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Presynaptic kainate receptor-mediated facilitation of glutamate release
involves Ca2+–calmodulin and PKA in cerebrocortical synaptosomes
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We have explored the mechanisms involved in the facilitation of glutamate release mediated by the
activation of kainate receptors (KARs) in the cortex using isolated nerve terminals (synaptosomes).
Kainate (KA) produced an increase on glutamate release at 100 lM. The effect of KA was antagonized
by NBQX (with AMPA receptors blocked by GYKI53655). This facilitation was suppressed by the inhi-
bition of PKA activation by Rp-Br-cAMP and H-89. Moreover, the facilitation of glutamate release
mediated by KAR requires the mobilization of intrasynaptosomal Ca2+ stores and the formation of
a Ca2+–calmodulin complex. We conclude that KARs present on presynaptic terminals in the neocor-
tex mediate the facilitation of glutamate release through a mechanism involving an increase in cyto-
solic Ca2+ to activate a Ca2+–calmodulin–AC/cAMP/PKA signaling cascade.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

As the major excitatory neurotransmitter in the mammalian
central nervous system (CNS), glutamate supports normal synaptic
transmission, as well as sustaining learning and memory processes,
manifest experimentally as long-term potentiation (LTP) and long-
term depression (LTD) of synapses [1]. Glutamatergic neurotrans-
mission also plays a developmental role in synaptogenesis and
neuronal maturation [1]. The ionotropic glutamate receptor family
has three members, viz. NMDA-, AMPA- and Kainate-type recep-
tors [2], all of which are homo- or hetero-meric tetramers com-
posed from cognate sets of diverse subunits. Kainate receptors
(KARs) are constructed from GluK1, GluK2, GluK3, GluK4 and
GluK5 subunits, with the former three able to form low-affinity
homotetramers, with heterotetrameric assemblies including GluK4
and GluK5 imparting higher agonist affinities on the receptor com-
plexes [3].
Found ubiquitously distributed in the CNS, KARs were in the
first instance described as being postsynaptic, being located in
the principal cells and interneurons of the hippocampus, the lateral
amygdala, dorsal root ganglia, bipolar cells of the retina, cerebral
cortex, globus pallidus and cerebellum [3–5]. Persuasive evidence
subsequently identified the presynaptic terminal localization of
KARs, whereby they modulate neurotransmitter release [3–7].
KARs have been implicated in the modulation of both glutamate
and GABA release [3–7]. At some glutamatergic synapses, KAR acti-
vation mediates a biphasic effect. Thus, while low concentrations
of the agonist kainate (KA) produce an increase in glutamate re-
lease, high concentrations effect a decrease in glutamate release
[4,5]. The exact mechanism by which KARs produce the former
facilitation of glutamate release remains to be fully elucidated. In-
deed, the precise location of receptors that are responsible for this
facilitation is yet to be demonstrated.

Here, we have examined the effect of KA on glutamate release
from isolated cerebrocortical nerve terminals (synaptosomes) pre-
pared using a well established procedure [8–11]. In this prepara-
tion, any confounding postsynaptic effects of KA on glutamate
release are obviated by the minimal presence of functional postsyn-
aptic elements [8–12]. We found that the facilitation of glutamate
release showed a major sensitivity to suppression of cAMP-
mediated activation of protein kinase A (PKA), depletion of intra-
synaptosomal Ca2+ stores and inhibition of calmodulin. The data
implicate Ca2+–calmodulin stimulation of adenylyl cyclase (AC)
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and downstream activation of PKA in the KAR-mediated facilitation
of glutamate release.

2. Methods

2.1. Animals

Synaptosomes were obtained from male, adult Sprague–Dawley
rats (150–200 g). Experiments were carried out according to the
Home Office Animals (Scientific Procedures) Act of 1996.

2.2. Preparation of synaptosomes

Synaptosomes were prepared from the cerebral cortex as de-
scribed previously [8]. The final synaptosomal fraction was resus-
pended in HEPES-buffered incubation medium (HBM) containing
(mM): 140 NaCl, 5 KCl, 5 NaHCO3, 1 MgCl2�6H2O, 1.2 Na2HPO4,
10 glucose, 20 HEPES (pH 7.4). Protein concentration was then
determined using a Bradford assay. Synaptosomes were centri-
fuged in the final wash to obtain synaptosomal pellets with
0.5 mg protein. Synaptosomal pellets were stored on ice and used
within 1–2 h. We have shown this well established preparation to
be enriched in synapsin I, a exclusively presynaptic marker [12].
Further the robust metabolic competence and ability of percoll
purified synaptosomes to release neurotransmitters [13,14], has
made this preparation a persuasive model for elucidating presyn-
aptic receptor function [15].

2.3. Glutamate release assay

Glutamate release was assayed by on-line fluorometry [16]. Pel-
leted synaptosomes were resuspended at a protein concentration
of 0.5 mg/ml in HBM containing 16 lM bovine serum albumin
(BSA) and incubated in a stirred and thermostatted cuvette at
37 �C in a Perkin–Elmer LS-3B spectrofluorimeter. NADP+ (1 mM),
glutamate dehydrogenase (50 units/ml) and CaCl2 (1 mM) were
added after 3 min. After a further 10 min of incubation, 1 mM 4-
aminopyridine (4-AP) was added to stimulate glutamate release.
The oxidative deamination of released glutamate, leading to the
reduction of NADP+, was monitored by measuring NADPH fluores-
cence at excitation and emission wavelengths of 340 and 460 nm,
Fig. 1. Kainate-induced facilitation of 4-AP-evoked glutamate release in cerebrocortical
absence (i) and presence (ii) of 100 lM KA (added 1 min before the addition of 4-AP), (iii)
(B) Quantification of modulation using release levels achieved 4 min post 4-AP. Increase o
and H-89 but not in the presence of NEM. The numbers in parentheses indicate the num
mean ± S.E.M. (⁄⁄P < 0.01, Mann–Whitney U test).
respectively. Data were accumulated at 2-s intervals. A standard of
exogenous glutamate (5 nmol) was added at the end of each exper-
iment and the fluorescence change produced by the standard addi-
tion was used to calculate the released glutamate as nanomoles
glutamate per milligram synaptosomal protein. Release traces are
shifted vertically to align the point of depolarization as zero re-
lease. Release values quoted in the text are levels attained at ‘‘stea-
dy-state’’ after 4 min of depolarization (nmol/mg protein/4 min).

2.4. Data analysis

Data are presented as mean ± S.E.M. Each n indicates the num-
ber of individual synaptosome preparations used; each preparation
was derived from a single animal. Significance was assessed at
P < 0.05, using the Mann–Whitney U test.

2.5. Compounds

Kainate, salts and general reagents were purchased from Sigma
(St. Louis, MO); GYKI 53655, CNQX, NBQX, D-AP5, thapsigargin,
ryanodine, CMZ and W-7 were obtained from Tocris (Bristol, UK).

3. Results

3.1. Kainate receptor activation increases glutamate release in
cerebrocortical synaptosomes

Using an on-line enzymatic assay for measuring glutamate, we
observed a KA-mediated facilitation of glutamate release from cere-
bral cortex nerve terminals (synaptosomes) as described previously
[16] (Fig. 1A). We applied KA to cerebrocortical synaptosomes in
the presence of 30 lM GYKI 53655 (1-(4-aminophenyl)-4-methyl-
7,8-methylenedioxy-5H-2,3-benzodiazepine, a non-competitive
AMPA/KA receptors antagonist which at, 30 lM, is selective for
AMPA receptor and does not affect KAR activity [17,18]) or
100 lM SYM2206 (±4-(4-aminophenyl)-1,2-dihydro-1-methyl-2-
propylcarbamoyl-6,7methylenedioxyphtalazine, another non-
competitive AMPA receptor antagonist [19]), to prevent the activa-
tion of AMPA receptors by KA. Under these conditions, the applica-
tion of 100 lM KA produced a clear and statistically significant
facilitation of glutamate release (37 ± 6%, n = 12, Fig. 1A and B)
synaptosomes requires PKA but not G-protein action. (A) Glutamate release in the
increase in glutamate release is prevented in the presence of PKA inhibitor Rp-cAMP.
f glutamate release by KA is prevented in the presence of CNQX, NBQX, Rp-Br-CAMP
ber of experiments using independent synaptosomal preparations. Results are the
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evoked by 1 mM 4-AP. We next re-examined the observed KA-in-
duced facilitation in the presence of the AMPA/kainate receptor
antagonists CNQX (6-cyano-7-nitroquinoxaline-2,3-dione [20],
100 lM) and NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo
[f]quinoxaline-7-sulfonamide, [21], 10 lM). In our incubation con-
ditions, given that we routinely blocked AMPA receptors with
GYKI53655 or SYM2206, CNQX and NBQX are effectively specific
kainate receptor antagonists. In the presence of CNQX, the facilita-
tory effect of KA was blocked (6 ± 5% increase, n = 5) as well as in the
presence of NBQX (4 ± 4%, n = 5). The abrogation of the effect of KA
in the presence of CNQX is not attributable to the inhibitor targeting
NMDA receptors [22] since the NMDA receptor antagonist, D-AP5
(D(�)-2-amino-5-phosphonovaleric acid (50 lM), had no effect
on the facilitation of glutamate release (35 ± 7%, n = 5) produced
by KA. These results indicate (as previously described in [15]) that
the facilitation of glutamate release that we observe is mediated
Fig. 2. Facilitation of 4-AP-evoked glutamate release mediated by KAR activation r
Ca2+/calmodulin complex in cerebrocortical synaptosomes. (A) Glutamate release under
and Tsg + KA (iv). (B) Quantification of modulation observed in A and in the presence of ry
in Tsg and ryanodine-treated synaptosomes. (C) Glutamate release under control cond
Quantification of modulation observed in A and in the presence of CMZ using release lev
synaptosomes. The number of experiments is indicated in parentheses at the top of eac
by the activation of a presynaptic KAR (Fig. 1A and B). These data
suggest that the selective activation of a presynaptic glutamate
receptor of the kainate type produces a facilitation of glutamate re-
lease in cerebrocortical nerve terminals.

3.2. Kainate-induced facilitation of glutamate release involves the
cAMP cascade in cerebral cortex synaptosomes

The mechanism underlying the facilitation of glutamate release
by KA receptors remains to be elucidated in cerebrocortical synap-
tosomes. Having confirmed the selectivity of the action of KA on
glutamate release, we further explored the mechanism(s) underly-
ing the effect. We previously described in hippocampal synapto-
somes, that KAR-mediated facilitation involves signaling
instigated by cAMP [23]. We therefore analyzed the effect of inhib-
iting the activation of cAMP-dependent protein kinase A (PKA) on
equires release of Ca2+ from intrasynaptosomal stores and the formation of a
control conditions (i) and in the presence of 100 lM KA (ii), thapsigargin (Tsg) (iii),
anodine using release levels achieved 4 min post 4-AP. The effect of KA is prevented
itions (i) and in the presence of 100 lM KA (ii), W-7 (iii), and W-7 + KA (iv). (D)
els achieved 4 min post 4-AP. The effect of KA is prevented in W-7 and CMZ-treated
h bar. Results are expressed as means ± S.E.M. (⁄⁄P < 0.01, Mann–Whitney U test).
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Fig. 3. Mechanism of KAR-mediated facilitation of glutamate release at cerebro-
cortical synaptosomes. Schematic diagram showing that KA facilitates glutamate
release by activating KARs and inducing Ca2+ release from intraterminal stores. The
increase of cytosolic [Ca2+] mediates the formation of a Ca2+–calmodulin complex
which activates AC and thereby PKA subsequently.
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KA-mediated facilitation of glutamate release from cerebrocortical
synaptosomes. For this purpose, we used the selective and inactive
cAMP analogue, Rp-Br-cAMP (bromoadenosine-30,50-cyclic mono-
phosphorothioate, Rp-isomer [24], 100 lM) and the inhibitor
H-89 (N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-iso-
quinolinesulfonamide [25], 2 lM) to effect the inhibition of
cAMP-dependent activation of PKA in nerve terminals. In the pres-
ence of Rp-Br-cAMP and H-89, subsequent application of 100 lM
KA did not facilitate glutamate release (5 ± 7%, n = 5 and 7 ± 8%,
n = 6, respectively) versus the 36 ± 6% (n = 6) facilitation of gluta-
mate release obained without Rp-Br-cAMP or H-89. These results
indicate that inhibition of PKA activation abrogates the regulatory
action of KA (Fig. 1A and B). Notably however, although some of
the effects of KARs have been attributed to a metabotropic mech-
anism involving G-proteins [4–5,26], we observed no effect of gen-
eral G-protein inhibition by NEM (N-ethylmaleimide, alkylating
agent that effects inactivation of G proteins [27], 2 lM, 41 ± 10%,
n = 7, versus 40 ± 7%, n = 5, Fig. 1B) on the facilitation of glutamate
release mediated by KAR activation. The instigation of endogenous
cAMP production implicated by the foregoing data must therefore
arise from a G-protein-independent activation of adenylyl cyclase
(AC) in synaptosomes.

3.3. Facilitation of glutamate release mediated by presynaptic KAR
activation requires an increase of Ca2+ in the cytosol and involves
Ca2+–calmodulin in cerebrocortical synaptosomes

In the hippocampal slice studies, KAR-mediated facilitation of
glutamate release has been suggested to involve Ca2+ increases in
the cytosol, potentially through mobilization of intracellular Ca2+

stores [27–30]. To determine whether intrasynaptosomal Ca2+

stores underpin or support the KAR-mediated facilitation of gluta-
mate release, we performed experiments in cerebrocortical synap-
tosomes treated with thapsigargin (2 lM), a smooth endoplasmic
reticulum Ca2+-ATPase inhibitor known to deplete Ca2+ from intra-
cellular stores [28,31]. In this condition, KA produced no facilita-
tion of glutamate release in cortical synaptosomes (4 ± 6%, n = 5,
Fig. 2A and B). The intracellular release of Ca2+ observed could be
triggered either by inositol trisphosphate (IP3), or via Ca2+ induced
Ca2+ release. We therefore tested the latter by looking at the ability
of ryanodine (10 lM) to block KAR-mediated facilitation. Ryano-
dine, which selectively inhibits Ca2+ induced Ca2+ release [32], pre-
vented KARs mediated facilitation of glutamate release (5 ± 5%,
n = 6, Fig. 2B). These results clearly indicate that an increase in
cytosolic Ca2+, involving intrasynaptosomal Ca2+ stores, is obliga-
tory for the facilitation of glutamate release mediated by KAR-
activation.

From foregoing results, it is clear that an increase in Ca2+ con-
centration in the cytosol after KAR activation is necessary for the
mediation of the facilitation of glutamate release produced by
KA, where the activation of an AC/cAMP/PKA pathway evidently
underpins the regulation. Given that we have also observed that
KAR-mediated facilitation does not involve canonical G-protein
activation, the question remains, how could AC then be activated?
Knockout experiments have established an important role for
Ca2+–calmodulin stimulated adenylyl cyclases (i.e., AC1 and AC8)
in the hippocampus [33–35]. This raises the prospect that activa-
tion of the aforementioned AC(s) in cerebrocortical nerve terminals
may occur through the increase in Ca2+ activating calmodulin. We
tested for this possibility in cerebrocortical synaptosomes by
examining the effect of inhibiting Ca2+–calmodulin by using the
calmodulin antagonist W-7 (N-(6-aminohexyl)-5-chloro-1-naph-
thalene-sulphonamide [36]. In the presence of W-7 (25 lM), the
facilitatory effect of KA on glutamate release was abolished
(3 ± 4%, n = 5 increase, Fig. 2C and D). W-7 had no statistically sig-
nificant effect on glutamate release under control conditions (in
the absence of KA, �10 ± 5%, n = 5, Fig. 2C). We also performed
the experiment in the presence of an alternative calmodulin antag-
onist calmidazolium, CMZ (1-[bis(p-chlorophenyl)methyl]-3-[2,4-
dichloro-3-(2,4-dichlorobenzyloxy) phenethyl] imidazolinium
chloride [37], 1 lM). As with W-7, in synaptosomes treated with
CMZ, KA-mediated facilitation of glutamate release was abolished
(6 ± 7%, n = 5, Fig. 2B). These results indicate that a presynaptic
Ca2+–calmodulin complex is necessary for the activation of the in-
crease of glutamate release after KA application and may form the
basis of the mandatory upstream AC activation shown.

4. Discussion

Using biochemical studies in cerebrocortical nerve terminals,
our results show that the activation of presynaptic KARs produces
an increase of glutamate release and that these receptors are cou-
pled to a cascade involving Ca2+-calmoduin/AC/cAMP/PKA activity
(Fig. 3). As synaptosomes are devoid of functional postsynaptic ele-
ments, the experiments are demonstrative of presynaptic modula-
tion. Importantly, the observed effect of KA could be attributed
specifically to the activation of KARs, as synaptosomes were incu-
bated in the presence of the AMPA receptor antagonist GYKI53655,
and in continued presence of the latter, the clear facilitation of glu-
tamate release by KA addition was completely blocked by treat-
ment with CNQX or NBQX (implying no other ionotropic
glutamate receptors are involved). Furthermore, the increase in
glutamate release produced by KA was eliminated when synapto-
somes were incubated with the inhibitors Rp-Br-cAMP and H-89,
confirming the involvement of PKA in the KAR-mediated facilita-
tion. The pretreatment of synaptosomes with thapsigargin or ryan-
odine abolished the KA-mediated effect. This demonstrates that
increases in cytosolic Ca2+ concentrations involving intrasynaptos-
omal Ca2+ store mobilization is necessary for the KAR-mediated in-
crease of glutamate release observed.

Our previous and current results using synaptosomes have indi-
cated that the KAR-mediated action on glutamate release is not
mediated by G-proteins (unaffected by NEM treatment). To gain
further insight into the mechanism of KARs-mediated increase of
glutamate release, and to determine how the activation of AC
might occur in the absence of G-protein activation, we studied
the mechanistic details of the involvement of increased cytosolic
Ca2+ in the regulation effected by KARs. Using the calmodulin
antagonists, W-7 and CMZ, we evaluated the participation of cal-
modulin in this action of KA. Although CMZ has been reported to
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have some calmodulin-independent actions, these have been lar-
gely noted in tissues other than the brain [37,38]. In the brain at
a concentration of 1 lM, the primary target for CMZ is calmodulin.
In the presence of either calmodulin inhibitor, the KA-mediated
modulation was abolished. Evidently therefore, any increased cyto-
solic Ca2+ initiated by KAR activation requires a Ca2+–calmodulin
complex to effect the modulation of glutamate release, putatively
instigated by a Ca2+–calmodulin-sensitive AC operating in a AC/
cAMP/PKA signaling cascade. Of all identified ACs, type 1 and 8
(AC1 and AC8) are the major Ca2+ stimulated ACs in the central ner-
vous system [35,39]. In fact, double knock-out mice, lacking both
AC1 and AC8, do not show Ca2+-stimulated elevation of cAMP
[40]. The proposed formation of the Ca2+–calmodulin complex fol-
lowing KAR activation described herein may indeed therefore acti-
vate AC1 and/or AC8 to initiate the KA mediated facilitation of
glutamate release.

In conclusion, our data show that the activation of presynaptic
KARs by KA in cereborcortical syanaptosomes results in the facili-
tation of glutamate release by a mechanism that involves the trig-
gering of release of Ca2+ from intrasynaptosomal stores. The Ca2+

putatively binds to calmodulin to form a Ca2+–calmodulin com-
plex, which then likely activates AC1 or AC8 to produce an increase
in cAMP levels and an activation of PKA, thereby resulting in the
facilitation of glutamate release.
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