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Abstract

In this paper, we establish new sufficient conditions for global asymptotic stability of the positive equi-
librium in the following discrete models of Lotka–Volterra type:⎧⎪⎪⎨

⎪⎪⎩
Ni(p + 1) = Ni(p) exp

{
ci − aiNi(p) −

n∑
j=1

aijNj (p − kij )

}
, p � 0, 1 � i � n,

Ni(p) = Nip � 0, p � 0, and Ni0 > 0, 1 � i � n,

where each Nip for p � 0, each ci , ai and aij are finite and{
ai > 0, ai + aii > 0, 1 � i � n, and
kij � 0, 1 � i, j � n.

Applying the former results [Y. Muroya, Persistence and global stability for discrete models of nonau-
tonomous Lotka–Volterra type, J. Math. Anal. Appl. 273 (2002) 492–511] on sufficient conditions for the
persistence of nonautonomous discrete Lotka–Volterra systems, we first obtain conditions for the persis-
tence of the above autonomous system, and extending a similar technique to use a nonnegative Lyapunov-
like function offered by Y. Saito, T. Hara and W. Ma [Y. Saito, T. Hara, W. Ma, Necessary and sufficient
conditions for permanence and global stability of a Lotka–Volterra system with two delays, J. Math. Anal.
Appl. 236 (1999) 534–556] for n = 2 to the above system for n � 2, we establish new conditions for global
asymptotic stability of the positive equilibrium. In some special cases that kij = kjj , 1 � i, j � n, and∑n

j=1 ajiajk = 0, i �= k, these conditions become ai >
√∑n

j=1 a2
ji

, 1 � i � n, and improve the well-
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known stability conditions ai >
∑n

j=1 |aji |, 1 � i � n, obtained by K. Gopalsamy [K. Gopalsamy, Global
asymptotic stability in Volterra’s population systems, J. Math. Biol. 19 (1984) 157–168].
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the persistence and global asymptotic stability of the following discrete models of
Lotka–Volterra type:⎧⎪⎨

⎪⎩
Ni(p + 1) = Ni(p) exp

{
ci − aiNi(p) −

n∑
j=1

aijNj (p − kij )

}
, p � 0,

Ni(p) = Nip � 0, p � 0, and Ni0 > 0, 1 � i � n,

(1.1)

where each Nip for p � 0, each ci , ai and aij are finite and{
ai > 0, ai + aii > 0, 1 � i � n, and
kij � 0, 1 � i, j � n.

(1.2)

Recently, making the best use of the symmetry of the system and an extended La Salle’s in-
variance principle, Saito, Hara and Ma [9] has shown necessary and sufficient conditions for
permanence and global stability of a symmetrical Lotka–Volterra type predator–prey system
with two delays. This improves the well-known sufficient condition on the global asymptotic
stability of the positive equilibrium in the system obtained by Gopalsamy [4]. Saito [8] also
established the necessary and sufficient condition for global stability of a Lotka–Volterra coop-
erative or competition system with delays for two species. On the other hand, Xu and Chen [10]
has offer new techniques to obtain sufficient conditions of the persistence and global stability for
a time-dependent pure-delay-type Lotka–Volterra predator–prey model for three species. On the
other hand, Muroya [5,6] established conditions for the persistence and global stability of delay
differential system and discrete system for n species, respectively, which are some extensions of
the averaged condition offered by Ahmad and Lazer [1,2].

In this paper, applying Lemma 2.2 and Theorem 1.2 in Muroya [6] on sufficient conditions
for the persistence of nonautonomous discrete Lotka–Volterra systems to the discrete system
(1.1)–(1.2), we first obtain conditions for the persistence of the above autonomous system, and
extending a similar technique to use a nonnegative Lyapunov-like function offered by Saito,
Hara and Ma [9] for n = 2 to the above system for n � 2, we establish new conditions for global
asymptotic stability of the positive equilibrium. This is a discrete version of Muroya [7]. In
some special cases, these conditions improve the well-known stability result obtained by Gopal-
samy [4].

Put

a+
ij = max(aij ,0), a−

ij = min(aij ,0), (1.3)

and ⎧⎪⎨
⎪⎩

A0 = diag(a1, a2, . . . , an), B− = [
a−
ij

]
, B+ = [

a+
ij

]
and

D+ = diag
(
a+

11, a
+
22, . . . , a

+
nn

)
are n × n matrices, and (1.4)
c = [ci] is an n-dimensional vector,
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and assume that{
A0 + D+ + B− is an M-matrix, (A0 + D+ + B−)−1c > 0 and

c > (B+ − D+)(A0 + D+ + B−)−1c,
(1.5)

where a real n × n matrix A = [aij ] with aij � 0 for all i �= j is called an M-matrix if A is
nonsingular and A−1 � 0 (see, for example, Berman and Plemmons [3]).

Applying Lemma 2.2 and Theorem 2.2 in Muroya [6] on the sufficient conditions of the
persistence of nonautonomous discrete Lotka–Volterra systems to the system (1.1)–(1.2), we
first obtain the following theorem.

Theorem 1.1. (See Muroya [6].) For the system (1.1)–(1.2), if the condition (1.5) is satisfied, then
all solutions Ni(p), 1 � i � n, of the system are positive and the system is persistent, that is,

0 < lim inf
p�0

Ni(p) � lim sup
p�0

Ni(p) < +∞, 1 � i � n. (1.6)

In particular, all solutions Ni(p), 1 � i � n, of the system are bounded above, that is,

lim sup
p→∞

Ni(p) � N̄i, 1 � i � n, (1.7)

where N̄i , 1 � i � n, are defined by

c̃i = ci −
i−1∑
j=1

a−
ij N̄j , Ñi = c̃i/ai, N̄i =

{
c̃i/ai, c̃i � 1,

ec̃i−1/ai, c̃i > 1.
(1.8)

By Theorem 1.1 and extending a similar technique to use a nonnegative Lyapunov-like func-
tion offered by Saito, Hara and Ma [9] for n = 2 to the above system for n � 2, we get the
following results.

Theorem 1.2. For the system (1.1)–(1.2), in addition to (1.5) and (1.7), assume

c̃i < 1, 1 � i � n, (1.9)

and suppose that there exists a positive equilibrium N∗ = (N∗
1 ,N∗

2 , . . . ,N∗
n ) and

ai >

√√√√ n∑
j=1

|aji |
(

n∑
k=1

|ajk|
)

, 1 � i � n. (1.10)

Then, the positive equilibrium N∗ = (N∗
1 ,N∗

2 , . . . ,N∗
n ) of (1.1) is globally asymptotically stable

for any kij � 0, 1 � i, j � n.
In particular, if

kij = kjj , 1 � i, j � n, and ai >

√√√√ n∑
k=1

∣∣∣∣∣
n∑

j=1

ajiajk

∣∣∣∣∣, 1 � i � n, (1.11)

then the positive equilibrium N∗ = (N∗
1 ,N∗

2 , . . . ,N∗
n ) of (1.1) is globally asymptotically stable

for any kii � 0, 1 � i � n.
Moreover, if

n∑
ajiajk = 0, i �= k, (1.12)
j=1
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then the last inequalities of (1.11) becomes

ai >

√√√√ n∑
j=1

a2
ji , 1 � i � n. (1.13)

Thus, in the cases of (1.11) and (1.12), the condition (1.13) is weaker than the following
sufficient condition on the global asymptotic stability of the positive equilibrium of the system

ai >

n∑
j=1

|aji |, 1 � i � n, (1.14)

which was obtained by Gopalsamy [4], and this extends some of results in Saito, Hara and Ma
[9] for n = 2 to n � 2.

The organization of this paper is as follows. In Section 2, applying the results in Muroya [6],
we offer conditions for the persistence of system (1.1)–(1.2), and using a nonnegative Lyapunov-
like sequence, we establish conditions for the global asymptotic stability of positive equilibrium
N∗ = (N∗

1 ,N∗
2 , . . . ,N∗

n ) of the system (1.1)–(1.2).

2. Proof of theorems

In this section, we prove Theorems 1.1 and 1.2. Muroya [6] consider the following discrete
system of nonautonomous Lotka–Volterra type:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ni(p + 1) = Ni(p) exp

{
ci(p) − ai(p)Ni(p) −

n∑
j=1

m∑
l=0

al
ij (p)Nj (p − kl)

}
,

p = 0,1,2, . . . ,

Ni(p) = Nip � 0, p � 0, and Ni0 > 0, 1 � i � n,

(2.1)

where each ci(p), ai(p) and al
ij (p) are bounded for p � 0 and⎧⎪⎪⎨

⎪⎪⎩
inf
p�0

ai(p) > 0, a0
ii (p) ≡ 0, 1 � i � n,

al
ij (p) � 0, 1 � i � j � n, 0 � l � m,

k0 = 0, integers kl � 0, 1 � l � m.

(2.2)

For a given sequence {g(p)}∞p=0, we set

gM = sup
{
g(p)

∣∣ p = 0,1,2, . . .
}
,

gL = inf
{
g(p)

∣∣ p = 0,1,2, . . .
}
, (2.3)

and for integers 0 � p1 < p2, we set

A[g,p1,p2] = 1

p2 − p1

p2−1∑
p=p1

g(p). (2.4)

The lower and upper averages of g(p), denoted by m[g] and M[g], respectively, are defined by

m[g] = lim
q→∞ inf

{
A[g,p1,p2]

∣∣ p2 − p1 � q
}

and

M[g] = lim sup
{
A[g,p1,p2]

∣∣ p2 − p1 � q
}
. (2.5)
q→∞
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Put

al
ijL = al−

ijL + al+
ijL, al−

ijL � 0 � al+
ijL,

al
ijM = al−

ijM + al+
ijM, al−

ijM � 0 � al+
ijM,

bijL =
m∑

l=0

al
ijL, b−

ijL =
m∑

l=0

al−
ijL,

bijM =
m∑

l=0

al
ijM and b+

ijM =
m∑

l=0

al+
ijM, 1 � i, j � n. (2.6)

Let

AL = diag(a1L,a2L, . . . , anL), B−
L = [

b−
ijL

]
, B+

M = [
b+
ijM

]
,

D+
L = diag

(
b+

11L,b+
22L, . . . , b+

nnL

)
and

D+
M = diag

(
b+

11M,b+
22M, . . . , b+

nnM

)
are n × n matrices, and

c = [
m[ci]

]
and c̄ = [

M[ci]
]

are n-dimensional vectors. (2.7)

Assume that(
AL + D+

L + B−
L

)−1
c̄ > 0 and c >

(
B+

M − D+
M

)(
AL + D+

L + B−
L

)−1
c̄, (2.8)

and put

c̃iM = ciM −
i−1∑
j=1

b−
ijLN̄j , Ñi = c̃iM/aiL,

N̄i =
{

c̃iM/aiL, c̃iM � 1,

exp(c̃iM − 1)/aiL, c̃iM > 1.
(2.9)

Muroya [6] obtained the following two results (see Muroya [6, Lemma 2.2 and Theorem 1.2]).

Lemma 2.1. Assume that for Eq. (2.7) and cM = (c1M,c2M, . . . , cnM)T ,(
AL + B−

L

)−1
cM > 0. (2.10)

Then, any solution of the system (2.1)–(2.2) is bounded above, and it holds that

lim
p→∞Ni(p) � N̄i, 1 � i � n, (2.11)

where N̄i , 1 � i � n, are defined by (2.9).

Note that (2.8) implies (2.10).

Lemma 2.2. For the system (2.1)–(2.2), if the condition (2.8) is satisfied, then all solutions Ni(p),
1 � i � n, of the system are bounded above. Moreover, if there exists a nonempty subset Q ∈
{1,2, . . . , n} such that

ciL −
∑

b+
ijMN̄j > 0, for any i ∈ Q, (2.12)
j /∈Q



Y. Muroya / J. Math. Anal. Appl. 330 (2007) 24–33 29
then the system (2.1)–(2.2) is persistent for solutions, that is,

0 < lim inf
p�0

Ni(p) � lim sup
p�0

Ni(p) < +∞, 1 � i � n. (2.13)

Note that for the system (1.1)–(1.2), (1.5) corresponds to (2.8) in system (2.1)–(2.2) and im-
plies c > 0 and for the set Q = {1,2, . . . , n}, it holds that

ci −
∑
j /∈Q

a+
ij N̄j > 0, for any i ∈ Q, (2.14)

which implies (2.12).

Proof of Theorem 1.1. Put

lij =
{

(i − 1) × (i − 1) + j, i > j,

(j − 1) × (j − 1) + 2j − i, i � j,

and

āl
ij =

{
aij , l = lij ,

0, otherwise,
kl =

{
kij , l = lij ,

0, otherwise.

Then, we have

n∑
j=1

aijNj (t − kij ) =
n∑

j=1

n2∑
l=1

āl
ijNj (t − kl).

Thus, the system (1.1)–(1.2) is a special autonomous case of system (2.1)–(2.2). We can apply
the results in Lemmas 2.1 and 2.2 to Eqs. (1.1)–(1.2) and obtain the conclusion of the theorem.
This completes the proof. �
Proof of Theorem 1.2. Since by Theorem 1.1, the condition (1.9) implies that N̄i = Ñi < 1/ai ,
1 � i � n, we have that there is a positive integer p0 such that for p � p0, Ni(p) < N̄i , 1 � i � n.
Consider a nonnegative Lyapunov-like sequence {v(p)}∞p=0 such that for p � 0,

v(p) =
n∑

i=1

2ai

{
Ni(p)

N∗
i

− 1 − ln
(
Ni(p)/N∗

i

)}
N∗

i

+
n∑

i=1

n∑
j=1

|aji |
(

n∑
k=1

|ajk|
)

p−1∑
q=p−kji

(
Ni(q) − N∗

i

)2
.

Then,

v(p + 1) − v(p)

=
n∑

i=1

2ai

{(
Ni(p + 1) − Ni(p)

) − N∗ ln
Ni(p + 1)

Ni(p)

}

+
n∑ n∑

|aji |
(

n∑
|ajk|

){(
Ni(p) − N∗

i

)2 − (
Ni(p − kji) − N∗

i

)2}
. (2.15)
i=1 j=1 k=1
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Since

Ni(p + 1) − Ni(p)

= Ni(p)

{
exp

(
ln

Ni(p + 1)

Ni(p)

)
− 1

}

= Ni(p)

{
ln

Ni(p + 1)

Ni(p)
+ exp

(
θ ln Ni(p+1)

Ni(p)

)
2!

(
ln

Ni(p + 1)

Ni(p)

)2}
, 0 < θ < 1,

where for p � p0 and 1 � i � n,

Ni(p) exp

(
θ ln

Ni(p + 1)

Ni(p)

)
� max

(
Ni(p),Ni(p + 1)

)
<

1

ai

,

one can verify that

2ai

{(
Ni(p + 1) − Ni(p)

) − N∗ ln
Ni(p + 1)

Ni(p)

}

� 2ai

(
Ni(p) − N∗

i

)
ln

Ni(p + 1)

Ni(p)
+

(
ln

Ni(p + 1)

Ni(p)

)2

, (2.16)

and by (2.1), we have that

ln
Ni(p + 1)

Ni(p)
= −ai

(
Ni(p) − N∗

i

) −
n∑

j=1

aij

(
Nj(p − kij ) − N∗

j

)
.

We have that x − 1 − lnx � 0, for any x > 0. By Theorem 1.1, each Ni(p), 1 � i � n, are
bounded above and below by positive constants for p � 0.

Therefore, it follows from (1.6) that for any p � k̄ = max{kij | kij � 0, 1 � i, j � n},
0 � v(p) < +∞.

Let

pi = ai

(
Ni(p) − N∗) and qij = aij

(
Nj(p − kij ) − N∗

j

)
.

Then, ln Ni(p+1)
Ni(p)

= −(pi + ∑n
j=1 qij ), and

ln
Ni(p + 1)

Ni(p)
= 2pi

(
−pi −

n∑
j=1

qij

)

= −
(

pi +
n∑

j=1

qij

)2

+
n∑

j=1

q2
ij + 2

n∑
j=2

j−1∑
k=1

qij qik − p2
i ,

and for rji = Nj(p − kij ) − N∗
j (p), we have that

2
n∑

i=1

n∑
j=2

j−1∑
k=1

qij qik = 2
n∑

i=1

n∑
j=2

j−1∑
k=1

aij aikrjirki �
n∑

i=1

n∑
j=2

j−1∑
k=1

|aij aik|
(
r2
ji + r2

ki

)

=
n∑ n∑

|aij |
(

j−1∑
|aik|

)
r2
ji +

n−1∑ n∑
|aik|

(
n∑

|aij |
)

r2
ki
j=2 i=1 k=1 k=1 i=1 j=k+1
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=
n∑

i=2

n∑
j=1

|aji |
(

i−1∑
k=1

|ajk|
)

r2
ji +

n−1∑
i=1

n∑
j=1

|aji |
(

n∑
k=i+1

|ajk|
)

r2
ki

�
n∑

i=1

n∑
j=1

|aji |
(∑

k �=i

|ajk|
)

r2
ij .

Therefore,

n∑
i=1

(
n∑

j=1

q2
ij + 2

n∑
j=2

j−1∑
k=1

qij qik

)
�

n∑
i=1

n∑
j=1

|aji |
(

n∑
k=1

|ajk|
)

r2
ij

and

n∑
i=1

2ai

{
Ni(p + 1) − Ni(p) − N∗

i ln
Ni(p + 1)

Ni(p)

}

�
n∑

i=1

n∑
j=1

|aji |
(

n∑
k=1

|ajk|
)

r2
ij −

n∑
i=1

p2
i

=
n∑

i=1

n∑
j=1

|aji |
(

n∑
k=1

|ajk|
)(

Ni(p − kji) − N∗
i

)2 −
n∑

i=1

a2
i

(
Ni(p) − N∗

i

)2
.

Thus, by (2.15), we obtain

v(p + 1) − v(p) � −
n∑

i=1

{
a2
i −

n∑
j=1

|aji |
(

n∑
k=1

|ajk|
)}(

Ni(p) − N∗
i

)2

� −δ

n∑
i=1

(
Ni(p) − N∗

i

)2
,

where by (1.10),

δ = min
1�i�n

{
a2
i −

n∑
j=1

|aji |
(

n∑
k=1

|ajk|
)}

> 0.

Then,

v(p + 1) + δ

p∑
q=0

n∑
i=1

(
Ni(q) − N∗

i

)2 � v(0), for any p � 0,

and
∞∑

p=0

n∑
i=1

(
Ni(p) − N∗

i

)2 � v(0)

δ
< +∞,

from which we conclude that
∑n

i=1(Ni(p) − N∗
i )2 = 0. This result implies that the positive

equilibrium N∗ = (N∗
1 ,N∗

2 , . . . ,N∗
n ) of (1.1) is globally asymptotically stable for any kij � 0,

1 � i, j � n.
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In particular, if (1.11) holds, then for rj = rjj = Nj(p − kjj ) − N∗
j , 1 � j � n, we have that

n∑
i=1

(
n∑

j=1

q2
ij + 2

n∑
j=2

j−1∑
k=1

qij qik

)
=

n∑
i=1

{
n∑

j=1

a2
ij r

2
j + 2

n∑
j=2

j−1∑
k=1

aij rj aikrk

}

=
n∑

i=1

n∑
j=1

n∑
k=1

aij rj aikrk =
n∑

j=1

n∑
k=1

(
n∑

i=1

aij aik

)
rj rk

and
n∑

j=1

n∑
k=1

∣∣∣∣∣
(

n∑
i=1

aij aik

)
rj rk

∣∣∣∣∣ �
n∑

j=1

n∑
k=1

∣∣∣∣∣
n∑

i=1

aij aik

∣∣∣∣∣
r2
j + r2

k

2

=
n∑

j=1

(
n∑

k=1

∣∣∣∣∣
n∑

i=1

aij aik

∣∣∣∣∣
)

r2
j

2
+

n∑
k=1

(
n∑

j=1

∣∣∣∣∣
n∑

i=1

aij aik

∣∣∣∣∣
)

r2
k

2

=
n∑

j=1

(
n∑

k=1

∣∣∣∣∣
n∑

i=1

aij aik

∣∣∣∣∣
)

r2
j

=
n∑

i=1

(
n∑

k=1

∣∣∣∣∣
n∑

j=1

ajiajk

∣∣∣∣∣
)

r2
i .

Thus, by (2.15), we obtain

v(p + 1) − v(p) � −
n∑

i=1

{
a2
i −

n∑
k=1

∣∣∣∣∣
n∑

j=1

ajiajk

∣∣∣∣∣
}(

Ni(p) − N∗
i

)2

� −δ1

n∑
i=1

(
Ni(p) − N∗

i

)2
,

where by (1.11),

δ1 = min
1�i�n

{
a2
i −

n∑
k=1

∣∣∣∣∣
n∑

j=1

ajiajk

∣∣∣∣∣
}

> 0.

Then,

v(p + 1) + δ1

p∑
q=0

n∑
i=1

(
Ni(q) − N∗

i

)2 � v(0), for any p � 0,

and
∞∑

p=0

n∑
i=1

(
Ni(p) − N∗

i

)2 � v(0)

δ1
< +∞,

from which we conclude that
∑n

i=1(Ni(p) − N∗
i )2 = 0. This result implies that the positive

equilibrium N∗ = (N∗
1 ,N∗

2 , . . . ,N∗
n ) of (1.1) is globally asymptotically stable for any kii � 0,

1 � i � n.
Moreover, if (1.12) holds, then it is evident that the last inequalities of (1.11) becomes

(1.13). �
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