and high

lumina affect furnace efficiency, and the LOI affect fuel use and

ater in a hot furnace for steel making. 

As noted earlier, the stochastic long-term production scheduling

SLTPS) of a given mine provides the larger scale framework defin-

ng the targets production of the short-term production schedule.

ig. 3 , for example shows the long-term production schedule of

he iron mine in this case study and contains five periods (years).

he first year (dark blue in the figure) is used herein for short-

erm production scheduling which is optimized over twelve peri-

ds (months). 
ut mining width constraints. 
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Table 1 

First year production quantity and quality requirements. 

Period Ore Tonnage Fe 2 O 3 (%) P (%) SiO 2 (%) Al 2 0 3 (%) LOI (%) 

1 14,0 0 0,0 0 0 57.1–59.4 0.032–0.038 4.6–5.2 0.9–1.05 9.5–11 

Note : Ore/Waste cut-off grade is Fe > = 56%. 

  

  

 

 

 

Es�mated iron content (average) 

Simulated iron realiza�on 1 

Simulated iron realiza�on 2 
 

Simulated iron realiza�on 10 
 

Fig. 4. Iron ore content within the sector to be mined in the first year of production 

( Fig. 3 ); 3 stochastically simulated realizations and the deterministic estimate for 

the upper bench (extraction units of 25 ×25 ×12 meter 3 ). 
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Table 2 

Shovel model and mechanical availability parameter distribution. 

Mechanical availability (%) 

Model Shovel ( i ) Production (Tonnes/hour) Mean Std. Dev. 

HS6020 1 1180 83 4.5 

HS6030 2 1400 83 4 

Table 3 

Truck model and mechanical availability parameter distribution. 

Mechanical availability (%) 

Model Truck ( I ) Tonnes Mean Std. Dev. 

Cat785D_501 1 136 83 5 

Cat785D_502 2 136 83 4 

: : : : 

Cat785D_510 8 136 83 4 

Cat77G_511 9 100 83 5 

Cat77G_512 10 100 83 5 

Table 4 

Trucks cycle time and parameter distribution ( φ jlr ). 

Cycle time (minutes) 

Sector ( j ) Truck ( I ) Mean Std.Dev. 

1 1 32 2.8 

1 : : : 

1 10 32 3.3 

2 1 25 2.6 

2 : : : 

2 1 25 3.1 

3 1 20 2.5 

3 : : : 

3 10 20 3 
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The quality targets and tonnes for the SSTPS and for the first

ear of production considered herein are given see Table 1 . From

he first year tonnage in Table 1 ; the mine must produce iron

re of about 1.16 millions of Iron tonnes each month. The average

rade of the related elements per month may be in the intervals

f the first year long-term ore quality given; however, the spatial

ariability of these grades varies when monthly increments are

onsidered and along the mining direction and operational mining

idth. Ore quality intervals correspond to the upper bound and

ower bound per element over the total year. 

The iron ore may be extracted from blocks of

5 ×25 ×12 meter 3 located at three consecutive mining benches of

2 meter height. For this case study, ten equally probable scenarios

f iron content, phosphorous, silica, aluminum and LOI are used

o quantify the joint uncertainty in the characteristics of the iron

re deposit considered and are the input to the SSTPS formulation

roposed in the previous section. The simulated scenarios avail-

ble were provided and generated using the stochastic simulated

echnique detailed in Boucher and Dimitrakopoulos (2012) . The

rea considered is bounded by the limits of the given volume

f production in the long-term first year production schedule

rovided. Fig. 4 shows 3 scenarios of iron ore content as well as

he corresponding conventional and single estimated (average)

epresentation of iron content (Fe 2 O 3 %) for the upper bench. In

otal, 734 blocks from 3525 to 21,150 tonnes, with Fe 2 O 3 from

4.59% to 60.63%, P from 0.02% to 0.04%, SiO 2 from 3.10% to 8.58%,

l 2 O 3 from 0.53% to 1.88% and LOI from 8.75% to 11.75% are

vailable. 

In addition to the uncertainty of the materials being extracted

ddressed above, the parameters related to the mining fleet avail-

ble are given, so as to allocate efficiently and maximize the uti-

ization of this fleet. The fleet size, mechanical availability and

auling time from the orebody to the various destinations are pa-

ameters used to allocated shovels and trucks at the related mine
ectors. For this case study two shovels and ten trucks are the

vailable fleet. The hourly productivity of each shovel fluctuates

etween 1180 and 1400 tonnes. The shovel model, digging rate and

echanical availability parameter distributions are given ( Table 2 )

long with the truck model, capacity and mechanical availability

arameter distribution per truck ( Table 3 ). 

Short-term evaluation has the advantage of accounting for ad-

itional short-term information such as the hauling distance that

s available at the short-term evaluation. This supports the alloca-

ion of trucks because the past records of speed per truck, truck

auling time per sector in a mine and blending pad location are

vailable. Additionally, the parameter distribution of the time that

pends l truck from the sector j to the destination is calculated

s shown in Table 4 . The cycle time φ jlr from sector j to desti-

ation will be drawn r times from the respective distribution and

he maximum trips are calculated given the mechanical availability

er truck. The parameters used to implement the proposed SSTPS

ormulation proposed herein are given in Table 5. 

The total tonnage to be mined after twelve months of produc-

ion is approximately 14,40 0,0 0 0 iron ore tonnes, and given the

re cut-off > = 56% Fe 2 O 3 almost all the material will be mined as

re. The targets of production and actual ore production are quite

imilar. Note that a high penalty is applied to the lack of mining

rom the expected monthly production because all material sched-

led for the twelve months must be mined to align short-term
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Table 5 

Target month production and parameters. 

Production target Parameter Value Unit Penalty 

Max Production 1,210,0 0 0 Tonnes 160 

Min Production 1,10 0,0 0 0 Tonnes 160 

Max Ore Production 1,210,0 0 0 Tonnes 16 

Mine Ore Production 1,0 0 0,0 0 0 Tonnes 4 

Allowed deviation tolerance < = 10 % 

Quality Requirement Iron Ore (Fe203) 57.0–59.4 % 1 

Phosphorous 0.032–0.038 % 10 

Silica 4.6–5.2 % 10 

Alumina 0.9–1.05 % 10 

Loss on ignition 9.5–11 % 1 

Allowed deviation tolerance < = 10 % 

Ore Definition Parameter Value Unit 

Fe203 > = 56 % 

Economic Parameters Parameter Value Unit 

Mining Cost ∗ 40 $/Tonne 

Cycle time Cost 120 $/hour 

Shovel Moving Cost 10 0 0 $/100 meters 

∗ Not include hauling cost 

Fig. 5. The stochastic short-term schedule (left) and the deterministic schedule (right). 
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production with long-term planning targets. The shovel moving

cost is computed from the unproductive time that a shovel may

spend and the approximate cost of delaying the production. 

The software used for solving the model is IBM ILOG CPLEX

Optimization Studio v12.4 in a computer of a dual-core processor

of 2.67 Gigahertz and 24GigaByte of RAM. The model formulation

was written in C ++ using the set of libraries Concert Technol-

ogy ( IBM, 2010 ). The optimization of the 12 periods demanded

unreasonable computing time and sequential optimization with

aggregated continuous periods is implemented to accelerate the

solutions time. The computational time required to find the opti-

mal solution was 292 seconds. The solution of 12 periods required

a model with 47,228 constraints, 13,418 decision variables which

include 5104 binary decision variables. 

3.1. Short-term scheduling under uncertainty 

The uncertainty in the iron grade and deleterious elements, me-

chanical fleet availability and hauling time are a major source of

uncertainty that is incorporated into the production schedule for-

mulation presented in Section 2.2. Fig. 5 (left) shows the SSTPS

production schedule at the iron ore mine in this application. For

reasons of comparison, Fig. 5 (right) shows the corresponding de-

terministic schedule generated from the deterministic equivalent of

the SSTPS presented in Section 2.2, based on the average values for

all related inputs. It is important to stress that the deterministically

generated schedule may not be feasible in the actual presence of

uncertainty that is not accounted for but is present. 
Both production schedules in Fig. 5 consider the same opera-

ional considerations and allocate similar sectors of the iron ore

eposit to be mined until the 5th month of production; then the

ffect of uncertainty becomes evident as not enough materials are

ocated at the upper bench to match quality requirements and the

eet is moved to lower benches. 

.2. Utilization of the fleet 

Maximum expected shovel production is planned given me-

hanical availability and scheduled time. The lack of matching this

xpected production is penalized to maximize the utilization of the

hovels. The shovel utilization accounting for uncertainty at the

STPS solution results in a higher and less variable than the shovel

tilization of the deterministic STPS solution. From the STPS solu-

ion, the shovel with a historically high production was allocated

referentially to a sector that ensures its better utilization and the

hovel with a historically low production to sectors with high pro-

uction uncertainty. The risk profiles of the utilization cumulative

istribution are given in term of P10, P50 and P90 with suffix S

ndicates stochastic solution. 

The utilization of each shovel and the trucks are not exactly

roportional because the trucks can be assigned to more than one

hovel per period meanwhile the shovel is assigned to a sector

nd their movement between sectors are restricted by the cost

ssociated. For example the small shovel HS6020 ( Fig. 6 , upper)

s allocated to the sector that has less available material to be

ined making its utilization low at the final periods; however, the
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Fig. 6. Utilization risk profiles of shovels for SSTPS in blue lines; P10, P50 and P90 are percentiles and suffix S indicates stochastic solution. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 7. Utilization risk profiles of trucks for SSTPS in blue lines; P10, P50 and P90 are the related percentiles and suffix S indicates stochastic solution. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article). 
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Fig. 8. Available trucks in red line, number of trucks allocated accounting for four 

source of uncertainty on blue line and without accounting for uncertainty on black 

line. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article). 

d  

m  

i  

t  

p  
vailability of the trucks are not affected because the trucks can be

llocated to different sectors as shovels are allocated for each pe-

iod. This ensures optimal utilization of the trucks each period, as

hown in Fig. 7. 

In some periods not all the trucks need to be allocated to match

roduction targets. Considering that both schedules match produc-

ion targets, the SSTPS shows a more efficient allocation or high

tilization than the deterministic STPS because it allocates a lower

umber of trucks, as shown in Fig. 8 , that is, the fleet allocation

ccounting for deterministic truck parameters is inefficient when

ompared to that accounting for possible fluctuations of mechani-

al availability and hauling time. 

The stochastic formulation provides a well-informed schedule

ecause it accounts for possible fluctuations of the grades and fleet

arameters. From Figs. 6 and 7 , the utilization of the fleet is shown

s less variable through the periods when the uncertainty is con-

idered. 

.3. Cost in the objective function 

The objective function consider some terms associated with

perating fleet cost, mining cost, and penalty cost to penalize
eviation from production target, expected fleet utilization and

ining width. The penalties cause some terms to have more prior-

ty than the others because the optimization preferably minimizes

he components that have high value. The stochastic short-term

roduction schedule solution shows less cost through the terms
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Fig. 9. Cumulative minimized objective cost. 
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in the objective function than the deterministic schedule solution.

From the formulation, the minimized cost means that the plan

guarantees the minimum deviation from the production targets,

such as tonnage and quality, maximum utilization of the fleet,

minimum cost of production extraction and a better match of the

mining width considerations. Indeed, the best production schedule

may be the one that obtains the lower minimized cost. 

Fig. 9 shows that the mechanical availability shovel source of

uncertainty has more influence in the stochastic solution than the

uncertainty in the parameters of the trucks and orebody uncer-

tainty. Also, the proposed stochastic formulation in an iron ore de-

posit provides an improvement cost of about fifteen million CAD

dollars less than the deterministic or production schedule that ig-

nores parameter uncertainty. The deterministic STPS formulation

cannot minimize in the same range as the stochastic STPS does

because the uncertainty in the parameter is not accounted for. The

uncertainties in the mechanical availability, in the orebody model

and in the hauling time give more feasible solutions in the solution

space to choose the best solution. 

The formulation proposed for stochastic short-term production

scheduling obtains the solution with the lower cost in the applica-

tion at a multi-element ore iron mine; however, the robustness of

this formulation is based on the idea that their schedule is a well-

informed plan because it accounts for operations considerations,

possible fluctuations of the orebody metal quality and fluctuations

of the fleet parameters to decide which sector to be mined per

period. 

4. Conclusions 

A new formulation based on stochastic mixed integer program-

ming is proposed herein to address short-term mine production

scheduling in a single formulation, where mining considerations,

production constraints, uncertainty in the orebody metal quantity

as well as fleet parameters and availability are evaluated simulta-

neously. This allows to define a well-informed sequence of mining

that has high performance at the mine operation. The quality of

material scheduled to be extracted may influence also in the allo-

cation of the fleet. The optimization process allocates the fleet to

sectors that ensure the accomplishment of the production target,

match the quality conditions, maximize fleet utilization, respect

operational considerations, and accounts for uncertainty in the in-

put parameters and information. The components of the objective

function are expressed in terms of costs where the minimized to-

tal cost implies that the plan guarantees the minimum deviation

from production target, maximum utilization of the fleet, mini-

mum cost of production extraction and better match of mining

width requirements. At the time of short-term production schedul-

ing, additional information related to the operational restric-

tions, such as mining width and mining directions, are available.

These additional physical constraints were implemented to deliver
easible production schedule patterns that will have better perfor-

ance during operations. 

It is anticipated that the ability to jointly optimize related el-

ments, as detailed in this paper, entails more realistic thus bet-

er production planning. It is understood that operational flexibility

nd adaptation are part for any scheduling process; for example, in

n operating mine additional sampling and grade control will lead

o further adopting a short-term production schedule. The practi-

al significance of the proposed optimization formulations is that

t improves the overall production performance and minimizes the

roduction scheduling changes needed, in reaction to operational

spects. Further research will address the dynamic simultaneous

pdating of short-term mine production scheduling with incoming

nformation as production proceeds. 
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