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a  b  s  t  r  a  c  t

Dehydroepiandrosterone  (DHEA)  prevents  brain  aging,  enhances  the  cerebral  metabolism  and  interacts
with energy  substrates.  The  interaction  between  lactate  and  DHEA  on  glucose  uptake  and  lactate  oxida-
tion by  various  nervous  structures  was  investigated  and results  demonstrate  that  the  2-14C-deoxiglucose
(2-14C-Dglucose)  uptake  was stimulated  by  10  mM  lactate  in  the  hypothalamus  and  olfactory  bulb,  inhib-
ited in  the  cerebral  cortex  and  cerebellum,  and  unaffected  in the  hippocampus.  We  also  show  that,  in
both  the  cerebral  cortex  and  hypothalamus, 14C-lactate  oxidation  was  higher  than 14C-glucose  oxidation
(p  ≤  0.001),  demonstrating  a relevant  role  for  lactate  as  energy  substrate.  The  interaction  of lactate  and
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10 M  DHEA  was  tested  and,  although  DHEA  had  no  significant  effect  on  uptake  in the  cerebellum,  hip-
pocampus,  or  hypothalamus,  10−8 M DHEA  increased  the  2-14C-Dglucose  uptake  in the  cerebral  cortex  in
the presence  of  lactate  (p ≤ 0.001),  and  in  the  olfactory  bulb  in  the  absence  of  lactate  (p <  0.05).  However,
DHEA  had  no  significant  effect  on 14C-lactate  oxidation.  We  suggest  that  DHEA  improves  glucose  uptake
in specific  conditions.  Thus,  DHEA  may  affect  CNS  metabolism  and  interact  with  lactate,  which  is  the

 ener
Crow
most  important  neuronal

. Introduction

Dehydroepiandrosterone (DHEA) is a neurosteroid produced
y neural tissue [3] that is able to modulate neuronal excitabil-

ty, neurogenesis, cell survival, neurotransmitter receptors, and
etabolism [8,17].  DHEA enhances mitochondrial oxidative capac-

ty [27] and restored Na+–K+ ATPase activity of aging rat brains
32].

The brain is a highly oxidative organ that depends on a con-
inuous glucose supply in vivo [12] although lactate is the most
mportant ATP source for neurons during neuronal excitation
23,29]. It was described previously that astrocytes take up glucose,
ynthesize lactate, and transport the lactate to neurons, demon-
trating the complex relations among cells and energy substrates
n central nervous system (CNS) [22]. This anaerobical metabolism
f CNS is the lactate shuttle hypothesis [22,23,28].

In vitro, lactate can decrease glucose uptake differently in spe-

ific regions of CNS [25]. So, as observed previously there are
etabolic differences between structures of CNS [5,10,30]. Cor-

oborating with these results, lactate is a preferential substrate for

Abbreviations: CNS, central nervous system; DHEA, dehydroepiandrosterone;
-14C-Dglucose, 2-deoxi-1-14C-glucose; KRb, Krebs Ringer bicarbonate; TCA,
richloroacetic acid; SNK, Student–Newman–Keuls.
∗ Corresponding author. Tel.: +55 61 3107 2926; fax: +55 61 3107 2926.

E-mail address: dany.kaiser@gmail.com (D.K. de Souza).

304-3940/$ – see front matter. Crown Copyright ©  2011 Published by Elsevier Ireland Lt
oi:10.1016/j.neulet.2011.11.052
gy  substrate,  on  glucose  uptake.
n Copyright ©  2011 Published by Elsevier Ireland Ltd. All rights reserved.

oxidation and it suppresses glucose oxidation by neurons in culture
[14].

Age-related neurological disorders like Alzheimer’s disease and
endocrine diseases like Type 2 diabetes mellitus are conditions
related to progressive accumulation of detrimental changes in the
brain structure and function [2,11].  Memory disturbances in the
elderly and in the initial stages of the disease of Alzheimer’s dis-
ease patients are related to hypoxia, reduction in blood supply,
and glucose hypometabolism in the cerebral cortex, hippocam-
pus, and olfactory bulb [1,34,35,38]. It was  postulated that the
hypometabolism of neurodegenerative diseases could be reversed
or minimized by DHEA, however this has not been clearly estab-
lished in humans [2,13].

Therefore we tested the hypothesis that DHEA can alter the glu-
cose metabolism of nerve tissues (cerebral cortex, hippocampus,
cerebellum, hypothalamus, and olfactory bulb), and the possi-
ble interaction between DHEA and lactate, the most important
metabolic substrate of neurons, on glucose uptake and lactate oxi-
dation by various central nervous system structures.

2. Materials and methods
2.1. Materials

The reagents utilized in the experiments were analytical grade
and were obtained from Merck SA, Porto Alegre, Brazil. Other

d. All rights reserved.
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Table 1
Lactate effect on [2-14C] deoxi-glucose uptake of rat brain structures.

Structure Control Lactate p (control
versus
lactate)

Cerebellum 2.10 ± 0.23 (5) 1.21 ± 0.24 (6) ≤0.001
Cerebral cortex 3.35 ± 0.77 (6)* 1.61 ± 0.52 (8) 0.002
Hippocampus 2.32 ± 1.27 (4) 3.04 ± 0.46 (7)# 0.199
Hypothalamus 2.94 ± 1.64 (4) 7.24 ± 0.81 (5)& 0.001
Olfactory bulb 1.69 ± 0.14 (5) 2.88 ± 0.38 (5)# ≤0.001

Values are expressed as mean ± standard deviation (SD). Value for each n is repre-
sented in parentheses. Results are expressed as tissue/medium (T/M) ratio (that is,
dpm/mL tissue fluid per dpm/mL incubation medium). See Section 2 for details. For
structures incubated with the same medium: control (without lactate) or lactate
(10  mM lactate) groups. One-way ANOVA was used to compare among structures
in  control or lactate groups, and for control versus lactate Student’s t  test was used.
Differences between each nervous structure and inside the same group (control or
lactate).

& Differences among all structures (p ≤ 0.001).
D.K. de Souza et al. / Neuro

eagents were purchased as follows: hyamine hydroxide from
aker Chemical Company; L-[U-14C] lactate (108.3 mCi/mmol),
-deoxi-1-14C-glucose (55 mCi/mmol), and D-[U-14C] glucose
3.0 mCi/mmol), all from Amersham; DHEA from Calbioche; and 2-
ydroxypropyl-�-cyclodextrin (Fluka). DHEA was  dissolved in 10%
f �-cyclodextrin. All solutions were prepared on the same day they
ere used.

.2. Animals

Experiments were performed with adult male Wistar rats,
eighing 250–300 g. Animals were housed in groups with free

ccess to food and water, room temperature of approximately 22 ◦C,
nd a 12:12 h light–dark cycle. Rats were killed by decapitation and
heir brain was quickly removed and placed on a petri plate con-
aining a humid filter paper with buffer at 4 ◦C. Different structures
f CNS (cerebral cortex, hippocampus, cerebellum, hypothalamus,
nd olfactory bulb) were dissected, weighed, and sliced within

 min. External and visual neuroanatomical landmarks were uti-
ized as reference for dissection and both sides of the brain were
sed. Dissected tissues were randomly distributed in experimental
roups.

The animals were not anesthetized prior to sacrifice. During all
he experimental procedures, the animals were treated according
o the Guidelines for Care and Use of Animals in Research issued by
he National Institutes of Health. All efforts were made to reduce
oth animal suffering and the number of animals used. Animal
xperimentation protocols were approved by the Ethics Committee
f the University.

.3. The 2-deoxi-1-14C-glucose (2-14C-Dglucose) uptake

To measure 2-deoxi-1-14C-glucose (2-14C-Dglucose) uptake,
issue slices obtained from the various CNS structures
200 mg/tube) were incubated in (1) 0.5 mL  Krebs Ringer bicarbon-
te (KRb) buffer pH 7.4 containing 0.15 �Ci 2-14C-Dglucose; (2)
.5 mL  KRb containing 0.15 �Ci 2-14C-Dglucose + 10 mM lactate;
3) 0.5 mL  KRb containing 0.15 �Ci 2-14C-Dglucose + 10−8 M
HEA or 10−12 M DHEA; or (4) 0.5 mL  KRb containing 2-

4C-Dglucose + 10 mM lactate + 10−8 M DHEA or 10−1 M DHEA
described and modified from [18]]. The 2-14C-Dglucose is a non-

etabolized glucose analog. Control groups (without lactate) were
ncubated with �-cyclodextrin at 10−6 M.  The contents of the tubes

ere gassed with 95% O2/5% CO2 for 1 min  and then closed. Tissues
ere incubated in a Dubnoff incubator with constant shaking at

7 ◦C for 1.5 h. After incubation, tissues were withdrawn, rinsed in
old incubation buffer (three times) and blotted with filter paper.
lucose uptake was immediately measured [21] and the results
ere expressed as tissue/medium (T/M) ratio, i.e., dpm/mL tissue
uid per dpm/mL incubation medium. Analysis of data was done

n duplicate.
Time-course curve was performed using 2-14C-Dglucose in cere-

ellar slices at 30, 60, 90 (1.5 h) and 120 min  (data not shown). The
eak occurred at 1.5 h of incubation then this time was  chosen for
he others experiments.

.4. The D-[U-14C] glucose or L [U-14C] lactate oxidation

To measure glucose oxidation (CO2 production), slices of
rain structures (200 mg/tube) were incubated in tubes contain-

ng 1.0 mL  KRb pH 7.4, plus: (1) 0.15 �Ci [U-14C] glucose + 5 mM
lucose + 10 mM lactate + 10−6 M �-cyclodextrin; (2) 0.15 �Ci L

U-14C] lactate + 10 mM lactate + 10−6 �-cyclodextrin; (3) 0.15 �Ci

 [U-14C] lactate + 10 mM lactate + DHEA 10−8; or (4) 0.15 �Ci L
U-14C] lactate + 10 mM lactate [described previously by 7; [18]].
ontents of the tubes were gassed with 95% O2/5% CO2 for 1 min  and
# Differences between hippocampus and olfactory bulb versus cerebellum and
cerebral cortex (p ≤ 0.001).

* Difference between cerebral cortex and olfactory bulb (p = 0.041).

then sealed with rubber caps. Slices were incubated in a Dubnoff
incubator with constant shaking at 37 ◦C for 1.5 h. Incubation was
stopped by adding 0.2 mL  50% TCA (trichloroacetic acid) through
the rubber cap. Then, 0.2 mL  of 1 M hyamine hydroxide was injected
into the center of the tube. The tubes were left overnight at 25 ◦C
to trap CO2, after which the content was transferred to vials and
assayed for CO2 radioactivity in a liquid-scintillation counter [7].
Analysis of data was done in one replicate.

2.5. Statistical analysis

Student’s t-test was utilized to analyze lactate influence on
glucose uptake by each CNS structure and in oxidation experi-
ments. Data were analyzed statistically by One Way  ANOVA and
by Student–Newman–Keuls (SNK) multiple-range test to verify
the differences in glucose uptake among tissues. Two-way ANOVA
and SNK multiple-range test were utilized to indentify interac-
tions between DHEA doses, incubation time, and lactate influence.
Level of significance was set at p < 0.05 and data are presented as
mean ± standard deviation (SD). All tests were performed using
Sigma Stat software.

3. Results

3.1. Lactate effect on 2-14C-Dglucose uptake by CNS structures

First, glucose (2-14C-Dglucose) uptake was tested and compared
between all CNS structures in a medium with or without lactate
(Table 1). Note that in all tissues except the hippocampus, 2-14C-
Dglucose uptake was affected by presence of lactate. Next, we
compared 2-14C-Dglucose uptake of all structures incubated with
lactate and with their respective controls. In the absence of lactate,
2-14C-Dglucose uptake was  the same among almost all struc-
tures and the only significantly increase value found was between
cerebral cortex when compared to olfactory bulb (p = 0.041). How-
ever, the hypothalamus showed a great increase in 2-14C-Dglucose
uptake (p ≤ 0.001) in the presence of lactate compared to the other
structures. Cerebellum and cerebral cortex showed the lowest
uptake values.

3.2. Substrate oxidation by CNS structures
The 14C-lactate oxidation by the CNS structures studied was
compared to 14C-glucose oxidation in the presence of 10 mM
of lactate (Table 2). No difference in 14C-glucose or 14C-lactate
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Table 2
Oxidation of D-[U-14C] glucose or L-[U-14C] lactate in tissue slices of rat cerebral
cortex and hypothalamus.

Structure 14C-glucose + lactate 14C-lactate p

Cerebral cortex 473.4 ± 78.3 (6) 3190.8 ± 553.0 (5) ≤0.001
Hypothalamus 360.7 ± 116.5 (5) 2370.9 ± 796.2 (7) ≤0.001

Values are expressed as mean ± SD. The value of each n is represented in parentheses.
Results are expressed as nmol of substrate oxidized to CO2 h−1 g−1 tissue slices. See
Section 2 for details. Student’s t test was used to analyze differences between 14C-
glucose and 14C-lactate groups. Differences observed in the table were obtained
when comparing 14C-lactate to 14C-glucose in the same structure.

Table 3
Effect of 10−8 M DHEA on the oxidation of L-[U-14C] lactate in tissue slices of rat
cerebral cortex and hypothalamus.

Structures Control 10−8 M DHEA p

Cerebral cortex 3190.84 ± 552.95 (5) 2752.65 ± 184.39 (5) 0.131
Hypothalamus 2370.9 ± 796.21 (7) 2536.38 ± 1257.41 (8) 0.770

Values are expressed as mean ± standard deviation (SD). The value of each n is rep-
resented in parentheses. Results are expressed as nmol of substrate oxidized to CO2
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able was  obtained when control and 10−8 M DHEA are compared.

xidation was observed between cerebral cortex and hypothala-
us  (data not shown).

.3. DHEA effect on 2-14C-Dglucose uptake in the presence or
bsence of lactate

Interaction of DHEA (10−8 or 10−12 M)  and the presence or
bsence of lactate on 2-14C-Dglucose uptake was evaluated. The
-14C-Dglucose uptake in the cerebellum (Fig. 1A, p = 0.433), hip-
ocampus (Fig. 1B, p = 0.561), and hypothalamus (Fig. 1C, p = 0.364)
as not affected by DHEA, regardless of lactate presence. Glucose
ptake was enhanced in the cerebral cortex by 10−8 M DHEA in the
resence of lactate (Fig. 1D, p ≤ 0.001). In the olfactory bulb, stimu-

ation of glucose uptake was observed in the absence of lactate for
he same DHEA concentration tested in the cerebral cortex (Fig. 1E,

 = 0.009).

.4. DHEA effect on [14C]-lactate oxidation

The 14C-lactate was used to evaluate the possible oxidative
ction of DHEA because lactate is the most important energy
ubstrate for the CNS, as shown in Table 2. The 10−8 M DHEA con-
entration was chosen because it produced a positive effect in
-14C-Dglucose uptake (Fig. 1D) by the CNS structures here stud-

ed. DHEA did not change the 14C-lactate oxidation in either the
erebral cortex or the hypothalamus when compared to respective
ontrols (Table 3).

. Discussion

The brain is an oxidative-glucose-dependent organ [12], but lac-
ate is the preferential ATP source for neurons of CNS structures as
escribed by the lactate shuttle hypothesis [7,19,22,23,28]. It was
reviously reported that lactate addition to medium can affect glu-
ose uptake in vitro [4,25].  Our study reveals that 10 mM lactate
sed in the culture medium differently affects each CNS structure
ested.

Previous studies demonstrated that the regions of the brain do

ot use glucose uniformly, and showed differential storage of glu-
ose as well as the localization of glycogen and relevant enzymes
5,10,30]. Therefore it is likely that different brain structures have
ifferent patterns of substrate metabolism.
 Letters 507 (2012) 62– 66

We  found that 2-14C-Dglucose uptake in the cerebellum and
cerebral cortex was diminished in the presence of lactate when
compared to the uptake observed in the absence of lactate, which
is consistent with the results published by Murata et al. [25]. Lac-
tate has been shown to be the preferential oxidative substrate in
the cerebral cortex [23]. Moreover, when cerebellar neurons were
exposed to lactate in vitro, ATP concentration increased, suggesting
lactate as an important energy source [1] leading to a decrease of
glucose uptake.

Cerebral cortex has a great proportion of neurons, and when
lactate and glucose are present at an equimolar concentration, 90%
of neuronal metabolism is supported by lactate while only 10% of
glucose is utilized as energy source for these cells [6,23].

Unlike the cortex and cerebellum, 2-14C-Dglucose uptake in the
hypothalamus was enhanced by almost two fold in the presence of
lactate. We suggest that glucose neuron sensors, present in some
hypothalamic nuclei [20], can alter the glucose uptake in response
to the presence of lactate. When these neurons are exposed to glu-
cose or lactate in vitro, ATP concentration decreases because they
fire action potentials, demonstrating that these neurons are also
sensible to lactate [1].  Decrease in ATP concentration can lead to
increase glucose uptake. Another indication that lactate is the pref-
erential energy substrate is our observation that in hypothalamus
slices 14C-lactate was more oxidized in vitro than 14C-glucose, as
described previously [7] and as seen in our results of cerebral cortex.

In the olfactory bulb, lactate also increased 2-14C-Dglucose
uptake. Energy deprivation is related to lactate oxidation to main-
tain energy status in the olfactory bulb [26]. Lactate can sustain a
live tissue that is able to maintain 2-14C-Dglucose uptake in vitro.

Only in the hippocampus was  the 2-14C-Dglucose uptake unaf-
fected by lactate, a finding that agrees with a previous report [14].
Lactate is an important energy source for neurons during periods of
extreme activity or following hypoxia–ischemia in the hippocam-
pus [4] but glucose is preferred as energy by this tissue in vitro and
can support synaptic transmission more efficiently [9,14,33].

The interaction between DHEA and lactate in glucose uptake in
vitro was  also investigated. DHEA serum levels decline with age and
it has been proposed that restoring the circulating levels of these
steroids may  have anti-aging effects [18,32]. Mitochondrial respira-
tory and Na+–K+ ATPase activities from CNS also decline with aging
and DHEA has been shown to reverse this process [27,32].

Oxidative metabolism dysfunction has been proposed to play
a pivotal role in neurodegenerative diseases, including Alzheimer
whose progression causes decrease of glucose uptake, and
decreases enzymes activities [38]. The DHEA effect was tested in the
present study because it is well recognized that DHEA modulates
metabolism, and that the increase of glucose uptake can ameliorate
the CNS metabolism of Alzheimer’s patients [13].

Higher DHEA doses were previously shown to induce apoptotic
effects and to decrease glucose uptake, and the supplementation
of energy substrate glucose inhibited this process [31,36,37].  How-
ever, the doses used in the present work were lower and did not
produce these previously reported negative effects [31]. In addi-
tion, the 10−8 M dose was  chosen because it can stimulate glucose
uptake in culture as described previously [16].

In our study, DHEA had no effect on glucose uptake in the cere-
bellum, hippocampus, and hypothalamus independently of lactate
presence. In contrast, 10−8 M DHEA enhanced the 2-14C-Dglucose
uptake in the cerebral cortex in the presence of lactate and in the
olfactory bulb in the absence of lactate, showing a tissue- and dose-
dependent effect.

DHEA has been shown to attenuate glial reaction to denervation
and to regulate glial plasticity in the olfactory bulb, demonstrating

an important local action of neurosteroids [15]. In the present work,
in the olfactory bulb DHEA enhanced the 2-14C-Dglucose uptake
only in the absence of lactate. It is likely that when present, lactate
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Fig. 1. Effect of DHEA (10−8 or 10−12 M)  in vitro versus control (CTR) in 2-14C-DG uptake, with or without (none) 10 mM lactate. White bars are results obtained in absence
of  lactate and grey bars were obtained in the presence of lactate. (A) Cerebellum (p = 0.433). (B) Hippocampus (p = 0.561). (C) Hypothalamus (p = 0.364). (D) Cerebral cortex:
*statistical difference among DHEA versus 10−8 M CTR and DHEA 10−12 M (one-way ANOVA; p < 0.05); two-way ANOVA demonstrates difference between experimental
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s used as the most important ATP source [26] however the inter-
ction between lactate and DHEA in glucose uptake remains to be
lucidated.

In the cerebral cortex, DHEA enhanced 2-14C-Dglucose uptake
ithout any change in 14C-lactate oxidation. In vivo cerebral cortex

ctivation indicated by an increase in the metabolic rate is observed
y a nonlinear coupling between glucose uptake (and lactate pro-
uction) and oxygen consumption [19]. DHEA administration also
nhances Na+–K+ ATPase activity in the cerebral cortex [32] and
itochondrial oxidative activity in a dose-dependent way [24,27].
ur results demonstrated that DHEA up-regulates glucose uptake
y the cerebral cortex, without altering its oxidative capacity.

In our results DHEA enhanced 2-14C-Dglucose uptake and did
ot influence lactate oxidation, so we cannot exclude that DHEA

nfluenced astrocytes receptors because astrocyte takes up the
reat proportion of glucose in CNS [22]. The neurons had a pref-
rence to oxidize lactate instead of glucose [22] and as seen in our
esults lactate oxidation was not affected by DHEA. However we
annot exclude further DHEA actions in signaling pathways that
ncrease metabolism or modulate other neuronal receptors. The
tructure-specific action needs to be clarified.

In addition, more experiments are also necessary to deter-
ine the DHEA action and the interaction between DHEA and

actate in glucose metabolism of CNS structures of old rats and
ypometabolic tissues.

. Conclusions

In conclusion, in the present study we demonstrated that lactate

s a preferential oxidative substrate for various CNS structures and
an alter glucose uptake by each structure differently. In addition,
e showed that lactate and DHEA interact, increasing the

-14C-Dglucose uptake without affecting lactate oxidative
TR and DHEA 10−12 M (one-way ANOVA; p < 0.05); two-way ANOVA demonstrates
± SD. The value of each n is represented in brackets. The results are expressed as

 See Section 2 for details.

metabolism. However, more studies regarding the molecu-
lar and metabolic interactions of this neurosteroid with other
energy substrates and pathways (such as glycogen synthesis) are
necessary.
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